SUPPORTING INFORMATION

Parameter	1 · 2H ₂ O	2 · 2H ₂ O	3 · 2CH ₃ CN	4	5 · 2CH ₃ CN	6 · 0.5H ₂ O
Empirical	C30H55B20	C24H34B12N	$C_{20}H_{42}B_{10}N_{c}$	C24H28B10N	C60H80B12N	C54H48.5B10N9
formula	N_9O_2	$4O_2$	C201142D101N6	4	$_6O_6$	O _{0.5}
Fw	790.30	540.27	474.69	480.60	1111.02	940.62
Crystal	Triclinic,	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic,
system, space	$P\bar{1}$	$P2_1/m$	$Pna2_1$	$P2_1/n$	$C^{2/c}$	$P2_{1}2_{1}2$
group		12011	1 //(2]	12//1	02/0	
T (K)	173(2)	120.0(2)	173.0(2)	100.0(2)	120.0(2)	100.0(2)
a (Å)	7.437(4)	7.9096(3)	15.893(2)	20.430(16)	24.465(3)	16.586(2)
b (Å)	17.777(10)	18.9027(6)	8.7035(13)	8.611(7)	14.7934(17)	25.190(3)
c (Å)	17.866(9)	9.8240(4)	20.298(3)	30.41(2)	17.787(2)	11.5646(14)
α (°)	115.710(8)	90	90	90	90	90
β (°)	90.072(9)	108.169(1)	90	109.200(14)	108.284(2)	90
γ (°)	93.744(9)	90	90	90	90	90
$V(A^3)$	2123(2)	1395.58(9)	2807.8(7)	5052(7)	6112.5(12)	4831.7(10)
Z	2	2	4	8	4	4
μ (cm ⁻¹)	0.071	0.570	0.063	0.069	0.074	0.075
No. of						28518, 7690,
measured,						4297
independent	14362,	15786,	10279, 5122,	21203,	39755,	
and observed	6680, 2714	2451, 2115	2876	5884, 3247	9349, 6367	
$[I > 2\sigma(I)]$						
reflections						
$R_{\rm int}$	0.0879	0.0607	0.0523	0.1258	0.0691	0.1072
$R[F^2 >$	0.0873,	0.0848,	0.0548 0.1371	0.0541,	0.0576,	0.1149, 0.2505,
$2\sigma(F^2)$],	0.2000,	0.1765,	1 008	0.1175,	0.1654,	1.133
$wR(F^2), S$	1.046	1.009	1.000	0.962	1.014	
$\Delta ho_{ m max}, \Delta ho_{ m min}$ (e Å ⁻³)	0.45, -0.30	0.64, -0.24	0.23, -0.20	0.20, -0.23	0.61, -0.35	0.82, -0.32

 Table S1. Crystallographic data and refinement parameters for crystals 1–6

-

	v(NH)	v(BH)	v(CN), v(CC) heterocycle	π(CH) heterocycle	
K2[B10H10]		2529, 2461			
Phen	_	_	1586	854, 739	
4	3095	2510, 2477, 2451, 2421	1658, 1631, 1616, 1595	855, 844, 719, 715	
6 · 0.5H2O	3164, 3152	2495, 2476, 2414	1656, 1651, 1618, 1610, 1543	824, 761	
BPA	3255, 3181, 3102		1599, 1566, 1531	769,735	
$1 \cdot 2H_2O$	3286, 3236, 3204, 3136	2543, 2492, 2444, 2420	1641, 1591, 1528	787, 781, 773	
$3 \cdot 2CH_3CN$	3467, 3316, 3255, 3212, 3145, 3111	2499, 2466, 2448, 2404	1648, 1612	773, 721	
$Cs_2[B_{12}H_{12}]$	—	2465	—		
5 · CH ₃ CN	3410, 3361	2484, 2461, 2447, 2422	1648, 1607, 1549, 1531, 1500	847, 812, 785	
2 · 2H ₂ O	3098, 3063	2487, 2443	1629, 1608, 1586	851, 783, 738, 719	

Table S2. Maxima of selected absorption bands in IR spectra of compounds **1–6** as compared to alkali metal *closo*-borates (cm⁻¹).

Fig. S4. IR spectrum of (NHEt₃)(Hbpa)[B₁₀H₁₀] (3 · 2CH₃CN) (Nujol mull).

•

Fig. S6. IR spectrum of $[Hphen)]_2[B_{10}H_{10}]$ (4) (thin layer).

Fig. S7. IR spectrum of [Hphen]₂(phen)_{2.5}][B₁₀H₁₀] (6 · 0.5H₂O) (Nujol mull).

Fig. S8. IR spectrum of Cs₂[B₁₂H₁₂] (Nujol mull).

Fig. S9. IR spectrum of [PhenH]₂[B₁₂H₁₂] (2 · 2H₂O) (Nujol mull).

Fig. S10. IR spectrum of [Rh6GH]₂[B₁₂H₁₂] · CH₃CN (5 · CH₃CN) (Nujol mull).

Fig. S13. (a) Experimental and (b) calculated (from ref. [36]) X-ray diffraction patterns of complex [Co(Phen)₃][B₁₀H₁₀] (7).