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Abstract: Photomechanically responsive materials are promising candidates for future smart actuator
applications. The photo-responsive behaviors originate from the photoisomerization of photochromic
molecules. A typical photochromic compound, azobenzene, has been studied extensively in the
solution state and has played a crucial role in the photomechanical behaviors of materials such
as polymers and gels, via chemical bridging with their matrix. In contrast to polymers and gels,
the photomechanical attributes of molecular crystals have not progressed to the same degree, due to
their rigidity and fragility. However, the past decade has witnessed an increasing number of reports
of the photomechanical motion of molecular crystals, including azobenzene crystals. This paper
reviews the current state-of-the-art of mechanically responsive azobenzene crystals, including the
history, crystal design strategy, and future promising applications.

Keywords: azobenzene; photomechanical motion; trans-cis photoisomerization; molecular
crystal; actuation

1. Introduction to Photomechanical Materials

1.1. Actuator Materials

Actuation, which refers to mechanical motion or operation resulting from an energy conversion
process, is prevalent throughout nature and characterizes some human activities. Animals and plants
consume energy to create the mechanical motion required for survival and reproduction. Humans
have developed mechanical systems for many purposes, and related to a wide range of actuation
functions, to meet various needs. As to the specific materials used for actuation, inorganic materials that
respond mechanically to external stimuli have historically played crucial roles in advancing actuation
technology. For instance, a small piece of quartz, i.e., a crystal of silicon dioxide, ticks every second
in an electric watch by oscillating at a constant frequency under an applied voltage. Shape memory
alloys have been developed for many applications due to their shape recovery effect in response to a
temperature change. Other examples of material actuation include those based on the piezoelectric
effect, magnetostrictive effect, shape recovery, and thermal expansion [1].

The development of organic materials, mainly polymeric materials, for actuation has advanced
steadily. Responses to various kinds of stimuli, including light, heat, voltage, magnetic fields, pressure,
humidity, and biological enzymes have been achieved [2,3]. In addition, organic materials are generally
softer, lighter, and cheaper than inorganic materials. Therefore, mechanically responsive organic
materials are expected to come to the forefront in next-generation smart actuators. Potential future
applications include soft robots, mechanical devices, active catheters, wearable applications, and so
on [4,5].
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1.2. Azobenzene Compounds for Actuator Materials

The photomechanical response upon light irradiation has advantages for remote control and
diverse actuation via focused light or selective wavelengths [6]. Photomechanical polymers have
been well developed by crosslinking the polymeric main chain with photochromic compounds,
which convert their molecular geometry and electronic state upon photoirradiation [7]. The typical
photochromic compound is azobenzene, which undergoes trans-to-cis photoisomerization and
cis-to-trans back-isomerization reversibly (Scheme 1). The physicochemical properties of azobenzene
compounds have been researched extensively in the solution state [8]. In polymeric networks, molecular
geometry changes due to trans-to-cis photoisomerization result in photo-actuation. When a polymer
crosslinked with azobenzene is irradiated by light at wavelengths suitable for photoisomerization,
cis-isomer photoproducts are generated, mostly on the irradiated surface. The number of photoproducts
decreases according to the penetration depth of the light. The gradient distribution of cis-isomer results
in a bilayer-like structure in the material, inducing macroscopic deformations such as bending, twisting,
and helicoidal motions [9–11]. This actuation mechanism can also be applied to azobenzene-containing
gels. Gels are generally much softer than polymers due to the existence of solvents, and result in a
photomechanical response with smaller output force [12,13].
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1.3. Photomechanical Crystals

In contrast to soft materials such as polymers and gels, molecular crystals are considered a more
rigid and fragile material. For example, when strain is applied to a single crystal via photoproducts
or mechanical stress, the periodically ordered alignment of molecules results in the collapse of a
single crystalline state into a polycrystalline or amorphous state [14]. However, in contrast to this
stereotypical characterization, a landmark report published in 2007 demonstrated that photochromic
crystals of diarylethene compounds bent at an observable scale upon light irradiation [15]. This finding
has had a significant impact on the research community. A decade later, interest in photomechanical
crystals of various photochromic compounds continues to grow, as evidenced by the numerous reports
in the literature [16–21].

Regarding typical photochromic compound azobenzenes, dozens of crystals have been reported
to enable various photomechanical behaviors based on their trans-cis photoisomerization (Figure 1).
Thus, azobenzenes have played a role in demonstrating the photo-responsive functionality of the
crystalline state, prompting this review of its potential contribution to future developments in this
research area.

Before moving to the next section, we briefly discuss the mechanical properties of mechanically
responsive molecular crystals by comparing them to other actuator materials (Figure 2) [22]. Molecular
crystals possess a Young’s modulus of 1–10 GPa and deform with a strain of 0.1–1%. Metals, inorganics,
and shape memory alloys are located at the higher end of the Young’s modulus range compared with
molecular crystals. In contrast, polymers and gels reside in the lower modulus regime, however,
their properties can be tuned over a broad range. The mapping of actuator materials shown in Figure 2
indicates that mechanically responsive molecular crystals are located in the unexplored area between
hard and soft materials. This has motivated the search for new mechanical molecular crystals for novel
and exciting applications.
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Figure 1. Photomechanical azobenzene crystals previously reported in [26] for 1, [27] for 2, [29] for 3–7,
[32] for 8, [33] for 9, [49] for 10, [38] for 11, [42,43] for 12–16, [44] for 17–21, [53] for 22, [45] for 23–25,
[46] for 26, and [47] for 27.
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2. Development of Photomechanical Azobenzene Crystals

2.1. Early Stage of Photomechanical Azobenzene Crystals

Although the crystal structures of trans- and cis-azobenzene with no substituent were determined
almost 50 years ago [23,24], trans-cis photoisomerization in the crystalline state had been thought not
to occur at all [25], or to occur only under controlled circumstances, as the molecular transformation
requires motion of molecules in a densely packed space. However, reports on the photomechanical
bending of diarylethene crystals has motivated renewed exploration of photomechanically bendable
azobenzene crystals.

A crystal of trans-4-(dimethylamino)azobenzene (trans-1) was reported as the first photomechanical
azobenzene crystal [26]. A thin plate-like crystal of trans-1, which was prepared by sublimation,
bent along the b-axis upon ultraviolet (UV) light irradiation onto the (001) surface (Figure 3). The bending
reached a steady state in 5 s under light irradiation, and then returned to the initial unbent shape
within 30 s upon the removal of UV irradiation. Notably, reversible bending was demonstrated over
100 cycles [26].

The bending response originates from the strain induced by trans-to-cis photoisomerization via
a mechanism similar to that found in polymers. The photoisomerization is most significant at the
irradiated surface and decreases depending on the light penetration depth. The gradient formation
of cis-isomers generates strain in the thin crystal, resulting in a bending motion away from the light
source. One of the critical factors related to the bending response is the electron donor substituent of 1.
The amino group works as an electron donor and increases the photoreactivity of the n–π* transition,
through which trans-to-cis photoisomerization occurs [8]. The increased reactivity allows conversion
of trans-1 into cis-1 in the crystal, which is sufficient for bending by the generated strain.
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Figure 3. Photomechanical bending of a thin crystal of trans-1 (a) before and (b) after ultraviolet (UV)
irradiation. The irradiation was conducted from the right rear side of the crystal, as indicated by
the arrow. The scale bar is 200 µm. Reprinted with permission from [26]. Copyright 2009 American
Chemical Society.

Shortly after the initial report, trans-4-aminoazobenzene (trans-2) bending under UV irradiation
was demonstrated [27]. As to the molecular structure, trans-2 has also been used as an electron donor
substituent. A thin crystal of trans-2, whose longitudinal direction corresponds to the crystallographic
b-axis, bent away from the light source upon UV irradiation from the left side (Figure 4). After turning
off the light, the bending returned to the initial state within 240 s. However, when irradiated by
visible light (530 nm) the initial state was achieved within 60 s. These findings suggest that tuning
the photoreactivity of azobenzene compounds provides the means to construct photomechanical
azobenzene crystals.
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2.2. Fast Response

Photomechanical crystals show dynamic photo-responsive deformations, however, the bent
crystal takes tens of seconds or minutes to return to its initial shape, limiting practical application.
The reversible bending can be divided into two processes: a photomechanical bending process due to
trans-to-cis photoisomerization and an unbending process due to cis-to-trans thermal or photochemical
back-isomerization. Thus, the bending process depends on the light conditions (e.g., intensity and
wavelength) and the photoreactivity (for trans-cis photoisomerization). The consecutive unbending
process is affected by the half-life of cis-trans back isomerization. Of course, both processes also depend
on the size and shape of crystals and other external conditions, such as temperature.

The fast relaxation of cis-to-trans back isomerization can be tuned by adding an electron-
withdrawing group to an azobenzene [28]. The electron-withdrawing group works to pull the electrons,
resulting in the short lifetimes of cis-isomers relative to other azobenzenes. The electron-withdrawing
group also shifts its absorption peak into wavelengths ranging from blue to green, enabling a response
to visible light. Bushuyev et al. reported fast reversible bending of azobenzene crystals (1, 3–7 in
trans-form) by irradiation with high-power visible light [29]. Among them, thin crystals of 3–7, which
have an electron-withdrawing –NO2 or –COOH group, exhibited a faster unbending speed at half-lives
of less than 0.1 s after the removal of high-power light irradiation of 1 W/cm2. The crystals of 3–7
in trans-form required minimal light intensities of 50–200 mW/cm2 for photo-bending, whereas the
trans-1 crystal initiated bending at 1 mW/cm2 due to its higher photoreactivity.

2.3. Model of Dynamical Photo-Bending

There have been an increasing number of reports of photomechanical azobenzene crystals,
however, a quantitative mathematical description of the mechanical response has not yet been
provided. The classical bending model is based on the bimetal model described by Timoshenko [30].
When a plate with a specific coefficient of thermal expansion is attached to another plate that has
a different coefficient of thermal expansion, the bilayer material bends upon heating towards the
material with the lower coefficient due to the generated strain. In the case of photomechanical
actuation, the bending strain originates from photoproducts, which form nonuniformly in the crystal.
The structural mismatch between the photoproduct and the reactants creates a residual strain that
causes macroscopic deformation of the crystal. Although Timoshenko’s bimetal model can explain the
bending speed of photomechanical crystals [31], it is essential to establish a mathematical model that
provides a kinematic explanation of the macroscopic reshaping.

Naumov et al. constructed two kinematic models, one simple model and one extended model,
to describe the bending angle as a function of time based on reaction kinetics theory [32]. The simple
model considers the rate constants of the primary reactions between the reactant and photoproduct
and describes bending and relaxation as monolithic exponential models. The extended model is a
biexponential model that considers chemical processes in detail, including the excited state, intersystem
crossing, and internal conversion. The two models were verified by reference to the experimental
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results of slender azobenzene crystals of trans-8 (Figure 5). The time profile of the bending angle
during photomechanical bending was fully fitted to the simple model, and was also well explained by
the extended model. The bending angle during the relaxation process was not well explained by the
simple model, but well fitted the extended biexponential model. Such kinematic model was further
extended as described in their review [19]. They also reported photomechanical behavior of 9 [33].
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Figure 5. Model construction of the kinematic behavior of photo-bending. (a) Bilayer model of bending.
(b) Definition of angular deflection and related parameters. (c) Model verification by reference to
the experimental results of slender photomechanical crystals of trans-8. The models include a simple
model for bending (A), a simple model for unbending (B), and an extended model for unbending (C).
Reprinted with permission from [32]. Copyright 2014 American Chemical Society.

3. Design of New Azobenzene Crystals for Actuation

Molecular crystals provide a platform for various functionalities, as organic molecules can form
diverse structures with limited constituents. The strategy used to functionalize a crystal relies on the
crystal design, specifically, the molecular structure and intermolecular interactions. The molecular
architecture provides the basis for new crystal structures expressing specific functions, although it is
challenging to predict crystal structures from molecular structures. This section reviews several works
describing photomechanical azobenzene crystal construction, according to the crystal design.

3.1. Chirality Induction

Dozens of photomechanical crystals, not of only azobenzenes but also of other photochromic
compounds, have been reported to bend under photoirradiation. The bending motion is a mode of
actuation resulting from elongation or contraction of the irradiated surface. In contrast to bending,
there have been few reports on twisting of the crystal, which is another mode of actuation [34–37].
The twisted shape has chirality, because the right-handed twist does not overlay its mirror image,
i.e., the left-handed twist. Thus, photoisomerization in chiral photochromic crystals may lead to
macroscopic deformation with chirality, such as a twisting motion.

Based on this concept, the photomechanical motion of thin crystals of compound trans-(S)-11 was
revealed [38]. In this study, a thin plate crystal was obtained by sublimation. The crystal had a (001)
face with the b-axis as the longitudinal axis, along which intermolecular NH---O hydrogen bonding
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chains formed in the crystal. When the front (001) face was irradiated with UV light, the crystal bent
away from the source with slight left-handed twisting (Figure 6). The crystals, which showed bending
with the slight twist, returned to their initial shape within 2–3 min after turning off the UV light. When
the back (00-1) surface was irradiated, bending motion with a twist was observed, similar to that of the
(001) face (Figure 6).
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This bending accompanying a twist is caused by elongation of the irradiated surface along the
orthogonal direction. At the molecular level, trans-to-cis photoisomerization of compound trans-(S)-11
leads to contraction of the a-axis and elongation of the b-axis, based on the optimized molecular
geometries of cis-(S)-11. This change in molecular structure occurs mostly on the irradiated surface,
and the probability of trans-to-cis photoisomerization decreases along the thickness direction due to
the attenuation of UV light. This is why cis-(S)-11 molecules are formed in the crystal along a gradient
from the irradiated surface. The strain induces elongation along the b-axis and contraction along the
a-axis, resulting in bending away from the light source with a twist.

3.2. Crystallization with Multi-Molecular Components

Another strategy is to design photomechanical azobenzene crystals with multi-components.
One notable crystal engineering technique is co-crystallization. A co-crystal is defined as a crystal
consisting of at least two molecules. Co-crystals can be obtained by tuning intermolecular interactions,
for instance hydrogen bond and halogen bond interactions. To induce intermolecular interactions
between two components, it is of key importance to design one component as a donor and the other as
an acceptor of the expected intermolecular interaction. To date, there have been numerous reports on
co-crystallization techniques, and the functions of co-crystals, where the number of combinations of
two components is nearly infinite and affords diverse crystal structures [39–41].

The crystals of fluorinated azobenzenes 12–16 in cis-form exhibit photomechanical bending due
to cis-to-trans photoisomerization upon visible light irradiation [42,43]. Photomechanical azobenzene
co-crystals 17–21 were developed by constructing halogen bonds between halogenated azobenzene
as a donor and a pyridine compound as an accepter [44]. The halogen I- or Br- at the para-position
of the electron-deficient perfluorphenyl group is highly polarizable and works as a donor, forming
the linear interaction between an accepter of the halogen bond, pyridine. The halogen bonding motif
results in a zig-zag crystal structure, with alternating alignment of the donor and acceptor molecules,
for example at a pitch of 20 Å in the case of the co-crystal of 17 (Figure 7). Here, the co-crystal
consists of cis-azobenzene, despite the lower stability of the cis-isomer compared with the trans-isomer;
the cis-trans thermal back-isomerization of fluorinated azobenzene is very slow, allowing retention of
the cis-isomer during recrystallization.
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All co-crystals of 17–21 exhibit photomechanical bending under 532-nm laser irradiation, however,
the deflection angle depends on the components and partners of the co-crystals. The most bendable
co-crystal under weaker light intensity (5 mW/cm2) was that of 17 (Figure 7). Upon light irradiation,
the crystal bent away from the light source up to a deflection angle of 90◦. The bent crystal did not
return to its initial shape after the removal of irradiation, indicating irreversible photomechanical
bending due to cis-to-trans photoisomerization upon visible light irradiation. When a cis-isomer
transforms to a trans-isomer, the trans-isomer forms a halogen bond with another pyridine, leading
to a new co-crystal structure made from the trans-isomer. The structural mismatch between the
new daughter crystal and the mother co-crystal of the cis-isomer produces the strain to bend away.
The presence of a small amount of co-crystals in the trans-isomer was confirmed experimentally via
in-situ X-ray crystallographic analysis, which also revealed that the conversion process unfolded as a
crystal-to-crystal process (Figure 7).

Besides co-crystals, molecular machines such as rotaxanes are also composed of multi-components
with an axial molecule and a ring molecule. Photo-reactive pseudorotaxane crystals of 23–25 were
constructed with an axial element with azobenzene and a ring element with different substituents [45].
The pseudorotaxanes with different substituents afforded crystal structures with differing intra- and
intermolecular π–π distances and angles. All crystals of 23–25 bent upon UV (360 nm) and/or visible
light (445 nm) irradiation due to trans-cis photoisomerization, although the bending angle varied with
the crystal structure.

4. Other Mechanical Responses of Azobenzene Crystals

Besides bending and twisting behaviors, some azobenzene crystals reportedly exhibit movement,
that is, locomotion, on a substrate surface upon encountering an external stimulus. Locomotion of
a material from one position to another is potentially useful for the transfer of compounds, and to
penetrate small spaces. Effectively, locomotive molecular crystals may work as small robots in some
environments. Two locomotive features of azobenzene crystals are described in the following.



Crystals 2019, 9, 437 9 of 14

First, crawling locomotion occurs due to a change in the physicochemical properties of
the crystal caused by trans-cis photoisomerization [46]. When rhombus-shaped crystals of
3,3′-dimethylazobenzene (26) were irradiated by UV light from one direction, and simultaneously by
visible light from the opposite direction, the crystals moved, i.e., crawled, very slowly on the glass
surface in the direction of visible light irradiation (Figure 8). Phenomenologically, crawling locomotion
of the crystal originates from the melting and crystallization of opposite surfaces via light irradiation.
The crystals of 26, whose melting temperature is ca. 51–54 ◦C, melt upon UV irradiation at room
temperature, due to the depression of the melting point induced by trans-to-cis photoisomerization.
On the back side, visible light irradiation causes cis-to-trans photochemical back-isomerization, resulting
in recrystallization of trans-26. This suggests that the retraction caused by UV-light-induced melting,
and crystal growth caused by visible-light-induced recrystallization, are likely responsible for crawl
locomotion on the glass surface. Recently, the crawling motion of crystals of 27 was achieved by using
only visible light [47]. Such solid-to-liquid transitions induced by photoisomerization also enable
swimming on water surfaces [48] and multi-directional bending of thin crystals of compound 10 [49].
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permission from [46]. Copyright 2015 Springer Nature.

Second, thermal locomotion is induced by structural phase transitions in trans-(S)-11 crystals,
which is also expressed as photomechanical motion, as described previously [50]. In this study,
the thermal structural phase transition was unexpectedly found to be a reversible process at 145 ◦C
upon heating and cooling. This phase transition proceeds in a single-crystal-to-single-crystal manner,
without collapse of the single crystal. Due to the phase transition, the length of the b-axis, the longitudinal
direction of a plate-like crystal, decreases by 0.3% at temperatures higher than 145 ◦C, and returns
to the initial length at lower temperatures. Here, an azobenzene molecule in a unit cell changes its
conformation slightly but maintains trans-form during the phase transition. The decrease of, and return
to the original, crystal length lead to bending motion at the phase transition, due to the temperature
gradient along the thickness direction. Upon heating, the phase transition starts at the lower side of the
low-temperature (LT) phase crystal, and the crystal bends due to shortening of the crystal length. With
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additional heating, the whole crystal completes the phase transition to a high-temperature (HT) phase.
The HT phase crystal returns to the LT phase upon cooling through additional bending motion, as the
transition to the LT phase occurs at the upper side cooled by the surrounding air. In turn, this leads to
elongation of the crystal at the upper side. Thus, the crystal exhibits bending during both the heating
and cooling cycles.

When a plate-like crystal with thickness gradient along the length was repeatedly heated and
cooled near the phase transition temperature on a silanized glass, it was noted that the crystal “walked”
in the manner of an inchworm due to repeated bending and straightening (Figure 9). In another case,
a thin plate-like crystal moved much faster by rolling on a glass surface after a single heating or cooling
process. In the cases of both walking and rolling, the locomotion is induced by the asymmetric shape
of the crystal. Walking occurs according to the thickness gradient, where one side is thicker than the
other, leading to unidirectional movement via bending and straightening. Rolling occurs according to
the width gradient, and leads to loss of balance during bending and then flipping.
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Figure 9. Thermal locomotion of crystals of trans-(S)-11 due to the structural phase transition.
(a) Inchworm-like “walking” of a crystal with a thickness gradient along the length under cycles
of heating and cooling. (b) Rolling of a thin crystal with a width gradient upon heating or cooling.
Reprinted with permission from [50]. Copyright 2018 Springer Nature.

These examples suggest that the mechanical responses of molecular crystals can be diversified by
a photoisomerization-induced phase change from the crystal form to a melted form, and by thermal
structural phase transitions. The mechanical function of the structural phase transition can be combined
with the photomechanical response of photochromic crystals. Combining the structural phase transition
with photoisomerization has resulted in multiple mechanical motions of crystals [51,52].

5. Possibilities for Future Applications

So far, we have reviewed the mechanical responses of azobenzene crystals. The actuation
mechanism is interesting from a purely scientific standpoint. However, it is important to remember that
mechanically responsive crystals also show great potential as smart actuators and will find appropriate
applications as the field advances.

A straightforward example of implementation is provided by photomechanical bending of
azobenzene crystals, applied to the gripper of a micropipette (Figure 10) [53]. Here, the micropipette
was constructed using the arm of an azobenzene compound 22 nanowire on the left side, and an
additional fixed polystyrene nanowire arm on the right side. When the pipette arms were irradiated
by UV light, the azobenzene nanowire bent towards the light source, owing to the transparency of
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polystyrene. The bending of the azobenzene nanowire led to the grabbing of a small particle. This is
one of many possible applications of azobenzene crystals while other potential applications include
microelectromechanical systems (MEMS), soft robots, flexible devices, medical catheters, aerospace
devices, and so on. Recent advances in 3D and 4D printing technology could be further improved by
mechanically responsive molecular crystals, owing to inherently advantageous properties such as light
weight and softness [54,55].Crystals 2019, 9, x FOR PEER REVIEW 11 of 14 
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Figure 10. Demonstration of a micro-pipette using azobenzene nanowire of compound 22. Azobenzene
nanowire bends towards the light source and grips a particle; the polystyrene (PS) nanowire is a
transparent supporter. Reprinted with permission from [53]. Copyright 2015 Royal Society of Chemistry.

However, there are still some problems limiting the application of azobenzene crystals. The first
concerns the difficulty of increasing the maximum force at actuation, and the second concerns the
difficulty of fabricating the desired shape. Regarding the first one, mechanically responsive molecular
crystals typically generate a maximum stress in the range of 1–50 MPa at actuation [50,56,57]. These
values are generally 10–100 times larger than the maximum stress of typical human muscle (0.3 MPa) [58].
To lead larger stress to larger output force, multiple pieces of crystals need to be integrated. Also, it is
challenging to fabricate molecular crystals with the desired shape and size.

The hybridization of crystals and polymers is a promising approach to overcome the limitations
discussed above [59]. When molecular crystals are incorporated into a connective polymer, the hybrid
material will be more flexible and easier to control, in terms of size and shape, due to the properties
of the polymer. In addition, such hybrid materials should respond faster and generate a larger force
than polymers, owing to the inherent advantages of molecular crystals. Thus, the hybrid strategy of
combining a polymer with a mechanical crystal, expected to be realized in the near future, should
enhance the maximum force capability and simplify the fabrication process of actuator materials.

6. Conclusions

This paper reviewed the current state-of-the-art of photomechanical azobenzene crystals.
Photomechanical responses result from simple trans-cis photoisomerization, but lead to a wide
array of photomechanical behaviors varying by actuation mode (bending or twisting), bending
magnitude, response speed, and relaxation time. Tuning azobenzene substituents and employing
crystal engineering techniques, such as co-crystallization, have crucial roles in diversifying the
photo-responsiveness and functionality of azobenzene crystals. Although there are still challenges
ahead, photomechanical crystals show promise as novel actuators, with possible applications in soft
robots, and medical and flexible devices.
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