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Abstract: Mixed seeds of fused quartz particles and silicon particles were laid at the bottom of the
crucible to assist the growth of multicrystalline silicon crystals. The full melting process was used,
and then we found that the grown crystals had higher quality. The effect of mixed seeds on the
growth of multicrystalline silicon was studied. The results showed that fine and uniform initial grains
could be obtained by mixed seeds assisting the growth of crystals. Increasing the number of grain
boundaries can better release thermal stress and inhibit the proliferation and diffusion of dislocations.
The defect density of multicrystalline silicon decreased and the minority carrier lifetime increased,
thus improving the conversion efficiency of multicrystalline silicon cells.
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1. Introduction

At present, crystalline silicon occupies more than 90% of the photovoltaic market [1]. Among
crystalline silicon materials, monocrystalline silicon (CZ-Si) and multicrystalline silicon (mc-Si) are
widely used. The latter is more popular because of its low cost, high output and large-scale advantages.
However, compared with CZ-Si, mc-Si crystals contain more defects, such as dislocations (dislocation
clusters), grain boundaries (GBs) and precipitations [2], so the corresponding solar cell efficiency
is lower.

The traditional multicrystalline silicon is generated with seedless growth. After melting, the silicon
raw materials nucleate randomly at the bottom of the crucible, and the initial grains are disorderly.
Later, seed-assisted multicrystalline silicon, also known as high performance multicrystalline silicon
(HPMC-Si) technology, was developed [3,4]. At present, HPMC-Si has gradually replaced conventional
multicrystalline silicon as the most important photovoltaic material by virtue of its excellent product
performance. The so-called HPMC-Si can reduce dislocation and improve crystal quality by using
seed-assistance to control nucleation and grain growth [4–6]. Full melting and semi-melting are two
main processes in HPMC-Si. Fused quartz particles are used as seeds in the full melting process and
silicon particles are used as seeds in the semi-melting process. Quartz seeded growth of mc-Si ingots has
recently attracted much attention because of the very high yield and high crystal quality [6,7]. Because
fused quartz particles are heterogeneous and have no crystal structure and poor infiltration of silicon
crystal, the nucleation rate of crystal silicon on its surface is relatively low [8]. The effect of crystallization
and the quality of cast silicon ingots are slightly inferior to that of the semi-melting process, while the
yield of the semi-melting process is not high due to partial melting of seeds. The full melting process
not only has the advantage of yield, but also it does not need seed protection (semi-melting needs to
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control the thickness of seeds, high requirements for thermal field, etc.). The operation process is more
convenient, and it has become the mainstream process in production. Yin Changhao et al. [9] used SiC
materials with better wettability to cast ingots, but the actual effect of the quality of silicon ingots did
not be improved as imagined, it became worse. This is thought to be because the introduction of SiC
will increase the carbon content in the ingot, reduce the minority carrier lifetime and widen the red
region (the low minority carrier lifetime region) at the bottom of the ingot.

Inspired by Wong et al. [10], in this paper, we artificially designed the mixed seeds of silicon
particles and fused quartz particles as the nucleation layer. The full melting process was used and
then we found that the crystals grown had higher quality than ingots using fused quartz particles.
We studied the effects of the special nucleation layer on the quality of multicrystalline silicon ingots
and tried to understand the mechanism of defect reduction after using this design. Due to the special
nucleation layer at the bottom of the crucible, the quality of crystal was improved. The results showed
that, with the help of mixed seeds, uniform and fine initial grains could be easily obtained at the initial
stage of crystallization. The seed-assisted multicrystalline silicon based on this method had fewer
dislocations and higher conversion efficiency.

2. Experimental

2.1. Preparation of Seeds and Coatings

The experimental ingots seeded by ordinary fused quartz particles and mixed seeds (fused quartz
particles: silicon particles = 1:1) were respectively cast in two directional solidification furnaces of
Jingyuntong (JZ460/660). G6 high purity and high efficiency quartz crucible with a size of 1040 mm x
1040 mm x 540 mm was used in the experiment. The purity of the two kinds of particles was 99.9999%
and the particle size was 50–70 meshes (200–300 µm). The proper size of the particles was used to
prevent the gap between the particles being too large to produce tape casting phenomena [11] or too
small to increase the risk of sticking pot.

Seeds were evenly fixed to the bottom of the crucible using an automatic particle planter, as shown
in Figure 1. After the seeds were fixed, Si3N4 coatings needed to be covered. We sprayed two layers of
Si3N4 coatings on the seed layer and the side wall of the crucible using automatic spraying apparatus
to make the coatings more uniform. The purpose of Si3N4 coating is to slow down the erosion rate of
molten silicon on the crucible and prevent adhesion between ingot and crucible.
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2.2. Casting Process and Analysis 

As a comparison, the technological parameters of the two ingots were consistent. In order to 
avoid dendrite nucleation at the bottom, the undercooling at the bottom was controlled below 10 k, 
so the cooling rate at the bottom of crucible was adjusted to about 3 k/min, and the growth rate of the 
silicon ingot was 12 mm/h. 
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2.2. Casting Process and Analysis

As a comparison, the technological parameters of the two ingots were consistent. In order to
avoid dendrite nucleation at the bottom, the undercooling at the bottom was controlled below 10 k,
so the cooling rate at the bottom of crucible was adjusted to about 3 k/min, and the growth rate of the
silicon ingot was 12 mm/h.
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After casting, the ingot was cut into 6 × 6, totalling 36 silicon blocks, as shown in Figure 2.
The initial grain morphology at the bottom of the squares was observed using an infrared detector
and a digital camera. The minority carrier lifetime of six blocks B13–B18 was scanned using the
minority carrier lifetime instrument (Semilab, WT-2000). Then, the squares were cut into wafers, and
the grain morphology and dislocation distribution were characterized by photoluminescence (PL)
equipment (BT imaging, LIS-R2). Fabrication and performance testing of the solar cells were performed
by Yangzhou JA Solar Technology Co., Ltd.
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Yangzhou JA Solar Technology Co., Ltd. 

 
Figure 2. Squaring picture of an ingot. 
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The nucleation process is very important. The quality of nucleation directly affects the growth 
of initial grains. Therefore, it can be said that nucleation is the key factor to improve the quality of 
silicon ingots. In Ding et al.'s paper [12], two nucleation modes were mentioned. One was the contact 
between fused silicon and fused quartz particles, which formed a large number of nucleation cores. 
This nucleation mode was called "contact nucleation". The other was the gap area between fused 
quartz particles, which was called "gap nucleation". In this experiment, there were also two kinds of 
nucleation modes. When the silicon particles in the nucleation layer melt at high temperature, there 
would be some interspace, which allowed liquid silicon to flow into the interspace and solidify and 
form bead-like homogeneous seeds to co-crystallize with fused quartz particles. Figure 3 is the 
bottom morphology after demoulding and Figure 4 is the nucleation process. 
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the grain morphology in the wafer was photographed by digital camera, as shown in Figure 6. From 
Figure 4 it can be seen that the initial grain size at the bottom of fused quartz seeded ingot in Figure 6a 
was relatively large, while that at the bottom of mixed seeds seeded ingot in Figure 6b was obviously 
small. We used Image-Pro analysis software to measure the size of initial grains. According to the 
statistics on grain size distribution, the average grain size of fused quartz wafers is about 3.36 mm, 
while that of mixed seeds wafers is about 2.79 mm, the grain size is reduced about 17.0%, and the 
grain size is more uniform. Generally speaking, fine and uniform grains in the initial stage are 
beneficial to suppress the growth of dislocations in the later stage, because grain boundaries have a 
significant blocking effect on the propagation of dislocations [13], and can better release thermal 
stress. However, the existence of these grains of different sizes in fused quartz particle-seeded ingots 
seriously reduces the uniformity of grain size, which is not conducive to the suppression of 
dislocation in crystals, thus affecting the overall quality of silicon ingots. 
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to further compare the initial grain size, two silicon ingots were sampled at the bottom of 2 mm,
and the grain morphology in the wafer was photographed by digital camera, as shown in Figure 6.
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Figure 6a was relatively large, while that at the bottom of mixed seeds seeded ingot in Figure 6b was
obviously small. We used Image-Pro analysis software to measure the size of initial grains. According
to the statistics on grain size distribution, the average grain size of fused quartz wafers is about
3.36 mm, while that of mixed seeds wafers is about 2.79 mm, the grain size is reduced about 17.0%,
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in Figure 7 is the low minority carrier lifetime zone, commonly known as the red zone (minority 
carrier lifetime is less than 2 μs), which is mainly caused by impurity permeation in the crucible, 
coating and impurities (mainly metallic iron impurities) contained in seeds. Because of too many 
impurities in the red zone, it cannot be used and needs to be removed and purified in subsequent 
processes. 
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of mixed seeds squares in Figure 7b is 6.20 μs, with a difference of 0.42 μs. In the figure it can be seen 
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middle part of the fused quartz seeded ingot. This may be due to the excessive growth of 
dislocations in the middle and later stages of the crystal, which resulted in the high distribution of 
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The color of the red zone at the bottom of the silicon ingot cast with mixed seeds was darker, which 
indicated that the minority carrier lifetime was lower and the corresponding impurities were more 
numerous. This phenomenon is in line with the impurity reflux theory proposed by Gaobing et al. [14]. 
They thought that iron impurity was the main factor leading to the red zone. The impurity iron in 
the melt flowed back to the seeds and increased the impurity concentration at the bottom, which 
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For the single phase, fused silica sand was a continuous phase with fewer voids, causing fewer 
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that the minority carrier lifetime and overall quality of the mixed seeds seeded ingot were 
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3.3. Effect of the Mixed Seeds on the Minority Carrier Lifetime

Minority carrier lifetime directly affects the conversion efficiency of solar cells. Figure 7 shows
minority carrier lifetime maps of B13–B18 squares in ingots seeded by different seeds. The red part in
Figure 7 is the low minority carrier lifetime zone, commonly known as the red zone (minority carrier
lifetime is less than 2 µs), which is mainly caused by impurity permeation in the crucible, coating and
impurities (mainly metallic iron impurities) contained in seeds. Because of too many impurities in the
red zone, it cannot be used and needs to be removed and purified in subsequent processes.

The average minority carrier lifetime of fused quartz squares in Figure 7a is 5.78 µs, while that of
mixed seeds squares in Figure 7b is 6.20 µs, with a difference of 0.42 µs. In the figure it can be seen
that the minority carrier lifetime of the mixed seeds seeded ingot is higher and more uniform, while a
large "waterfall" (in red circle) low minority carrier lifetime zone appeared in the upper and middle
part of the fused quartz seeded ingot. This may be due to the excessive growth of dislocations in the
middle and later stages of the crystal, which resulted in the high distribution of dislocation density,
thus forming more minority carrier recombination centers and reducing the minority carrier lifetime.

The color of the red zone at the bottom of the silicon ingot cast with mixed seeds was darker, which
indicated that the minority carrier lifetime was lower and the corresponding impurities were more
numerous. This phenomenon is in line with the impurity reflux theory proposed by Gaobing et al. [14].
They thought that iron impurity was the main factor leading to the red zone. The impurity iron in the
melt flowed back to the seeds and increased the impurity concentration at the bottom, which resulted
in an iron concentration at the solid-liquid interface higher than the original concentration, and then
diffused to both sides to expand the width of the red zone, which indirectly reduced the impurity
content in the silicon melt. This also explained the fact that the minority carrier lifetime of the yellow
line in the middle of the red zone was higher than that in both sides (as shown in Figure 7). For the
single phase, fused silica sand was a continuous phase with fewer voids, causing fewer reflux of fused
silica and fewer impurities. For the mixed phase, the melting of silicon particles made the voids larger
and the reflux more, so the corresponding impurity content at the bottom was higher, which made the
length of the red zone at the bottom of the mixed phase higher. The average minority carrier lifetime
of fused quartz squares was 6.35 µs after removal of the red zone, while that of mixed seeds squares
was 6.92 µs. The difference between them was 0.57 µs. This further shows that the minority carrier
lifetime and overall quality of the mixed seeds seeded ingot were significantly better than those of the
fused quartz particles seeded ingot.
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3.4. Effect of the Mixed Seeds on the Dislocations

Due to thermal stress and different orientations, dislocations occur during the crystallization
process, and the initial dislocations are the sources of other dislocations. During the cooling process
after solidification, dislocation density also increases rapidly. Dislocations induce deep concentration
centers in the conduction and valence bands of silicon to become composite centers of electrons and
holes, which seriously affect the electrical and photoelectric properties of multicrystalline silicon solar
cells. Therefore, we need to reduce the formation of dislocations during crystal growth.

Figure 8 shows PL diagrams of wafers from the C15 square at the bottom, middle and top of the
two ingots. It can well characterize the grain morphology and dislocation distribution in the cut wafers.
The dislocation density in the wafer is expressed by the percentage of dislocation area to the total area
of wafer, Rd. The Rd of the fused quartz-seeded ingot was 3.74%, and that of mixed seeds-seeded
ingot was 2.96%. By contrast, the average dislocation density of the mixed seeds-seeded ingot was
reduced by about 20.9%.

For the fused quartz seeded ingot, there were some dislocation clusters in the PL diagram (shown
in the red circle), while the grain size of the mixed seeds-seeded ingot was smaller and more uniform,
and the dislocation clusters were almost invisible. Although there were contact nucleation and gap
nucleation in both nucleation processes, the latter had larger and more uniform gap nucleation space
due to the melting of silicon particles, which had a much smaller impact on the overall nucleation. So,
there are two more reasonable nucleation modes and their proportion. On the one hand, the generated
gap can better release thermal stress. On the other hand, more fine and uniform initial grains were
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formed, which provided a large number of grain boundaries to inhibit the proliferation and diffusion
of dislocations [15], thus reducing the dislocation density.

With the growth of the ingots, dislocations (black region) in the ingots proliferated and diffused
along the direction of growth. In the mid-growth stage, the dislocation density in the ingot seeded
by mixed seeds increased (shown in Figure 8e), but the uniformity of grain size remained at a high
level. However, the dislocation density of the fused quartz-seeded ingot in Figure 8b was significantly
higher, and most dislocations were concentrated in areas with fine grains. This is because the growth
rates of grains with different sizes were different; large grains are continuously extruded and eroded
by surface energy, resulting in additional extrusion stress, which lead to more dislocations [15].

At the later stage of crystallization (Figure 8c,f), the size gap between grains gradually enlarged, and
the growth competition among grains became more and more fierce, resulting in more extrusion stress.
The cumulative release of stress resulted in the rapid growth of dislocations in fused quartz-seeded ingots.

The PL diagram and Rd values show that mixed seeds crystallization can better inhibit the
generation and multiplication of dislocations and dislocation clusters. The results also correspond well
to the minority carrier lifetime distribution in Figure 7.
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4. Conclusions

Multicrystalline silicon ingots were grown using fused quartz particles/silicon particles as mixed
seeds. We found that:

(1) Mixed seeds exhibit a great crystallization effect. The average initial grain size was reduced by
17.0% compared with fused quartz crystals, and the uniformity of grain size was improved. Ingot
growth using mixed seeds could effectively reduce the dislocation density and improve the quality
of ingots.

(2) The average dislocation density of mixed seeds ingots was about 20.9% lower than that of
fused quartz seeded ingots. In addition, the minority carrier lifetime was higher, the distribution was
more uniform and the average cell conversion efficiency was increased by 0.1%.

We conclude that using fused quartz particles and silicon particles as mixed seeds to assist
the growth technology of multicrystalline silicon is beneficial to the preparation of high-efficiency
multicrystalline silicon solar cells.
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