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Abstract: The Nuclear Quadrupole Resonance spectroscopy data of functionalized azoles (imidazoles,
triazoles and corresponding benzazoles) are reviewed and critically discussed. The possibility of
studying the tautomerism of azoles by the NQR method is considered.
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1. Introduction

The studies of the structural peculiarities and tautomeric transformations of functionalized
azoles and related heterocycles by multinuclear Nuclear Magnetic Resonance (NMR) Spectroscopy,
Nuclear Quadrupole Resonance (NQR) spectroscopy and Electron Spin Resonance (ESR spectroscopy,
quantum chemistry, and other physico-chemical techniques were performed by us over decades [1–36].
The outcomes of these studies are discussed in monography, reviews, and a dissertation [37–46].
The azole core occupies an important place in the chemistry of heterocyclic compounds. Their unique
properties and unusual biological activity attract great attention from a wide circle of researchers.
Azole derivatives are employed as pharmaceuticals, high power materials, radiosensitizers, ionic
liquids, multi-faceted bases in peptide nucleic acids, coloring pigments, regulators of plant growth,
pesticides and herbicides, plastifying agents, precursors of nanocomposites, and building blocks for
organic chemistry [37,46–49]. Extensive employment of azoles necessitates a deeper understanding
of the features of their electron structure, spectral characteristics, and tautomeric transformations.
Tautomerism of azoles is one of the most appealing issues in theoretical investigations of their reactivity
and electronic properties. The reasonable interpretation of the chemical behavior and biological
activity of these heterocycles is improbable without determination of tautomeric forms and the factors
influencing the relative stability. The prototropic exchange in the azoles in the solution occurs rather
quickly on the NMR time scale, therefore the change in the temperature of the solution does not cause
changes in the spectra. As a rule, time-averaged signals appear in the NMR spectra. Therefore, the
study of azoles in the solid state is necessary for understanding the tautomeric processes.

2. The Structure and Tautomerism of Substituted Azoles

2.1. Chlorinated Five-Membered Azoles

Possible chlorotropic rearrangements in 1,2,3-triazoles and benzotriazoles were analyzed [50],
since it was disclosed that chlorine exchange occurred in 1-chloro-4,5-diphenyl-1,2,3-triazole [51].
The intensive subsequent NMR [46,50], and NQR [46], studies evidenced that the compound turned out
to be symmetrical 2-chloro-4,5-diphenyl-1,2,3-triazole5,6-dichloro-4,7-dimethylbenzotriazole. Some
examples of chlorotropic transformations in other azoles are also known [52,53]. The chlorotropic
exchange in 1-chlorobenzimidazole revealed by NMR spectroscopy is due to the rapid intermolecular
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transfer of a chlorine atom between 1-chlorobenzimidazole and benzimidazole in a CCl4/CH3OH/K2CO3

medium [52,53]. A similar chlorotropic rearrangement was observed in the equilibrium exchange
process between 1-chloroindole and 3-chloro-3H-indole, i.e., the fast intermolecular transformations
of 1-chloroindole to 3-chloroindole in the related media were detected [53]. The base-promoted
intermolecular mechanism rationalizes chlorotropic processes in N-chlorosubstituted azoles. NQR
spectroscopy data are missing.

X-ray single-crystal analysis of 1,2,4-triazole (Scheme 1) have revealed a crystalline state of the
asymmetric 1H(2H)-tautomer (A, C) [54,55]. Quantum-chemical (ab initio) calculations of 1,2,4-triazole
tautomers suggest the prevailing of 1H(2H)-1,2,4-triazole in gas phase as compared to 4H-1,2,4-tautomer
by ~7 kcal/mol [56–59], that agrees with experimental data [60,61].
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Scheme 1. The possible tautomeric forms of 1,2,4-triazole.

In addition, 1H-form [62–65] is favorable in a solution, and the alkylation of 1,2,4-triazole affords two
isomers: 1-alkyl- and 4-alkyl-1,2,4-triazole in a ratio of ~10:1 [66]. A low content of 2H-1,2,4-triazole (~5%)
can be contained in a strong polar solvent [60]. It is not a surprise that 3-nitro-1-nitromethyl-1H-1,2,4-triazole
is presented as 1H-form in the solid state [67].

We studied the 3,5-dichloro-1,2,4-triazole (1) by 35Cl NQR spectroscopy and showed that it also
exists as the 1H-tautomer (Scheme 2) (Table 1) [46,68,69].
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Scheme 2. The possible tautomers of 3,5-dicloro-1,2,4-triazole.

The 35Cl NQR spectral data of a polycrystalline sample of 3,5-dichloro-l,2,4-triazole (1) differs
insignificantly in the signal intensity ratios from those reported previously (Table 1) [70]. The 35Cl
NQR spectrum of 1 also differs from that expected from the single crystal X-Ray analysis (ambient
temperature) [71]. These data assume that compound 1 could be a 1-H tautomer (A). Establishing the
structure of the compounds using nuclear quadrupole spectroscopy 35Cl and the assignment of signals
in the experimental spectra without attracting quantum chemical calculations in many cases quite
is difficult.
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Table 1. The 35Cl NQR frequencies at 77 K (ν, MHz) and signal-to noise ratio (s/n) in the spectra of
chloro-containing 1,2,4-triazoles (1–6) and imidazoles (7–12).

Compound Structure ν, MHz s/n

1
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The C(3)-C1(3) and C(5)-C1(5) bond lengths are slightly different [72]. So, it can be anticipated 
that the spectrum would contain a doublet or two sets of signals. Nevertheless, the real spectrum 
shows four NQR resonance signals. Two extremal signals display splitting, Δν ~ 1.6 MHz, while the 
two other ones are detected in the center of this quadruplet. The distinction of the experimental and 
the expected spectra can be caused by a phase transition and, hence, different crystalline phases for 
monocrystalline and polycrystalline samples, as well as the existence of a mixture of tautomers in 
polycrystalline samples. 

Commonly, analogous splitting of signals is detected in the spectrum of 1-methyl-3,5-dichloro-
1,2,4-triazole (2). This cannot be rationalized by the formation of a mixture of two tautomers. The 
signals of triazole 2 are downfield shifted as compared to those of 1. This relates qualitatively to a 
ratio of the inductive constants of the CH3 and H substituents. According to ab initio calculations the 
1-H tautomer 1 is a little bit stable (by 3.1 kcal/mol) compared to the 4-H tautomer [46]. 

Thus, on the basis of multiple signals in the 35Cl NQR spectrum, slightly different from the 
expected from X-ray data, it has been found that 3,5-dichloro-1,2,4-triazole (1) is present as 1H-
tautomer with an uncommon phase composition. Later Elguero with co-authors [72] has shown that 
in crystal, this triazole is present as trimer with intermolecular hydrogen bonds N(1)-H…N(2). 

The “pyridinic” nitrogen in the ClCN moiety causes the decrease of the NQR frequency of the 
chlorine atom as compared with the “pyrrolic” nitrogen [68,73]. This is supported by experimental 
and calculated frequencies. This regularity should also be observed in 3,5-dichloro-l,2,4-triazole 
derivatives. 

The complexation of 1 with SnCl4 and protonation augment the 35Cl NQR frequency (Table 1). 
Here, the electron-withdrawing properties of the triazole cycle enhance, and the negative charge on 
chlorine atoms reduces simultaneously. The spectral characteristics assume a complex formation and 
protonation with participation of the N(4) atom. When the N(2) atom is involved in the coordination, 
a singlet or slightly split signal are anticipated. The calculated frequency splitting of a 4-H cation 
agrees well the experimental data. The calculations show that this cation is more stable than the 2-H 
isomer [68]. The augmentation of the 35Cl NQR frequency on going from a neutral molecule to a cation 
is ~2.6 MHz for 1 and 2.2 MHz for 11. The transition from a neutral state to an anion includes the 
frequency lowering to 2.6 and 2.0 MHz for 1 and 11, respectively. The value of the frequency change 
in going from the anion to the cation is greater for the triazole cycle than for the imidazole cycle. 
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The C(3)-C1(3) and C(5)-C1(5) bond lengths are slightly different [72]. So, it can be anticipated
that the spectrum would contain a doublet or two sets of signals. Nevertheless, the real spectrum
shows four NQR resonance signals. Two extremal signals display splitting, ∆ν ~ 1.6 MHz, while the
two other ones are detected in the center of this quadruplet. The distinction of the experimental and
the expected spectra can be caused by a phase transition and, hence, different crystalline phases for
monocrystalline and polycrystalline samples, as well as the existence of a mixture of tautomers in
polycrystalline samples.
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Commonly, analogous splitting of signals is detected in the spectrum of 1-methyl-3,5-dichloro-1,
2,4-triazole (2). This cannot be rationalized by the formation of a mixture of two tautomers. The signals
of triazole 2 are downfield shifted as compared to those of 1. This relates qualitatively to a ratio of
the inductive constants of the CH3 and H substituents. According to ab initio calculations the 1-H
tautomer 1 is a little bit stable (by 3.1 kcal/mol) compared to the 4-H tautomer [46].

Thus, on the basis of multiple signals in the 35Cl NQR spectrum, slightly different from the
expected from X-ray data, it has been found that 3,5-dichloro-1,2,4-triazole (1) is present as 1H-tautomer
with an uncommon phase composition. Later Elguero with co-authors [72] has shown that in crystal,
this triazole is present as trimer with intermolecular hydrogen bonds N(1)-H . . . N(2).

The “pyridinic” nitrogen in the ClCN moiety causes the decrease of the NQR frequency of the
chlorine atom as compared with the “pyrrolic” nitrogen [68,73]. This is supported by experimental and
calculated frequencies. This regularity should also be observed in 3,5-dichloro-l,2,4-triazole derivatives.

The complexation of 1 with SnCl4 and protonation augment the 35Cl NQR frequency (Table 1).
Here, the electron-withdrawing properties of the triazole cycle enhance, and the negative charge on
chlorine atoms reduces simultaneously. The spectral characteristics assume a complex formation and
protonation with participation of the N(4) atom. When the N(2) atom is involved in the coordination,
a singlet or slightly split signal are anticipated. The calculated frequency splitting of a 4-H cation
agrees well the experimental data. The calculations show that this cation is more stable than the 2-H
isomer [68]. The augmentation of the 35Cl NQR frequency on going from a neutral molecule to a
cation is ~2.6 MHz for 1 and 2.2 MHz for 11. The transition from a neutral state to an anion includes
the frequency lowering to 2.6 and 2.0 MHz for 1 and 11, respectively. The value of the frequency
change in going from the anion to the cation is greater for the triazole cycle than for the imidazole
cycle. Asymmetry in the alteration of the chlorine electronic density is manifested for two heterocycles,
if these compounds are transformed into an ionic form. The generation of a cation induces a higher
rearrangement of the chlorine electron density than that which is observed upon transition to the anion.
The calculations [68] predict another situation because in the anion the negative charge is localized
only in the cycle and on two chlorine atoms. In the cation, a part of the positive charge is transferred
by hydrogen atoms and, therefore, the chlorine atoms are not “sensitive” enough to the alterations in
the charge state. The discrepancy between the experimental and calculated data is probably owing to
the electron deficiency of the rings.

In going to the cation this ability enhances notably, which increases the Cl frequency. Here, one
should bear in mind that in going from the neutral state to the cation the degree of p-π- conjugation
also augments and this, in turn, lowers the NQR frequency.

For example, the 1H-tautomer of 3-nitro-1,2,4-triazole and its 5-substituted is the most stable both
in gas phase and solution [74–80]. Here the “labile” hydrogen relates to the heteroatom, the most
distant from the nitro moiety. The labile proton in 5-amino-1,2,4-triazole is close to the nitrogen atom
adjacent to the amino group (X-ray data) [81,82], i.e., the 5-amino-1-hydrogen-1,2,4-triazole structure
is formed.

2.2. Chloro-Containing Benzazoles

We studied 35Cl NQR spectra at 77 K of the chloro-containing benzimidazole derivatives (13–18)
(Table 2) [46,83].
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Table 2. The 35Cl NQR frequencies at 77 K (ν, MHz) and signal-to noise ratio (s/n) in the NQR spectra
of chloro-containing benzimidazoles and benzothiazole (13–18).

Compound Structure ν, MHz s/n
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37.740 8

Calculations of the 2-trichloromethylbenzimidazole molecule have been carried out for three
possible orientations of the trichloromethyl group relative to the benzimidazole ring plane (Scheme 3,
conformation A, B, C) [38,46,83].
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Scheme 3. Conformations of the trichloromethyl group in benzimidazole cycle plane.

If the situation is realized when the dihedral angle ϕ = 0◦ (conformation A), then in the 35Cl NQR
spectrum should expect one low frequency signal and two high-frequency signals (possibly only one,
but double intensity). For conformations with ϕ = 180◦ (conformation C) calculations, as in the classic
Towns–Daley approximation, and with using the modified Equation (1) show that there should be one
signal in the spectrum high frequency and two low frequency signals (or one double intensity signal).
In the case of perpendicular orientation of one chlorine atoms to the cycle plane (conformer B) three
signals should be recorded.

The modification of the Townes–Dailey equation does not account for the effect of the different
diffusivity of the pi-orbital on gradient of the electric field (Equation (1)) [68,84].
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where ν is the calculated NQR frequency, k is the empirical constant, Pxx, Pyy and Pzz are the population
of the corresponding р-orbital of the indicator atom, and ξz is the exponent index of the corresponding
pi-orbital of the Slater type.

Thus, the 35Cl NQR experimental spectrum of 2-trichloromethyl-benzimidazole (13), consisting of
six signals (Table 2), can be explained by the presence in the crystal unit cell of two molecules, having a
conformation close to B.

The 35Cl NQR spectral data of 2-trichloromethyl-5(6)-nitrobenzimidazole (14) and the AМ1 and
РМ3 calculation results of its tautomers show that the 5-nitro tautomer is more favorable than 6-nitro
tautomer (Scheme 4) [38,46,68,85].
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Scheme 4. Tautomers of 2-trichloromethyl-5(6)-nitrobenzimidazole.

The introduction of the nitro group into 2-trichloromethylbenzimidazole increases the 35Cl NQR
average frequency owing to the electron-withdrawing effect of the nitro group despite its distant
location from the indicator atom. The presence of two 35Cl signals, assigned to three chlorine atoms,
with an intensity ratio of 1:2 (40.574 and 39.724 MHz) in the NQR spectrum of this compound evidences
that its existence in the view of the conformer A or C where two chlorine atoms are located over
and under the plane of the benzimidazole ring, and the third chlorine atom is placed in the ring
plane. The data of the quantum-chemical calculations demonstrate a preference of conformer C, while
H-bonding stabilizes the conformer A (Scheme 3) [83,85]. The enthalpy of the conformers A and C of
2-trichloromethyl-5(6)-nitrobenzimidazole 14 calculated by AM1 and PM3 methods and the 35Cl NQR
frequencies computed from the Townes–Dailey equation (TD) [86], and the modified Townes–Dailey
Equation (1) [68,84], have been studied (Table 3) [83,85].

Table 3. The formation heats (H, kcal/mol) of the conformers A and C of 2-trichloromethyl-5(6)-
nitrobenzimidazole and 35Cl NQR frequencies (v, MHz), obtained from Townes–Dailey (TD) and
modified Townes–Dailey (MTD) equations [38,46,68].

Method

5-Nitro Tautomer 6-Nitro Tautomer

ϕ 0 180 0 180

TD MTD TD MTD TD MTD TD MTD

AM1

H 56.487 56.126 57.097 56.780

ν
50.452 45.650 51.557 46.481 50.496 45.724 51.535 46.524
50.443 45.646 49.179 44.666 50.502 45.729 49.107 44.657
48.425 43.957 48.719 44.304 48.558 44.098 49.098 44.657

PM3

H 20.300 20.437 20.786 21.066

ν
54.414 46.961 55.666 47.542 54.512 47.105 55.734 47.624
54.370 46.977 52.419 45.642 54.460 47.109 52.541 45.865
51.477 44.691 52.384 45.743 51.629 44.885 52.445 45.775

The analyses of these, others, and our data [84,87–91] shows that usage of the modified
Townes–Dailey equation is more preferable then Townes–Dailey equation for the elucidation of
structure and assignment of signals in the 35Cl NQR spectra of organochlorine compounds.
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The average frequency of the 35Cl NQR signals of compound 14 (Table 2) is higher than compound
13, that can be rationalized by the electron-withdrawing influence of the nitro group, despite its being
removed from the indicator atom. The reducing of the resonance frequency of the 35Cl NQR signals of
compounds 15 and 16 as compared to 13 is apparently due to a decrease in the number of chlorine atoms
in the substituent in position 2 of the benzimidazole cycle. The protonation of the molecule 13 leads to
the formation of cation 17 (benzimidazolium perchlorate), and is accompanied by an augmentation of
the 35C1 NQR frequency (Table 2). A slight splitting in the NQR spectrum of compound 15 excludes the
orientation of one of the chlorine atoms in the plane of the benzimidazole ring (i.e., the conformations
of similar A and C). Otherwise, there should be a substantial nonequivalence of these chlorine atoms,
similar to the trichloromethyl derivative 13 and 14.

Prototropic exchange in 2-chloro-5(6)-methoxybenzimidazole in THF at 173 K is decelerated and
two tautomers are separately detected (Scheme 5) [92,93].
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Forty percent of 5-methoxy and 60% of 6-methoxy tautomer are observed, which corresponds
to an equilibrium constant of 0.67. Unfortunately, the NQR spectrum of this compound could not
be obtained.

3. Conclusions

Tautomeric transformations, structural peculiarities and distribution of electron in tautomeric
and non-tautomeric imidazole derivatives (2-methyl-5-nitroimidazoles, metronidazole) [94,95],
5-substituted tetrazoles [96], 1,3,4-thiadiazole derivatives [97], indazoles [98], benzimidazoles [99], and
other nitrogen-containing compounds [100–103], were investigated by NMR–NQR double resonance
and quantum chemical methods. The asymmetry parameter in derivatives of 5-nitroimidazoles is
reduced with augmentation of the substituent size. The insertion of the substituent in position 1 of
the imidazole cycle redistributes p-electron density and its delocalization from the nitrogen atom
–N (N-3) to the nitrogen NH (N-1). Even very weak substituent effects could substantially alter the
change the electron density distribution in imidazoles [94,95]. Unfortunately, authors [94,95] gave a
wrong name of imidazoles (2-nitro-5-methylimidazoles), which are indeed 2-methyl-5-nitroimidazoles.
As mentioned above, the numbering of azoles starts from the NH nitrogen atom (or N-organyl) to
other heteroatoms. The π–electron density and N-1 bond population, calculated by the Townes–Dailey
approach, described by Dr. Lucken [86] and Dr. Dolgushin [68,83,84,87–91], enhances with lengthening
of the substituent in the position 1 (N-1) [94,95]. The data of NMR–NQR study and quantum-chemical
investigations of thermodynamic stability of the tautomeric forms of indazole show that the 1H form is
more highly stable (21.4 kJ mol−1) than the 2H form [98].

Thus, NQR spectroscopy is crucial for the investigation of the tautomerism of functional
heterocyclic compounds. In addition, NQR spectroscopy is an excellent tool for studying the structure
of chlorine derivatives of heteroatomic and heterocyclic compounds.

This review is dedicated to the memory of Dr. G.V. Dolgushin, who for many years headed the
research of organic and elementoorganic compounds using nuclear quadrupole resonance spectroscopy.
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