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Abstract: An unexpected trinuclear Co(II) complex, [Co3(L2)2(µ-OAc)2(CH3OH)2]·2CH3OH (H2L2 =

4,4′-dibromo-2,2′-[ethylenedioxybis(nitrilomethylidyne)]diphenol) constructed from a half-Salamo-based
ligand (HL1 = 2-[O-(1-ethyloxyamide)]oxime-4-bromophenol) and Co(OAc)2·4H2O, has been synthesized
and characterized by elemental analyses, infrared spectra (IR), UV-Vis spectra, X-ray crystallography and
Hirshfeld surface analysis. The Co(II) complex contains three Co(II) atoms, two completely deprotonated
(L2)2− units, two bridged acetate molecules, two coordinated methanol molecules and two crystalline
methanol molecules, and finally, a three-dimensional supramolecular structure with infinite extension
was formed. Interestingly, during the formation of the Co(II) complex, the ligand changed from
half-Salamo-like to a symmetrical single Salamo-like ligand due to the bonding interactions of the
molecules. In addition, the antimicrobial activities of HL1 and its Co(II) complex were also investigated.

Keywords: half-salamo ligand; complex; crystal structure; Hirshfeld surface analysis; antimicrobial
activity

1. Introduction

The Salen compound is a multifunctional tetradentate N2O2 chelating ligand in modern coordination
chemistry and it is the most popular class of Schiff base ligands in this research field. Such ligands have
multiple coordination sites and multiple selectivities to react with metal ions such as transition metal ions
and rare earth metal ions [1,2]. Thus, a variety of complexes or polymers ranging from zero-dimensional
to one-dimensional chain, two-dimensional and three-dimensional networks are obtained. As chemists
continue to delve into the structures and properties of Salen-like metal complexes, the study of Salamo-like
ligands and their complexes are also hot progress [3–10]. Therefore, such ligands and complexes
have been successfully applied to functional materials [11–13], catalysts [14], biological fields [15–19],
electrochemical research [20–23], magnetic materials [24–28], luminescences [29–38], ion recognitions [39–41],
supramolecular buildings [42–46] and other fields, and have great prospects for their research.

A new trinuclear Co(II) complex based on a half-Salamo-like ligand was synthesized and characterized
structurally by single crystal X-ray diffraction. Herein, during the reaction of the ligand HL1 with the
Co(II) ions to form an unexpected complex, the Co(II) ions does not bind to the half-Salamo-like ligand
HL1 that is intended to be designed. Instead, it combined with a newly formed symmetric Salamo-like
ligand H2L2 during the reaction to form an unexpected trinuclear Co(II) complex. It is worth mentioning
that while studying the Hirshfeld surface analysis, the antibacterial activities were also studied.
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2. Experimental

2.1. Materials and Measurements

5-Bromo-2-hydroxybenzaldehyde (≥97.0%) was purchased from Meryer Chemical Technology Co.,
Ltd. (Shanghai, China). The other reagents and solvents were analytical grade reagents from Tianjin
Chemical Reagent Factory and used as received. Melting points were measured by the use of a microscopic
melting point apparatus made by the Beijing Taike Instrument Limited Company (Beijing, China) and the
thermometer was uncorrected. Elemental analyses of metal element (Co) and non-metallic elements (C, H,
and N) were measured by an atomic emission spectrometer (IRIS ER/S·WP-1 ICP) and automatic elemental
detection analyzer (GmbH VariuoEL V3.00) from Berlin, Germany, respectively. Fourier transform infrared
(FT-IR) spectra were recorded on a VERTEX 70 FT-IR spectrophotometer with samples prepared as
KBr (500–4000 cm−1) from Bruker, Germany. UV-vis absorption spectra were measured on a UV-3900
spectrophotometer from Hitachi, Tokyo, Japan. Fluorescence spectra were recorded on a F-7000 FL
220-240V spectrophotometer from Hitachi, Tokyo, Japan. Hirshfeld surface analysis of the Co(II) complex
was performed using the Crystal Explorer program [47]. X-ray single-crystal diffraction data was collected
by a Bruker APEX-II CCD surface detecting diffractometer (Bruker, Germany), and Mo-Kα (λ = 0.71073
Å) ray radiation was monochromated with graphite.

2.2. Synthesis of HL1

2-[O-(1-ethyloxyamide)]oxime-4-bromophenol (HL1) was synthesized according to an analogous
method reported earlier [48]. m.p.: 60−61 ◦C. 1H NMR (400 MHz, CDCl3) δ 3.95 (t, J = 4.5 Hz, 2H), 4.36
(t, J = 4.5 Hz, 2H), 5.50 (brs, 2H), 6.87 (d, J = 9.0 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.37 (dd, J = 9.0, 2.5
Hz, 1H), 8.14 (s, 1H), 9.88 (s, 1H). IR (KBr, cm−1): 3443 (s), 2993 (m), 2907 (m), 2815 (m), 1611 (s), 1492
(m), 1439 (s), 1393 (s), 1360 (s), 1320 (m), 1181 (m), 1036 (s), 950 (s), 897 (w), 778 (m), 706 (m), 665 (w).
UV-Vis (CH3CH2OH), λmax (nm) (εmax): 265 and 322 nm (5.0 × 10−5 M). Anal. Calcd for C9H11BrN2O3

(%): C 39.29; H 4.03; N 10.18. Found: C 39.58; H 4.00; N 10.01.

2.3. Synthesis of the Co(II) Complex

An anhydrous methanol solution (2 mL) of cobalt(II) acetate tetrahydrate (4.98 mg, 0.020 mmol)
was added dropwise to a solution of HL1 (5.50 mg, 0.020 mmol) in dichloromethane solution (3 mL), the
mixed solution color changed to reddish brown instantly, and stirred for about 10–15 min, then filtered
and sealed with foil paper. As the mixture solution gradually diffused, several brown bulk crystals were
obtained after two weeks in open atmosphere. The main reaction process of the Co(II) complex is given
in Scheme 1. IR (KBr, cm−1): 3435 (s), 1605 (s), 1572 (m), 1468 (s), 1433 (m), 1403 (m), 1290 (m), 1178 (m),
1088 (w), 1042 (w), 951 (w), 930 (w), 828 (w), 789 (w), 704 (m), 646 (w), 531 (w). UV-Vis (CH3CH2OH),
λmax (nm) (εmax): 372 nm (5.0 × 10−5 M). Anal. Calcd for [Co3(L2)2(µ-OAc)2(CH3OH)2]·2CH3OH
(C40H46Br4Co3N4O16) (%): C 35.98; H 3.47; N 4.20; Co 13.24. Found: C 36.12; H 3.31; N 4.11; Co 13.08.

2.4. Crystal Structure of the Co(II) Complex

X-ray single crystal diffraction data of the Co(II) complex was collected by a Bruker APEX-II CCD
surface-detecting diffractometer, and monochromatic Mo-Kα radiation (λ = 0.71073 Å) was carried
out with a graphite monochromator. The data was corrected with Lp factor and empirical absorption
correction. The crystal structure was analyzed by the SHELXTL program, and all non-hydrogen atoms
were found by direct-distribution and Fourier difference analysis. The structure was subjected to full
matrix minimum multiplication correction through all non-hydrogen atoms. Table 1 summarizes the
details of data collection and refinements of the Co(II) complex. The Crystallography Data Center in
Cambridge collected crystallographic data as supplemental publications, No. CCDC 1939557 for the
Co(II) complex. The data can be obtained free of charge from the Cambridge Crystallographic Data
Centre and www.ccdc.cam.ac.uk/conts/retrieving.html.

www.ccdc.cam.ac.uk/conts/retrieving.html
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Scheme 1. Synthesis of the Co(II) complex.

Table 1. Crystal data for the Co(II) complex.

Compound The Co(II) Complex

Formula C40H46Br4Co3N4O16
Formula weight 1335.20
Temperature (K) 173

Radiation (Å) 0.71073
Crystal system triclinic

Space group P−1
a (Å) 10.9896(7)
b (Å) 11.0596(7)
c (Å) 11.2998(7)
α (◦) 99.760(2)
β (◦) 94.287(2)
γ (◦) 116.021(1)

V (Å3) 1198.94(13)
Z 1

Dcalc (g·cm−3) 1.849
µ (mm−1) 4.430

F (000) 663
Crystal size (mm) 0.17 × 0.19 × 0.22

θ Range (◦) 2.18–25.01

Index ranges
−13 ≤ h ≤ 13
−13 ≤ k ≤ 13
−12 ≤ l ≤ 13

Completeness to θ 97.7% (θ = 25.01)
Tot. Data 8056

Uniq. Data 4130
R (int) 0.017

Observed Data 3819
Nref/Npar 4130/308

GOF 1.055
R [I > 2σ(I)] R1 =0.0268, wR2 = 0.0711

Largest differences peak and hole (e Å−3) 0.67/−0.56

R1 = Σ‖Fo| − |Fc‖/Σ|Fo|; wR2 = [Σw(Fo
2
− Fc

2)2/Σw(Fo
2)2]1/2; GOF = [Σw(Fo

2
− Fc

2)2/nobs − nparam)]1/2.
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3. Results and Discussion

3.1. IR Spectra

In Figure 1, infrared spectra show different bands of HL1 and the Co(II) complex in the range of
500–4000 cm−1. The O–H stretching frequency of HL1 appears at 3443 cm−1, and the peak of the Co(II)
complex moves to lower frequency, which occurs at about 3435 cm−1. The O–H stretching vibration
is caused by the presence of crystalline methanol molecules in the Co(II) complex. The ligand HL1

shows a characteristic C=N stretching band at 1611 cm−1, while the C=N stretching band of the Co(II)
complex appears at 1605 cm−1. At the same time, the free ligand HL1 exhibits an Ar–O stretching
frequency at 1181 cm−1, and that of the Co(II) complex appears at 1178 cm−1, and the Ar–O stretching
frequency moving to low frequencies, indicating the formations of Co(II)–O bonds.
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3.2. UV-Vis Spectra

The UV-visible absorption spectra of HL1 and the Co(II) complex (5.0 × 10−5 M, ethanol solution)
were determined by UV-VIS spectrophotometer, as shown in Figure 2. It is obvious that the absorption
peak of the Co(II) complex is significantly different from that of HL1. We can easily find out that the
free ligand HL1 exhibits two characteristic absorption peaks at 265 and 322 nm, which can be attributed
to the π–π* transitions [49]. The corresponding absorption peak of the Co(II) complex appear at 372 nm
compared to the absorption peaks of the free ligand HL1. The absorption at 372 nm can be attributed
to the n–π* charge transfer transition from the filled p–π orbital of the phenolic oxygen to the empty d
orbital of the Co(II) ions, and indicates that the Co(II) ions and the ligand are successfully coordinated.
In the UV-Vis titration experiment of the Co(II) complex, the absorbance at 265 and 322 nm gradually
decreased and disappeared with the increase of Co2+ concentration (1.0 × 10−4 M, aqueous solution),
while at 372 nm, a new absorption peak appears. This is a characteristic of Salamo-like complexes.
When Co2+ was added to 1.5 equivalents, the absorption peak reaches the highest value. Spectral
titration indicates that the ratio of displacement reaction was 1:1.5 ((L1)−:Co2+) (Figure 3).
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Figure 2. The UV-Vis spectra of HL1 and the Co(II) complex.
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Figure 3. Ultra violet (UV)-Vis spectra of the changes in HL1 upon addition of Co(OAc)2·4H2O (Inset:
the absorbance at 320 nm varies with the interaction of [Co2+]/[HL1]).

3.3. Description of the Crystal Structure

The crystal structure of the Co(II) complex and coordination polyhedral map of Co(II) atoms of
the Co(II) complex are shown in Figure 4, and the selected bond lengths and angles are given in Table 2.
The X-ray crystal structure of the Co(II) complex shows that it crystallizes in the P-1 space group of the
triclinic system, in which the Co(II) atoms are all in a twisted octahedral geometry. It is worth noting
that a new symmetrical Salamo-like-based Co(II) complex [Co3(L2)2(µ-OAc)2(CH3OH)2]·2CH3OH was
obtained instead of the half-Salamo-like Co(II) complex expected in advance. The results show that
due to the catalysis of Co(II) ions [50,51], complexation leads to a N–O bond cleavage in HL1 (make
the N–O–N cavity disappear), resulting in a new symmetric N2O2 tetradentate ligand H2L2, which
coordinates with Co(II) ions and forms a homo-trinuclear Co(II) complex. So actually, the unexpected
trinuclear Co(II) complex [Co3(L2)2(µ-OAc)2(CH3OH)2]·2CH3OH was formed by coordination of H2L2

with Co(OAc)2·4H2O, the molecular structure of the Co(II) complex consists of three Co(II) atoms and
two completely deprotonated ligand (L2)2− units.
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Table 2. Bond lengths (Å) and angles (◦) of the Co(II) complex.

Bond Lengths Bond Lengths

Co1–O4 2.058(2) Co2–O3 2.1243(19)
Co1–O5 2.114(2) Co2–O7 2.1109(18)
Co1–O7 2.063(2) Co2–O8 2.104(2)
Co1–O8 2.0538(18) Co2–O3 #1 2.1243(19)
Co1–N1 2.131(2) Co2–O7 #1 2.1109(18)
Co1–N2 2.127(2) Co2–O8 #1 2.104(2)

Bond Angles Bond Angles

O4–Co1–O5 176.02(9) O3–Co2–O7 86.91(7)
O4–Co1–O7 91.12(8) O3–Co2–O8 88.95(8)
O4–Co1–O8 93.46(8) O3–Co2–O3 #1 180.00
O4–Co1–N1 86.33(9) O3–Co2–O7 #1 93.09(7)
O4–Co1–N2 93.12(8) O3–Co2–O8 #1 91.06(8)
O5–Co1–O7 92.86(8) O7–Co2–O8 77.29(7)
O5–Co1–O8 87.06(8) O3 #1–Co2–O7 93.09(7)
O5–Co1–N1 89.75(9) O7–Co2–O7 #1 180.00
O5–Co1–N2 87.29(8) O7–Co2–O8 #1 102.71(7)
O7–Co1–O8 79.48(8) O3 #1–Co2–O8 91.06(8)
O7–Co1–N1 166.34(8) O7 #1–Co2–O8 102.71(7)
O7–Co1–N2 87.42(8) O8–Co2–O8 #1 180.00
O8–Co1–N1 87.27(9) O3 #1–Co2–O7 #1 86.91(7)
O8–Co1–N2 165.44(9) O3 #1–Co2–O8 #1 88.95(8)
N1–Co1–N2 106.11(9) O7 #1–Co2–O8 #1 77.29(7)

Symmetry transformations used to generate equivalent atoms: #1 1−x, 1−y, 1−z.

The corresponding hydrogen bonds of the Co(II) complex are summarized in Table 3. As illustrated
in Figure 5a, there is one pair of intra-molecular hydrogen bonding interactions (C8–H8···O4) in the
Co(II) complex [52], In addition, inter-molecular hydrogen bonding interactions are shown in Figure 5b,
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and three pairs of intermolecular hydrogen bond interactions were formed in the Co(II) complex, which
was O5–H5F···O6, O6–H6···O3 and C14–H14···O1, respectively. Hydrogen bonding interactions play a
significant role in the construction of the Co(II) complex. Therefore, an infinite 3-D supramolecular
structure is finally formed (Figure 5c).

Table 3. Hydrogen bonding interactions (Å, ◦) of the Co(II) complex.

D–H···A d(D–H) d(H···A) d(D···A) ∠D–H···A Symmetry Code

O5–H5F···O6 0.91 1.70 2.611(3) 175
C6–H6···O3 0.84 1.83 2.666(3) 176 1−x, 1−y, 1−z

C8–H8B···O4 0.99 2.36 3.212(4) 143
C14–H14···O1 0.95 2.60 3.307(4) 132 1+x, y, z
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3.4. Fluorescence Spectra

The fluorescent properties of the ligand HL1 and the Co(II) complex in ethanol solvent are shown
in Figure 6. The concentration of the ligand HL1 and the Co(II) complex was 5.0 × 10−5 M. At room
temperature, at 320 nm excitation, the free ligand HL1 shows a relatively strong emission peak at 367 nm
and should be assigned to the ligand π–π* transition. Compared with the free ligand HL1, a weak
fluorescence intensity at 360 nm was observed in the Co(II) complex, indicating that the fluorescence
characteristics were affected by the introduction of Co(II) ions, as a result, the fluorescence intensity
gradually weakens during the process from the ligand HL1 to the Co(II) complex. These transitions
may be related to the coordination of the ligand HL1 and the Co(II) ions, which allows the ligand to
develop towards a more stable complex.Crystals 2019, 9, x FOR PEER REVIEW 9 of 14 
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Figure 6. Fluorescence spectra of HL1 and the Co(II) complex upon excitation at 320 nm (ethanol, 5.0 × 10−5 M).

3.5. Hirshfeld Surface Analysis

Hirshfeld surface analysis and 2D finger-printing of the Co(II) complex were performed using the
Crystal Explorer program [47]. This figure can visually show the weak interactions in the molecular
crystal. The electron density of the red region is relatively high because of the formation of hydrogen
bonds, and the electron density of the blue region is small and there is no obvious interaction. As shown
in Figure 7, the Hirshfeld surface distribution was performed on the Co(II) complex by Curvedness,
Shape-Index, dnorm, de and di mapping.

The short-range interaction distribution inside the Co(II) complex was calculated by Hirshfeld
fingerprint plot to quantify the intermolecular interaction. The 2-D fingerprint is summarized in
Figure 8. As shown in the figure, for each molecule of the Co(II) complex, the proportion of C–H/H–C,
O–H/H–O, H–H/H–H and Br–H/H–Br interactions was 9.8%, 5.7%, 40.7% and 13.6% of the total
Hirshfeld surface, respectively. It is apparent that the intermolecular interactions of the total surface of
Hirshfeld are mainly derived from the H–H/H–H interaction.
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3.6. Antibacterial Activities

The antibacterial activities of HL1, cobalt(II) acetate tetrahydrates and the Co(II) complex were
tested by perforation method, and Gram-negative Escherichia coli was selected as the research object.
First, the Co(II) complex is formulated into a solution of the same concentration using different
solvents (DMF, DMSO, TCM, DCM, MeOH, EtOH, PA, ACN), and secondly, when culturing E. coli to
OD600 ≈ 1.0 using LB liquid medium (2% agar), add 25 µL to LB solid medium at about 50 ◦C, pour
the plate to solidify, and punch with a puncher. A sample of 200 µL of different solvent was added to
each well and placed in an LRH-250-G light incubator at 37 ◦C for 12 h to observe the size of the zone of
inhibition. As shown in Figure 9a, only the DMF has a larger diameter of the inhibition ring than other
solvents, indicating that the complex has relatively strong antibacterial activity in the presence of DMF.
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Figure 9. (a) The diameter of the inhibition zone of Escherichia coli in different solvents of the Co(II)
complex; (b) The diameter of the inhibition zone of Escherichia coli in different samples at a concentration
of 3.2 mg/mL.

Four groups of solutions were prepared by DMF solution at concentrations of 0.4 mg/mL,
0.8 mg/mL, 1.6 mg/mL, and 3.2 mg/mL, respectively. Under the same conditions, using moxifloxacin
as a positive control experiment, 200 µL of the sample was added to the LB solid medium, and all
the samples were incubated at a constant temperature of 32 ◦C for 12 h, and Figure 9b is a zone of
inhibition of a different sample at a concentration of 3.2 mg/mL, we can clearly see that the diameter of
the inhibition zone of HL1, cobalt acetate, the Co(II) complex and moxifloxacin increased sequentially.
From the results of Figure 10, it can be shown that the Co(II) complex has stronger antibacterial activity
than the ligand, and the antibacterial activity increases as the concentration increases.
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Figure 10. A histogram of the inhibition zone diameter of Escherichia coli at different concentrations of
different samples.

4. Conclusions

An unexpected supramolecular Co(II) complex [Co3(L2)2(µ-OAc)2(CH3OH)2]·2CH3OH was
synthesized and characterized by physicochemical methods and single crystal X-ray diffraction.
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The results show that each Co(II) atoms is hexa-coordinated, and it forms three structurally stable
octahedrons with O and N atoms of coordinated methanol molecules, bridged acetate molecules and
the completely deprotonated (L2)2− moities. Each molecule of the Co(II) complex is linked to each other
to form a three-dimensional supra-molecular network. This kind of complex has potential applications
and deserves further study and can be used to develop novel transition metal complexes.
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