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Abstract: The nanofriction of graphene is critical for its broad applications as a lubricant and in
flexible electronics. Herein, using a Au substrate as an example, we have investigated the effect of the
grain boundary on the nanofriction of graphene by means of molecular dynamics simulations. We
have systematically examined the coupling effects of the grain boundary with different mechanical
pressures, velocities, temperatures, contact areas, and relative rotation angles on nanofriction. It is
revealed that grain boundaries could reduce the friction between graphene and the gold substrate with
a small deformation of the latter. Large lateral forces were observed under severe deformation around
the grain boundary. The fluctuation of lateral forces was bigger on surfaces with grain boundaries
than that on single-crystal surfaces. Friction forces induced by the armchair grain boundaries was
smaller than those by the zigzag grain boundaries.
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1. Introduction

Graphene, a single sheet of graphite, possesses exceptional mechanical properties [1,2], large
transparency [3], extraordinary electronic mobility [4], and adaptable electronic properties [5] owing
to its unique two-dimensional structure [6–10]. It is a promising material in the field of nanoscale
electronics [11–14]. However, the properties of these nanoscale electronics can be affected by the
friction behaviors of graphene [15]. A number of studies have been conducted to investigate the
friction mechanism of graphene [16–19]. Atomic force microscopy (AFM) has been widely applied
to measure the friction force between the scanning probe tip and the graphene [20–24]. The results
show that graphene has atypical friction behaviors. For instance, the nanoscale friction increases and
then decreases with increasing load [23]. A negative friction coefficient was found on chemically
modified graphite [20]. The friction of either monolayer or bilayer graphene is inversely proportional
to the strain in graphene, which violates Amontons’ law [25]. Besides, lubricating behaviors of
graphene have also been examined. The superlubricity, a regime of motion in which friction nearly
vanishes, was found between graphene nanoribbons and gold surfaces [26,27], suggesting that
graphene is a promising lubricant [28–30]. The friction on a sliding steel surface was found to be
reduced by the solution-processed graphene layer [31]. The friction of graphene can be modulated
using nitrogen-doping [32], surface wrinkles [33,34], oxidation [35,36], hydrogenation [24], and
fluorination [37]. Furthermore, frictional properties of few-layer graphene under the effect of elastic
deformation have been studied. The results revealed that the observed friction force is directly related
to the effects of surface compliance [38]. The friction of graphene is found to be attributable to the

Crystals 2019, 9, 418; doi:10.3390/cryst9080418 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0002-8281-8636
http://dx.doi.org/10.3390/cryst9080418
http://www.mdpi.com/journal/crystals
https://www.mdpi.com/2073-4352/9/8/418?type=check_update&version=2


Crystals 2019, 9, 418 2 of 13

interaction between the incommensurate interface lattices [39]. The effect of temperature has been
explored [40,41]. The friction forces between Si tips and a supported graphene increase with rising
temperature [41], while the friction forces between carbon nanotubes and graphene are found to either
increase or decrease locally depending on the detection parameters [40].

Among previous studies, the friction behaviors between graphene and single-crystal gold have
been investigated [42] in relation to the wide usage of gold in graphene-based devices [43–45]. The
contact of the gold and the graphene in these devices emphasizes the great importance of the friction
behaviors between them. In applications, defects in materials, especially grain boundaries, are common.
Grain boundaries have a greater influence on the friction behaviors than what point defects and
line defects may do because of the interaction with another type of contact surface as well as the
deformation around grain boundaries. Therefore, the investigation of the effects of grain boundaries
on the friction behavior has a greater practical value for the design of the nanoscale electronic devices.
The effect of the grain boundary on the friction behaviors of 2D materials has not been systematically
studied. The results may be also applicable to other metal substrates. In this study, we used molecular
dynamics (MD) simulations to investigate the friction behaviors between the graphene flake and gold
substrate with and without a grain boundary. The effects of various factors on friction behaviors
regulated by a grain boundary were investigated.

2. Materials and Methods

The MD simulations were performed using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS, distributed by Sandia National Laboratories) [46]. MD is a reliable and
indispensable tool in various investigations [47]. The MD model for this study is shown in Figure 1. It
consisted of a graphene flake dyed blue and a gold substrate dyed cyan. A 90◦ <010> grain boundary
was in the middle of the system, represented by the blue translucent rectangle. We built the grain
boundary with two single crystals. For the first crystal on the left part, the coordinate system was set as
x—[110], y—[001], and z—[11()0]. For the second crystal on the right part, the coordinate system was
set as x—[100], y—[011], and z—[01()1]. The whole system was 20 nm × 15 nm × 3 nm in size, which
contained 53309 Au atoms and 1372 C atoms. Three layers of atoms at the bottom of the substrate
were taken as boundary atoms and fixed in space. Simulations were conducted with the graphene
atoms constrained in the y-direction to maintain the orientation of the flake. The graphene flake was
dragged by a harmonic spring to slide on the gold substrate. The spring was tied to a virtual atom
that had a constant velocity. The stiffness of the spring was 10 N/m [48], which was used to represent
the compliance of an AFM system. An equal pulling force was applied to every atom of the flake.
The lateral force was obtained as in the AFM experiment. AFM is an advanced tool to investigate the
friction behaviors of the target material due to the interaction between its tip and the surface of the
material [19,20,49]. In our simulations, the graphene flake served as the tip. In our case, the puckering
effect [49] did not exist. The contact area between the tip and the surface had a slight change under
various detection parameters. A constant normal pressure was applied to the graphene atoms. The
boundary conditions were periodic in the x- and y-directions, and fixed in the z-direction. We examined
the friction behaviors between graphene and the gold substrate under different pressures, velocities,
temperatures, contact areas, and relative rotation angles. In order to obtain adequate data for statistical
analysis, for each condition we performed simulations several times with different initial positions of
the graphene flake. The average friction forces under each condition, as well as the uncertainties, are
shown in Appendix A. The uncertainties are the standard deviations of the corresponding data.
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Figure 1. Simulation model consisted of a graphene flake and a gold substrate. The blue translucent
rectangle represents the grain boundary. The flake was dragged by a harmonic spring force.

The interaction between Au atoms was described using an embedded atom method (EAM)
potential [50]. The interaction among C atoms was modeled using the modified adaptive intermolecular
reactive empirical bond order (AIREBO) potential [51,52]. The AIREBO potential is adequate for
describing the hydrocarbon bonds and the van der Waals forces. The interaction between the Au atoms
and C atoms was modeled using the Lennard-Jones (LJ) potential. The parameters were: ε = 22.0 meV
and σ = 2.74 Å [53,54]. For the purpose of controlling the temperature of the system, time integration
on Nose-Hoover style non-Hamiltonian equations of motion, which are designed to generate positions
and velocities sampled from the canonical ensemble (NVT), was performed [55].

Here, the flake was a 5.9 nm × 5.9 nm square in all simulations except in Sections 3.4 and 3.5. The
flake was placed above the substrate and fully relaxed before the pulling force and the normal pressure
were applied. The ratio of the contact areas between the graphene and two single-crystal surfaces
ranged from 0.59 to 1.70, except in Section 3.4. If not specified, the y-axis was along the armchair
direction of the graphene and the simulations were conducted at 300 K with a pressure of 3.57 GPa.
The default sliding velocity was 10 m/s.

3. Results and Discussion

It has been found that the nanofriction of single-crystal surfaces is related to many factors such
as mechanical pressures and velocities. Compared with single-crystal materials, the polycrystalline
material is more common in the real applications. The grain boundary can regulate friction behaviors
between graphene and gold substrate and modify the influence of these factors on nanofriction.
Therefore, it is vital to study the coupling effects of the grain boundary with mechanical pressures [56],
velocities [57,58], temperatures [41], contact areas, and relative rotation angles [42] on nanofriction.

3.1. Mechanical Pressure Effect

Three pressures—1.19 GPa, 2.38 GPa, and 3.57 GPa—were applied. The effect with a larger
pressure, such as 6 GPa, was beyond the scope of our study because under this condition, the graphene
flake was squeezed into the grain boundary. Besides, our uniaxial compression simulations showed
that the Au substrate can sustain elastic pressure as large as 5.1 GPa. This might be the reason why there
is no plastic deformation of the gold substrate under these pressures. Figure 2 illustrates the lateral force
as a function of the sliding distance of the harmonic spring with various pressures. The lateral forces
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on the single-crystal surfaces from the current study align with the results of previous research [42].
On the two single-crystal surfaces, the lateral forces increased linearly, and then suddenly dropped
and repeated periodically. These repetitive behaviors are called stick-slip motions. In these curves,
a maximum lateral force represents a maximum offset of the graphene flake from the equilibrium
position. Every drop of the lateral force represents a jump of the tip from a stable equilibrium position
on the surface into the neighboring one. When the tip jumps across the equilibrium position of the
spring, the lateral force becomes negative.
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Figure 2. Lateral force as a function of sliding distance under different pressures of (a) 1.19 GPa, (b)
2.38 GPa, and (c) 3.57 GPa. The dashed lines represent the friction force of the corresponding situation.

The stick-slip motions were also observed from the lateral forces on the boundary surface, as
shown in Figure 2. The periods of these curves varied with the movement because of the grain boundary.
The periods of the lateral forces and the maximum offsets on the boundary surface sometimes coincided
with those on the two single-crystal surfaces. This behavior of the lateral forces on the boundary surface
can be explained using the Frenkel–Kontorova model. In this model, the friction behaviors strongly
depend on the ratio of the two lattice spacings of the contact surfaces. When they are commensurate,
the atoms of graphene flakes are spatially matched with the atoms of the substrate. In this case, the
contribution of each atom pair to the lateral force is maximized, which leads to a high lateral force. As
shown in Figure 1, the lattice spacings of two single-crystal surfaces were different: 2.8 Å for the first
surface and 4.08 Å for the second surface. The atoms of graphene only matched well with the atoms
of one surface. The interactions of each atom pair could not reach their peaks simultaneously. The
result was that the maximum offsets on the boundary surfaces were sometimes smaller than those on
the single-crystal surfaces along the movement. Smaller maximum offsets resulted in smaller friction
forces. For both pressures of 1.19 GPa and 2.38 GPa, the friction forces on the boundary surface were
only 60% of those on the single crystal surfaces. Our finding agrees with the experimental observations
in Tripathi et al. [59], who found that the friction forces between a silica tip and few-layer graphene
over Ni interface boundaries are smaller than those between a silica tip and few-layer graphene over
Ni grain.

The average maximum offset on different surfaces with different pressures are shown in Figure 3a.
It can be seen that the larger the pressures, the larger the maximum offsets if other parameters remained
unchanged. For the single-crystal surfaces, with a 1.19 GPa increment in pressure, the maximum offsets
increased by approximately 0.6 Å. Different from the single-crystal surfaces, the boundary surface
with different pressures was deformed to different degrees, as shown in Figure 3b and Figure S1 in
Supplementary Materials. When the pressure increased from 1.19 GPa to 2.38 GPa, the deformation
was not greatly intensified. However, when the pressure increased to 3.57 GPa, the deformation was
much bigger than that with a 2.38 GPa pressure. This deformation led to a more rapid increase in
the average maximum offset compared to the increase on the smooth surfaces of the single crystal.
Despite the severe deformation, the friction force on the boundary surface was still smaller than those
on the single-crystal surface. Further simulations revealed that the deformations of the grain boundary
under these pressures were reversible. The friction coefficient, which was generally independent of the



Crystals 2019, 9, 418 5 of 13

pressure, varied with the pressures on the boundary surface. This was because the pressures induced a
different corrugation of the graphene and changed the friction coefficient. The relation between the
friction force and pressure was not linear on the boundary surface.
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substrate and graphene.

3.2. Velocity Effect

The influence of velocity on the boundary effect was explored. The velocities were set as 5 m/s,
10 m/s, and 20 m/s. Figure 4a–c shows the lateral force as a function of sliding distance with various
velocities. It was demonstrated that on the single-crystal surfaces, the maximum offsets and periods of
the lateral forces were almost the same with different velocities, indicating that the velocity had little
influence on the friction behaviors on the single-crystal surfaces. This finding agrees with those of
previous studies. In the continuous regime, the friction was constant with increasing velocity [60]. The
velocities used in our study were above the velocities accessible by AFM experiments. Therefore, the
frictions were expected to be constant.

However, velocity played an important role in the deformation of the graphene. Figure 4d shows
the deformation of graphene at different velocities. The deformation at 10 m/s was larger than those at
other velocities. A possible explanation for the greater deformation at 10 m/s could be that at a lower
velocity of 5 m/s, there was more time for the graphene flake to relax and avoid strong interaction with
the grain boundary; at a higher velocity of 20 m/s, the flake rushed across the grain boundary and
caused smaller deformation. The difference of the deformation could have an effect on the friction
behaviors. For the friction force on the boundary surface, there was little difference with various
velocities. This was because the difference of the deformation was not large enough to induce an
obvious difference in the friction force. However, different deformation caused strong fluctuations of
the maximum offset when the velocity varied, as shown in Figure 4b. The maximum offsets fluctuated,
probably because the interaction potential on the boundary surface was not periodic around the
grain boundary.
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3.3. Temperature Effect

Given that the graphene-based devices may be required to operate under different temperatures,
we have conducted the simulations at 100 K, 200 K, and 300 K to study the effect of temperature. The
results are shown in Figure 5. The friction forces on the single crystal surfaces were nearly unaffected
by different temperatures, while the friction forces on the boundary surface varied with temperature.
In previous research, the friction forces between the Si tip and the supported graphene decreased with
the temperature under a scan velocity of 1 m/s [40]. The discrepancy might be attributed to the grain
boundary and high velocity (10 m/s) used in this study. Our recent study of polycrystalline graphene
showed that the surface corrugation increases with an increase in temperature [61]. An increase in
surface corrugation led to an increase of friction forces. In addition, with a high velocity, there was less
time for the interacting atoms to relax and avoid strong interaction, which weakened the effect of the
rising temperature.
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Figure 5. Lateral force as a function of sliding distance at different temperatures on: (a) the first
surface, (b) the boundary, and (c) the second surface. The dash lines represent the friction force of the
corresponding situation.

The influence of temperature on friction behavior with the grain boundary could be a result of
a combination of disorder and deformation. On the one hand, the increase of temperature boosted
the degree of disorder near the grain boundary, which disrupted the stick-slip motions and reduced
the friction force. On the other hand, the deformation of the substrate depended on the temperature.
Theoretically, a higher temperature leads to larger deformation of the material, which could magnify
the friction force. Therefore, the friction force on the boundary surface at 300 K was larger than those
at the other two temperatures.

3.4. Effect of the Ratio of Contact Areas

This study has also examined the ratio of the contact areas between the graphene and the two
single-crystal surfaces. Owing to the exceptional properties of this two-dimensional material, it is
necessary to explore the influence of the ratio of two contact areas. In Figure 6a, a triangular flake
consisting of 1225 atoms was pulled across the grain boundary. The normal pressure was 4.00 GPa,
which meant the atoms in the triangle flake bore 12% more pressure than those in the square flake.
The position where we started to record the lateral force is shown in Figure 6a. It can be observed in
Figure 6b that the lateral force on the second surface was much bigger than that on the first surface. At
the beginning, the maximum offset and the period of the lateral force on the boundary surface were
closer to those on the first surface because the lateral force mainly came from the interaction between
the graphene and the first surface. The contact area between the flake and the second surface increased
when the flake moved forward, which led to a slow increase of the lateral force, as shown in Figure 6b.
The period of the stick-slip motions on the first and second single-crystal surfaces were 3 Å and 7 Å,
respectively. It can be seen in Figure 6b that the periods of the stick-slip motions were unsteady. A
possible cause for the unsteady period is the increasing contact length between the graphene and the
grain boundary. The longer contact length caused a greater interference in the period.
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3.5. Relative Rotation Angle

We explored the friction behaviors at four relative rotation angles. First, we dragged the graphene
flake in the zigzag direction of graphene along the x-axis. Then, we rotated the flake by 30◦, which
put in the armchair direction of graphene along the x-axis. The flake was rounded to make sure the
differences of the friction behaviors were only caused by from the relative rotation angles. The rounded
flake had a radius of 3.31 nm, consisting of 1356 atoms.

As shown in Figure 7a, the stick-slip motions vanished on the first surface. The lateral force on the
first surface fluctuated around zero and the lateral force on the boundary surface was between those on
the two single-crystal surfaces. The maximum offset on the second surface was 9.0 Å. In contrast, the
maximum offset on the boundary surface fluctuated between 3 Å and 5 Å. This discrepancy indicated
that the lateral force on the boundary surface could be the average of those on the two single-crystal
surfaces. In Figure 7b, the lateral forces on both single crystal surfaces lingered around zero, while the
lateral force on the boundary surface was much bigger. This could be attributed to the deformation of
the substrate, which directly magnified the lateral force. The friction force on the boundary surface
was smaller than that in the armchair direction situation. The friction force on the boundary surface in
the armchair direction situation was 1.80 nN, which was a combination of the friction force on the
second surface and the interaction between the graphene and the grain boundary. The friction force
on the boundary surface in the zigzag direction situation was 0.96 nN, most of which came from the
interaction between the graphene and the grain boundary. Therefore, the interaction in the armchair
direction along the x-axis was smaller than that in the zigzag direction along the x-axis.

The situations at other relative rotation angles were also investigated. Considering the hexagonal
symmetry structure of the unit cell of graphene, we rotated the rounded flake to change the angle
between its zigzag direction and the x-axis to 10◦ and 20◦. The results are shown in Figure 8.
Superlubricity could be observed on the two single-crystal surfaces for both cases. Their friction forces
on the boundary surface were 0.38 nN and 0.69 nN, respectively. The friction forces on the single
crystal surfaces with the angle of 10◦ were slightly larger than those with the angle of 20◦. As a result,
we found that with the angle of 20◦, the interaction between the graphene and the grain boundary was
greater. Compared to the situation when the angle was 0◦, as shown in Figure 7b, there were extremely
low friction forces on the single-crystal surfaces in all three situations. The friction force on the
boundary surface with the zigzag direction along the x-axis was 1.09 nN, as shown in Table A5, while
the friction force on the single crystal surfaces were 0.42 nN and 0.09 nN, respectively. Considering the
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relation between the contact area and lateral force revealed in Section 3.4, the interaction with the grain
boundary induced a friction force of about 0.8 nN, which was larger than those in other situations.
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Figure 8. Lateral force as a function of sliding distance with the zigzag direction of the graphene being (a)
10◦ and (b) 20◦ from the x-axis. The dash lines represent the friction force of the corresponding situation.

4. Conclusions

We have investigated the effects of grain boundaries on the friction behaviors between graphene
and a gold substrate utilizing MD simulations. The friction behaviors were systematically examined
with different mechanical pressures, velocities, temperatures, contact areas, and relative rotation angles.
The results show that in the low-pressure situation, the grain boundary reduced the friction force due
to the incommensurate atom spacings of the two single crystal surfaces. Under different velocities and
temperatures, the friction behaviors on the boundary surface differed from those on the single-crystal
surfaces owing to the deformation and disorder of the grain boundary. Furthermore, the ratio of
the contact areas between graphene and the two single-crystal surfaces had a strong effect on the
friction behaviors on the boundary surface. The larger the contact area, the greater the contribution to
the lateral force. Finally, the interaction between the graphene and the grain boundary was strongly
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affected by the relative rotation angle. The friction force induced by the grain boundary was smaller in
the armchair direction of the graphene perpendicular to the grain boundary than that in the zigzag
direction. The friction force induced by the grain boundary was larger when the zigzag direction was
20◦ from the x-axis than for 10◦. These findings revealed the effect of a grain boundary in regulating
the friction behaviors of graphene, and therefore could be beneficial to the fabrication of nanoscale
graphene-based devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/8/418/s1,
Figure S1: The images of the deformed samples with different pressures of (a) 1.19 GPa, (b) 2.38 GPa, and (c)
3.57 GPa.

Author Contributions: P.H., Q.C., and Q.P. conceived the idea of the paper and wrote the paper; P.H. conceived,
designed, and performed the simulations; P.W., H.W., S.Z., S.L. (Shuting Lei), and S.L. (Sheng Liu) offered much
helpful advice. All the authors had a full discussion and commented on the paper.

Funding: This research was funded by the National Natural Science Foundation of China (No. 51727901).

Acknowledgments: We acknowledge the calculation support from the Supercomputing Center of
Wuhan University.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The average maximum offsets with different pressures.

Pressure (GPa) Boundary Surface (Å) First Surface (Å) Second Surface (Å)

1.19 2.5 ± 0.5 2.7 ± 0.2 3.4 ± 0.2
2.38 3.4 ± 0.6 3.1 ± 0.3 4.1 ± 0.3
3.57 4.7 ± 0.7 3.7 ± 0.4 5.0 ± 0.3

Table A2. The friction forces under different pressures.

Pressure (GPa) Boundary Surface (nN) First Surface (nN) Second Surface (nN)

1.19 0.61 ± 0.07 1.16 ± 0.13 1.29 ± 0.03
2.38 1.10 ± 0.15 1.75 ± 0.17 1.95 ± 0.07
3.57 1.84 ± 0.31 2.24 ± 0.31 2.69 ± 0.07

Table A3. The friction forces with different velocities.

Velocity (m/s) Boundary Surface (nN) First Surface (nN) Second Surface (nN)

5 1.90 ± 0.30 2.18 ± 0.24 2.57 ± 0.06
10 1.84 ± 0.31 2.24 ± 0.31 2.69 ± 0.07
20 1.91 ± 0.22 2.08 ± 0.26 2.49 ± 0.09

Table A4. The friction forces at different temperatures.

Temperature (K) Boundary Surface (nN) First Surface (nN) Second Surface (nN)

100 1.56 ± 0.14 2.18 ± 0.22 2.65 ± 0.12
200 1.73 ± 0.29 2.28 ± 0.25 2.65 ± 0.12
300 1.84 ± 0.31 2.24 ± 0.31 2.69 ± 0.07

http://www.mdpi.com/2073-4352/9/8/418/s1
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Table A5. The friction forces at different relative rotation angles.

Rotation Angle Boundary Surface (nN) First Surface (nN) Second Surface (nN)

Zigzag direction 1.09 ± 0.28 0.42 ± 0.31 0.09 ± 0.02
10◦ 0.38 ± 0.20 0.24 ± 0.16 0.15 ± 0.03
20◦ 0.59 ± 0.16 0.14 ± 0.11 0.05 ± 0.01

Armchair direction 1.80 ± 0.38 0.05 ± 0.05 3.40 ± 0.51
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