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Abstract: A mononuclear iron(II) complex bearing the linear pentadentate N5 Schiff-base ligand
containing two 1,2,3-triazole moieties and the MeCN monodentate ligand, [FeIIMeCN(L3-Me-3

Ph)]
(BPh4)2·MeCN·H2O (1), have been prepared (L3-Me-3

Ph = bis(N,N′-1-Phenyl-1H-1,2,3-triazol-4-yl-
methylideneaminopropyl)methylamine). Variable-temperature magnetic susceptibility measurements
revealed an incomplete one-step spin crossover (SCO) from the room-temperature low-spin (LS, S = 0)
state to a mixture of the LS and high-spin (HS, S = 2) species at the higher temperature of around
400 K upon first heating, which is irreversible on the consecutive cooling mode. The magnetic
modulation at around 400 K was induced by the crystal-to-amorphous transformation accompanied
by the loss of lattice MeCN solvent, which was evident from powder X-ray diffraction (PXRD)
studies and themogravimetry. The single-crystal X-ray diffraction studies showed that the complex
is in the LS state (S = 0) between 296 and 387 K. In the crystal lattice, the complex-cations
and B(1)Ph4

− ions are alternately connected by intermolecular CH···π interactions between the
methyl group of the MeCN ligand and phenyl groups of B(1)Ph4

− ions, forming a 1D chain
structure. The 1D chains are further connected by P4AE (parallel fourfold aryl embrace) interactions
between two neighboring complex-cations, constructing a 2D extended structure. B(2)Ph4

− ions
and MeCN lattice solvents exist in the spaces of the 2D layer. DFT calculations verified that
the 1,2,3-triazole-containing ligand L3-Me-3

Ph gives a stronger ligand field around the octahedral
coordination environment of the iron(II) ion than the analogous imidazole-containing ligand H2L2Me

(= bis(N,N′-2-methylimidazol-4-yl-methylideneaminopropyl)methylamine) of the known compound
[FeIIMeCN(H2L2Me)](BPh4)1.5·Cl0.5·0.5MeCN (2) reported by Matsumoto et al. (Nishi, K.; Fujinami,
T.; Kitabayashi, A.; Matsumoto, N. Tetrameric spin crossover iron(II) complex constructed by
imidazole· · · chloride hydrogen bonds. Inorg. Chem. Commun. 2011, 14, 1073–1076), resulting in the
much higher spin transition temperature of 1 than that of 2.

Keywords: spin crossover; linear pentadentate ligand; iron(II); mononuclear; 1,2,3-triazole; crystal
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1. Introduction

Spin crossover (SCO) materials exhibiting spin state-interconversion between the high-spin
(HS) and the low-spin (LS) states have attracted much attention since they have a great potential
for applications in data storage, display, switching device, sensors for temperature, pressure, gas,
and solvent, and also multi-modal sensing technology [1–5]. For the real-world applications,
SCO compounds must fulfill demands such as a proper room temperature (RT) response, abrupt
spin transition, wide thermal hysteresis, and high durability at least [6,7]. Multistep [8–11] and
high-temperature (HT) [12–18] SCO complexes also provide demands for the development of multinary
memories and for the investigation of the thermal stability of spin transition under extreme conditions,
respectively. These properties are complicatedly affected by the ligand field strength of each SCO
molecule and cooperativity between SCO metal sites. Generally, the important factors are the
ligand backbone, molecular structure of each SCO molecule, accompanying components (counter
ions and lattice solvents), crystal packing, and cooperative interactions through intermolecular
interactions [19,20] and/or bridging ligands [21]. The most essential need, namely RT operation, is
achievable by controlling the spin transition temperature (T1/2) . Thus, the various molecular design
and modifications have been reported for the precise tuning of T1/2 [22–29].

Octahedral metal complexes with pentadentate ligand are of interest since their ligand field
strength can be systematically controlled by modifying the additional monodentate ligand in line
with the spectrochemical series [30–32], and such a characteristic is useful not only for exhibiting SCO
but also for the possible tuning of T1/2. These complexes are also beneficial for the construction of
polynuclear materials such as di [33–42], tri [43], tetra [44], penta [45], hepta [46–48], nona [48] and
dodecanuclear [49] complexes by using bridging ligands instead of monodentate ligands for exhibiting
multi-step spin transition. In the pentadentate ligand system, although iron(III) SCO compounds are
well known [50–57], iron(II) spin transition systems are quite rare [58,59]. One of the reasons for this
is the difficulty of the crystallization of iron(II) complexes with pentadentate ligand, as pointed out
by Matsumoto et al. [60]. To the best of our knowledge, only one SCO iron(II) complex with linear
pentadentate ligand, which shows the gradual and partial SCO below RT, has been reported so far [59].
So, our ongoing interest for exploring RT and HT SCO systems by using 1,2,3-triazole-containing
multidentate Schiff-base ligands spontaneously extends to the next project for the synthesis of a SCO
iron(II) complex bearing linear pentadentate ligand, which is missing in our tridentate to hexadentate
ligand family [15,18,26,61–63].

In this study, we have synthesized an iron(II) complex with N6 donor atoms from the
1,2,3-triazole-containing pentadentate ligand L3-Me-3

Ph and the monodentate neutral ligand MeCN,
[FeIIMeCN(L3-Me-3

Ph)](BPh4)2·MeCN·H2O (1) (L3-Me-3
Ph = bis(N,N′-1-Phenyl-1H-1,2,3-triazol-4-yl-

methylideneaminopropyl)methylamine, Scheme 1) inspired by the above-mentioned SCO
iron(II) complex having imidazole-containing linear pentadentate ligand, [FeIIMeCN(H2L2Me)]
(BPh4)1.5·Cl0.5·0.5MeCN (2)(H2L2Me = bis(N,N′-2-methylimidazol-4-yl-methylideneaminopropyl)
methylamine) [59]. We report here the synthesis, crystal structures, and thermal and magnetic
properties of 1 with the first theoretical comparison of the 1,2,3-triazole- and imidazole-containing
multidentate ligand system.
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2. Materials and Methods

2.1. Synthesis of FeII Complex

2.1.1. General

All reagents and solvents were purchased from commercial sources and used for the syntheses
without further purification. The 1-phenyl-1H-1,2,3-triazole-4-carbaldehyde was synthesized according
to the reported procedures [62,64–66]. Complexation and crystallization of 1 were performed under
nitrogen atmosphere using standard Schlenk techniques. Other synthetic procedures were carried
out in air.

2.1.2. Synthesis of the Linear Pentadentate N5 Ligand L3-Me-3
Ph =

bis(N,N′-1-Phenyl-1H-1,2,3-triazol-4-yl-methylideneaminopropyl)methylamine

The ligand L3-Me-3
Ph was prepared by mixing 3,3′-diamino-N-methyldipropylamine and

1-phenyl-1H-1,2,3-triazole-4-carbaldehyde with a 1:2 molar ratio in MeCN. The ligand solution
thus prepared was used for the synthesis of FeII complex without further purification and isolation.

2.1.3. Preparation of [FeIIMeCN(L3-Me-3
Ph)](BPh4)2·MeCN·H2O (1)

3,3′-diamino-N-methyldipropylamine (0.109 g, 0.75 mmol) in MeCN (3 mL) was added to a solution
of 1-phenyl-1H-1,2,3-triazole-4-carbaldehyde (0.260 g, 1.5 mmol) in MeCN (7.5 mL). The resulting
pale-yellow solution was stirred at RT for 1 h. A solution of NaBPh4 (0.513 g, 1.5 mmol) in MeOH
(4 mL) was added to a solution of FeIICl2·4H2O (0.149 g, 0.75 mmol) in MeOH (4 mL), and the resulting
pale-yellow solution was stirred at RT for 5 min. Both reaction mixtures were filtered, and they
were mixed under nitrogen atmosphere. The resulting mixture was allowed to stand for a week in
a fridge, during which time the precipitated dark red-brown prismatic crystals were collected by
suction filtration. Yield: 0.203 g (21%). Anal. Calcd for [FeIIMeCN(L3-Me-3

Ph)](BPh4)2·MeCN·H2O
(1) = C77H77B2FeN11O: C, 73.99; H, 6.21; N, 12.33. Found: C, 73.78; H, 6.03; N, 12.03%. IR (KBr): νC≡N

2271, 2251, νC=N 1616, 1593, νBPh4 734, 704 cm−1. A weight loss of 3.4% corresponding to the MeCN
(3.3%) and a subsequent 1.2% loss of water (1.4%) were observed at 408 and 444 K, respectively, by TG
measurement (Figure 1).

2.2. Physical Measurements

Elemental C, H, and N analyses were performed on a J-Science Lab (Kyoto, Japan) MICRO
CORDER JM-10. Infrared (IR) spectra were recorded at RT using a JASCO (Tokyo, Japan) FT/IR 460Plus
spectrophotometer with the samples prepared as KBr disks. Thermogravimetric (TG) data was collected
on a Rigaku (Tokyo, Japan) Thermo plus EVO2 TG-DTA8122 instrument in the temperature range of
19–359 ◦C (292–632 K) at a sweep rate of 10 K min−1 under a nitrogen atmosphere (200 mL min−1).
Real-time sample images during TG analysis were recorded under an optional direct monitoring
system of the TG-DTA instrument. Magnetic susceptibilities were measured in the temperature range
of 5–400 K at a sweep rate of 2 K min−1 under an applied magnetic field of 1 T using a Quantum
Design (San Diego, CA, USA) MPMS-XL7 SQUID magnetometer. The sample was wrapped in an
aluminum foil and was then inserted into a quartz glass tube with a small amount of glass wool filler.
Corrections for diamagnetism of the sample were made using Pascal’s constants [67,68]. A background
correction for the sample holder was also applied. Powder X-ray diffraction (PXRD) patterns were
recorded at RT on a portion of polycrystalline powders placed on a non-reflecting silicon plate, using a
Rigaku MiniFlex600 diffractometer with Cu Kα radiation (λ = 1.5418 Å) operated at 0.4 kW power
(40 kV, 10 mA).
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2.3. Crystallographic Data Collection and Structure Analyses

X-ray diffraction data were collected by a Rigaku (Tokyo, Japan) AFC7R Mercury CCD
diffractometer using graphite monochromated Mo Kα radiation (λ = 0.71075 Å) operated at 5 kW
power (50 kV, 100 mA). A single crystal was mounted on a glass fiber and the diffraction data
were collected at 296 K. Following the measurement at 296 K, the crystal was warmed and the
subsequent measurements were performed at 350, 375, 387, and 400 K. The temperature of the
crystal was maintained at the selected value by means of a Rigaku cooling device with nitrogen
flow to within an accuracy of ± 2 K. Data reductions and empirical absorption correction using
spherical harmonics, implemented in a SCALE3 ABSPACK scaling algorithm (multi-scan method) [69]
were performed using the CrysAlisPro software package (version 1.171.39.46) [70]. The structures
were solved by the direct method using SHELXT [71] and refined on F2 data using the full-matrix
least-squares algorithm using SHELXL [72], both of which were implemented in the program OLEX2
(version 1.2.10) [73] with anisotropic displacement parameters for all non-hydrogen atoms. Hydrogen
atoms were placed in calculated positions with idealized geometries and refined by using a riding
model and isotropic displacement parameters. The continuous shape measures (CShMs) of the
FeII centers relative to the ideal octahedron, S(Oh) was calculated by the program SHAPE 2.1 [74].
The octahedral volumes of the FeII centers were calculated using OLEX2 [73]. CCDC 1911292–1911295
contains the supplementary crystallographic data for this paper. These data can be obtained free
of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the CCDC (12 Union Road,
Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

2.4. Computational Details

In the present study, electronic energy was evaluated by (U)M06L [75] DFT method with a
combination of 6-311G(d) electronic basis set (for all atoms except for Fe) and LANL2DZ pseudo
potential (for Fe) in gas phase. The M06-L functional is a local functional (i.e., 0% Hartree-Fock
exchange) and is known as one of the good exchange-correlation density functionals for transition
metal chemistry. The single crystal X-ray crystallography structures were used as the initial geometries
for DFT geometry optimization. We confirmed that all DFT optimized structures have no imaginary
frequencies. All calculations were performed with the aid of the GAUSSIAN09 program package [76].

3. Results and Discussion

3.1. Synthesis and Characterization

The linear pentadentate N5 ligand L3-Me-3
Ph was prepared by the condensation reaction of

1-phenyl-1H-1,2,3-triazole-4-carbaldehyde and 3,3′-diamino-N-methyldipropylamine with a 2:1
molar ratio in MeCN. The iron(II) complex 1 was prepared by mixing the ligand solution in
MeCN, methanolic solutions of FeCl2·4H2O, and NaBPh4 with a 1:1:2 molar ratio under an
inert nitrogen atmosphere at ambient temperature. Dark red-brown prismatic crystals were
precipitated in a week in a fridge, which are stable in the air with no efflorescence. The chemical
formula of [FeIIMeCN(L3-Me-3

Ph)](BPh4)2·MeCN·H2O was confirmed by the elemental analysis and
thermogravimetry (TG; Figure 1). As shown in Figure 1, when the powdery sample was heated from
19 ◦C (292 K) at a sweep rate of 10 ◦C min−1 under a nitrogen atmosphere (200 mL min−1), the sample
weight decreased gradually and a 3.4% weight loss was observed at 135 ◦C (408 K), which corresponds to
the calculated weight percentage of one MeCN molecule per [FeIIMeCN(L3-Me-3

Ph)](BPh4)2·MeCN·H2O
(3.3%). Above this temperature, an additional gradual weight loss of 1.2%, corresponding to one
H2O molecule (1.4%) was detected at 171 ◦C (444 K). Finally, above 171 ◦C (444 K), the weight loss
became more and more abrupt. During the TG measurement, the real-time sample images were also
recorded (Figure 1). Initial orange-brown color of the grinding samples at 20 ◦C (293 K) was retained
until ca. 124 ◦C (397 K) upon heating, and then slightly darkened around 125 ◦C (398 K). Upon
further increasing the temperature, the samples were gradually shrinking from ca. 127 ◦C (400 K) with

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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darkening, and were then melting from ca. 137 ◦C (410 K), and finally melted over ca. 147 ◦C (420 K).
These changes agree with two broad endothermic peaks detected in the DTA curve. These observations
and corresponding TG/DTA profiles indicated that the compound 1 showed some sort of structural
modification at around 127 ◦C (400 K) associated with the loss of the MeCN lattice solvent, and further
heating above this temperature caused melting. Thus, the magnetic susceptibilities described later
were measured below 400 K. The PXRD pattern at RT showed no apparent extra reflections compared
to the simulated pattern from the structure of single-crystal X-ray diffraction analysis at 296 K, ensuring
the phase purity of 1 (Figure S1). The IR spectrum of 1 showed characteristic bands at ca. 1616 and
1593 cm−1, corresponding to the C=N stretching vibration of the coordinated Schiff-base ligand, ca.
734 and 704 cm−1, corresponding to the BPh4

− ion, and ca. 2271 and 2251 cm−1, corresponding to the
C≡N stretching vibration of the MeCN molecules (Figure S2) [53,77].
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TG measurement.

3.2. Magnetic Properties

The magnetic susceptibilities of 1 were measured between 5 to 400 K at a sweep rate of 2 K min−1

under an applied magnetic field of 1 T using a MPMS-XL7 SQUID magnetometer (Quantum Design,
San Diego, CA, USA). The χMT vs. T plots are shown in Figure 2, where χM is the molar magnetic
susceptibility and T is the absolute temperature. On first cooling, the χMT value of 1 is 0.2 cm3 K mol−1

at 300 K and decreases moderately to reach 0.0 cm3 K mol−1 at 5 K, indicating that 1 is a LS FeII (S = 0)
complex. On subsequent heating, the χMT value increases slightly from 0.0 cm3 K mol−1 at 5 K to ca.
0.5 cm3 K mol−1 at 389 K, and then increases abruptly to reach ca. 2.2 cm3 K mol−1 at 400 K. When the
temperature is held at 400 K for 30 min, the χMT value further increases to reach 2.7 cm3 K mol−1 as a
saturated value, indicating that ca. 90% of LS species show spin transition to the HS state. On further
cooling, the χMT value decreases gradually from 2.7 cm3 K mol−1 at 400 K to 2.4 cm3 K mol−1 at 374 K,
then decreases more smoothly to 1.6 cm3 K mol−1 at 20 K, and finally decreases abruptly to ca. 1.1 cm3

K mol−1 at 5 K, revealing the coexistence of HS and LS species in the whole temperature region after
the first heating. The decreasing of the χMT value below 20 K is due to the zero-field splitting of the
HS FeII complex.
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To prove the structural modulation before and after the initial spin transition upon first heating,
we took PXRD data for 1 after SQUID measurements (Figure S1). As clearly apparent from Figure S1,
the crystalline phase of 1 was converted to an amorphous form after SQUID measurements. The IR
spectrum for this amorphous sample was also measured (Figure S2), and the spectrum showed the
additional characteristic band at ca. 1637 cm−1, corresponding to the C=N stretching vibration of
the coordinated Schiff-base ligand of the HS complex [26,62]. This result indicated the existence of
both HS (albeit being not fully characterized) and LS species in the amorphous phase at RT, and was
consistent with the magnetic data in the second cycle. On the other hand, the characteristic bands
of the C≡N stretching vibration of MeCN (2271 and 2251 cm−1) were weakened (but not perfectly
disappeared) due mainly to the loss of the lattice MeCN solvent molecule. To sum it all up, these
results demonstrate that the irreversible spin conversion at around 400 K in the first heating process is
related to the crystal-to-amorphous transformation associated with the loss of lattice MeCN solvent.
Desolvation effects are reported in a variety of SCO systems in both positive (occurrence of abrupt
and/or hysteretic spin transition) and negative (disappearance of SCO) ways [78–84] but a concomitant
crystal-to-amorphous transformation is rarely observed [85].
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3.3. Crystal Structures

Single-crystal X-ray diffraction analyses were performed for 1 at 296, 350, 375, and 387 K. Structure
determination at higher temperature, i.e., 400 K was unsuccessful since the single crystal became amorphous
during the measurement. Table 1 summarizes the crystallographic data and Table 2 lists the relevant
coordination bond lengths, angles, and additional structural parameters, such as Σ [86], Θ [87], S(Oh) [74],
and octahedral volume. Since the crystal structures at the four temperatures are quite similar except
for the subtle expansion of the cell volume and the FeN6 coordination sphere from 296 to 387 K, we
discuss below the structure at 296 K as a representative. The crystallographic unique unit consists of one
complex-cation [FeIIMeCN(L3-Me-3

Ph)]2+, two BPh4
− ions, and one MeCN molecule as the lattice solvent,

which is disordered at two positions. The one H2O molecule in each [FeIIMeCN(L3-Me-3
Ph)](BPh4)2 unit

characterized by elemental analysis and TG measurement could not be found, while the Platon analysis [88]
indicates that there are some voids which can involve water molecules.

Figure 3 shows the molecular structure of the complex-cation [FeIIMeCN(L3-Me-3
Ph)]2+ at 296 K,

in which the FeII ion is coordinated by the N5 donor atoms of the linear pentadentate Schiff-base
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ligand L3-Me-3
Ph and the nitrogen atom of the MeCN monodentate ligand to give an octahedral

coordination environment. Two terminal triazole moieties take cis-positions, and one of two triazole
moieties and the MeCN ligand at the sixth coordination position coordinate to the central FeII ion
from opposite directions. This coordination mode is same as that of the related imidazole-containing
complex [59]. The bent angle of Fe–N10–C26 at Fe–NCMe is 172.2(1)◦. The Fe–N lengths are in
the range of 1.9580(13)–2.0901(13) Å, and the average Fe–N distance is 1.988 Å, typical for a LS FeII

complex with N6 donors. It is noteworthy that the coordination bond length of Fe–N(amine) is longer
than those of other Fe–N distances. In addition to the average Fe–N distance, the degree of both
angular and trigonal distortion, i.e., Σ and Θ, and S(Oh) (Table 2) are lower than those of related
imidazole-containing complex 2 (Average Fe–N distance, Σ, Θ, and S(Oh) at 296 K are = 2.085 Å,
79.7, 121.0, 1.004 for Fe1 site, and 2.155 Å, 89.1, 168.2, 1.541 for Fe2 site, respectively) [59]. These are
consistent since the both the Fe1 and the Fe2 site of 2 at 296 K are mixtures of HS and LS species.

Figure 4 shows the selected intermolecular interactions of 1 at 296 K. Firstly, the MeCN ligand
of the complex-cation is surrounded by four nearest phenyl rings of two B(1)Ph4

− ions via CH···π
interactions between the methyl group of the MeCN ligand and phenyl groups of B(1)Ph4

− ions with the
C27 (Me) to centroid (Ph) distances being in the range of 3.567–3.788 Å. Since the three hydrogen atoms
of the methyl group of the MeCN can form only three CH···π interactions, the four CH···π interactions of
each MeCN indicated in Figure 4 are averaged as one. Secondly, two neighboring complex-cations are
connected by a P4AE (parallel fourfold aryl embrace) interaction [28,89], forming a dimeric structure
with the C23 (Ph) to centroid (triazole) distance of CH···π and centroid (Ph) to centroid (Ph) distance of
π–π interactions are 3.690 and 3.663 Å, respectively. As a result, a 1D chain structure is constructed by
alternately interacted complex-cations and B(1)Ph4

− ions via CH···π interactions (longitudinal direction
in Figure 5), and further connections of the 1D chains through P4AE interactions (transverse direction in
Figure 5) form a 2D extended layer structure. The remaining B(2)Ph4

− ions and MeCN lattice solvents
exist in the spaces of the 2D layer with the intermolecular CH···N interaction (C61···N11 = 3.486 Å).
Finally, there are additional CH···π interactions between the layers, resulting in the construction of a
3D supramolecular network in the whole crystal lattice. This molecular assembly is quite different
from the tetrameric assembly through four intermolecular NH···Cl interactions of 2 [59]. Therefore,
this difference of molecular assembly is presumably responsible for the emergence of different SCO
profiles between 1 and 2.

Table 1. X-ray crystallographic data for 1.

Temperature/K 296 350 375 387

Formula C77H75B2FeN11
Formula weight 1231.95
Crystal system monoclinic

Space group P21/n (No.14)
a/Å 11.3072(2) 11.3443(2) 11.3962(3) 11.4005(2)
b/Å 41.0958(8) 41.2866(9) 41.3406(12) 41.3938(10)
c/Å 14.4788(4) 14.4825(4) 14.4308(5) 14.4297(4)
β/deg 92.977(2) 92.796(2) 92.513(3) 92.473(2)
V/Å3 6718.9(3) 6775.1(3) 6792.2(4) 6803.2(3)

Z 4 4 4 4
dcalcd./g cm−3 1.218 1.208 1.205 1.203
µ (Mo Kα)/mm−1 0.277 0.275 0.274 0.273
R1

a (I>2sigma(I)) 0.0458 0.0500 0.0779 0.0601
wR2

b (I>2sigma(I)) 0.1062 0.1176 0.1944 0.1511
R1

a (all data) 0.0678 0.0826 0.1220 0.1030
wR2

b (all data) 0.1161 0.1328 0.2177 0.1738
S 1.029 1.022 1.065 1.022

CCDC number 1911292 1911293 1911294 1911295
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σw(|Fo|2 − |Fc|2)2/Σw|Fo2|2]1/2.
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Table 2. Relevant coordination bond lengths (Å), angles (◦) and structural parameters for 1. Σ [86] and
Θ [87] are angular indices characteristic for the spin state of the complex. S(Oh) is the continuous shape
measures (CShMs) of the FeII centers relative to the ideal octahedron [74].

Temperature/K 296 350 375 387

Fe1–N3 1.9770(13) 1.9788(15) 1.989(3) 1.986(2)
Fe1–N4 1.9955(11) 1.9976(13) 2.004(2) 1.9985(18)
Fe1–N5 2.0901(13) 2.0918(15) 2.088(3) 2.093(2)
Fe1–N6 1.9477(12) 1.9494(14) 1.947(2) 1.9533(19)
Fe1–N7 1.9577(12) 1.9619(14) 1.966(2) 1.9683(17)

Fe1–N10 1.9580(13) 1.9599(15) 1.961(3) 1.967(2)
Average Fe–N 1.988 1.990 1.993 1.994

N3–Fe1–N4 80.25(5) 80.04(6) 79.94(10) 79.85(8)
N3–Fe1–N5 177.92(5) 177.74(6) 177.53(10) 177.45(8)
N3–Fe1–N6 95.80(5) 95.89(6) 96.07(11) 96.13(8)
N3–Fe1–N7 83.58(5) 83.46(6) 83.33(10) 83.42(7)
N3–Fe1–N10 88.57(5) 88.49(6) 88.51(10) 88.08(8)
N4–Fe1–N5 97.68(5) 97.70(6) 97.59(11) 97.61(8)
N4–Fe1–N6 173.48(5) 173.33(6) 173.26(10) 173.32(8)
N4–Fe1–N7 94.11(5) 94.16(5) 94.04(9) 94.05(7)
N4–Fe1–N10 90.57(5) 90.45(6) 90.48(10) 90.40(7)
N5–Fe1–N6 86.23(5) 86.34(6) 86.38(11) 86.39(8)
N5–Fe1–N7 96.37(5) 96.56(6) 96.82(10) 96.67(8)
N5–Fe1–N10 91.69(5) 91.72(6) 91.60(10) 92.09(8)
N6–Fe1–N7 80.23(5) 80.06(6) 80.04(10) 80.13(8)
N6–Fe1–N10 94.53(5) 94.74(6) 94.87(10) 94.82(8)
N7–Fe1–N10 170.05(5) 169.89(6) 169.83(11) 169.56(8)

Σ 61.89 62.83 63.27 63.90
Θ 93.47 95.21 96.77 95.69

S(Oh) 0.721 0.742 0.747 0.753
Octahedral volume (Å3) 10.291 10.320 10.358 10.389
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numbering scheme except for carbon and hydrogen atoms. The thermal ellipsoids are drawn with a 
50% probability level. Hydrogen atoms have been omitted for clarity. 
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CH···π interactions connect complex-cations and B(1)Ph4− ions alternately into a 1D chain 
(longitudinal direction). The 1D chains are further connected by P4AE interactions between two 
neighboring complex-cations (transverse direction), forming 2D extended structure. B(2)Ph4− ions and 
MeCN lattice solvents exist in the spaces of the 2D layer. Hydrogen atoms have been omitted for 
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− ions via
CH···π interactions. Two neighboring complex-cations are connected by a P4AE interaction, forming a
dimeric structure. Hydrogen atoms have been omitted for clarity.

Crystals 2019, 9, 276 9 of 16 

 

 

Figure 4. Representative intermolecular interactions of 1 at 296 K. Complex-cations are shown as a 
ball and stick model. B(1)Ph4− ions are indicated as green wireframe. Centroids of aromatic rings are 
described as transparent-red balls. π–π (orange) and CH···π (light green) interactions are indicated as 
dotted lines. The MeCN ligand is surrounded by four nearest phenyl rings of two B(1)Ph4− ions via 
CH···π interactions. Two neighboring complex-cations are connected by a P4AE interaction, forming 
a dimeric structure. Hydrogen atoms have been omitted for clarity. 

 

 
Figure 5. 2D layered structure of 1 at 296 K. Complex-cations and MeCN lattice solvents (violet) are 
shown as a ball and stick model. B(1)Ph4− (green) and B(2)Ph4− (pink) ions are indicated as wireframe. 
CH···π interactions connect complex-cations and B(1)Ph4− ions alternately into a 1D chain 
(longitudinal direction). The 1D chains are further connected by P4AE interactions between two 
neighboring complex-cations (transverse direction), forming 2D extended structure. B(2)Ph4− ions and 
MeCN lattice solvents exist in the spaces of the 2D layer. Hydrogen atoms have been omitted for 
clarity. 

Figure 5. 2D layered structure of 1 at 296 K. Complex-cations and MeCN lattice solvents (violet)
are shown as a ball and stick model. B(1)Ph4

− (green) and B(2)Ph4
− (pink) ions are indicated as

wireframe. CH···π interactions connect complex-cations and B(1)Ph4
− ions alternately into a 1D chain

(longitudinal direction). The 1D chains are further connected by P4AE interactions between two
neighboring complex-cations (transverse direction), forming 2D extended structure. B(2)Ph4

− ions and
MeCN lattice solvents exist in the spaces of the 2D layer. Hydrogen atoms have been omitted for clarity.
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3.4. DFT Calculations

To explore the origin of the higher spin transition temperature of the 1,2,3-triazole-containing
complex 1 than the imidazole-containing complex 2, we performed DFT calculations. It should be
noted here that only the experimental crystal structure data are available for LS 1 (vide supra) and for
2 corresponding to the mixture of HS and LS species at 296 K [59].

First, we performed DFT calculations to estimate HS–LS energy differences (∆E) at the experimental
geometry (Table S1). Reflecting the spin state of the experimental crystal structures, large positive ∆E
value (168.3 kJ mol−1) and small ∆E values (45.5 kJ mol−1 and −13.3 kJ mol−1) were observed for 1 and
2, respectively.

Next, we performed DFT geometry optimizations for both complexes in gas-phase. For the LS
state of 1, the structural parameters of DFT optimized structure indicated reasonable agreement with
the crystal structure data of LS phase at 296 K (See, Table 2 and Table S2). Although the structural
features (average Fe–N length, Σ, Θ, S(Oh), and octahedral volume) of the DFT optimized LS 1 and
2 are similar to each other, the Fe–N(triazole) distances in 1 are shorter than the Fe–N(imidazole)
distances in 2 by 0.05–0.07 Å. It should be mentioned here that the same tendency was observed in the
comparison of the experimental crystal structures of the LS complex with the 1,2,3-triazole-containing
linear hexadentate ligand and that of the imidazole-containing one [18]. Therefore, it can be speculated
that 1,2,3-triazole-containing ligands form a stronger ligand field compared to imidazole-containing
ones. For the HS state, the DFT optimized geometries of 1 and 2 are very similar to each other (Table S2).
In addition, the structural parameters (average Fe–N distance, Σ, Θ, S(Oh), and octahedral volume) of
the DFT optimized HS 1 and 2 are also similar to those in the experimental geometry of HS phase of
similar imidazole-containing FeII complexes [60], while the monodentate ligand of them are different
from 1 and 2 (average Fe–N distance, Σ, Θ, S(Oh), and octahedral volume at 296 K are = 2.194 Å, 98.8,
187.1, 1.983, and 13.405 for NCS complex, and 2.198 Å, 99.3, 185.9, 1.986, and 13.474 for NCSe complex,
respectively).

We also calculated ∆E values at the DFT optimized geometries to compare the strength of the
ligand field of 1 and 2. As shown in Table S3, the large positive ∆E values are found in LS geometry of
both 1 and 2. The ∆E value of 1 is 28.5 kJ mol−1 larger than 2, which implies that the strength of the
ligand field is stronger in 1 rather than in 2, as expected from the aforementioned structural features.

We also performed DFT geometry optimizations for model complexes 1′ and 2′, in which two
Ph groups in 1 and two Me groups in 2 were replaced by hydrogen atom to estimate the strength of
the ligand field, excluding π effects of the Ph ring and the steric effect of Me groups. The structural
parameters of the DFT optimized structure are listed in Table S4. The structural parameters in 1′

were hardly affected by excluding Ph groups in 1, which implies that the π effects of the Ph ring are
negligibly small, while the structural parameters in 2′ were slightly affected by excluding Me groups in
2. It is worth mentioning that Fe–N(triazole) distances in 1′ are still shorter than the Fe–N(imidazole)
ones in 2′ by 0.03 Å. Table S3 shows that the replacement of Ph groups in 1 also hardly affected the
calculated ∆E value, and the ∆E value of 1′ (149.3 kJ mol−1) is also still larger than 2′ (131.9 kJ mol−1).
These results demonstrated that the ligand field is stronger in the triazole-containing complex rather
than in the imidazole-containing one, even if the π effects of Ph rings and steric effect of Me groups
were excluded.

From the above results, our DFT calculations elucidated that 1,2,3-triazole-containing ligands
form the stronger ligand field compared to imidazole-containing ligands even for linear pentadentate
ligand system, inducing the shift of the spin transition temperature from the lower temperature region
in the imidazole-based complex to the higher region in the 1,2,3-triazole-based complex.
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4. Conclusions

In conclusion, here we have expanded our 1,2,3-triazole-containing polydentate ligand iron(II)
SCO family into a linear pentadentate ligand system. The newly synthesized complex 1 shows an
abrupt and incomplete HT SCO at around 400 K while the spin transition is irreversible due to the
crystal-to-amorphous transformation associated with the loss of the lattice MeCN solvent. Although
the cooperativity through the molecular assembly for SCO profile of 1 was not directly compared to that
of the imidazole-containing analogue 2, the spin transition of 1 occurred more abruptly in the higher
temperature region above RT than that of 2. The 2D supramolecular structure based on the multiple
CH···π interactions between MeCN ligand and two B(1)Ph4

− ions, and P4AE interactions between two
neighboring complex-cations of 1 may have an important role for the emergence of cooperativity in
the crystal lattice. DFT optimized HS and LS structures in the gas-phase of 1,2,3-triazole-containing
system were compared to those of related imidazole-containing systems for the first time based on the
experimental crystal structures of 1 (LS state) and 2 (mixture of LS and HS states), demonstrating that
the 1,2,3-triazole-containing ligand L3-Me-3

Ph generates a stronger ligand field around the N6 octahedral
iron(II) core than its imidazole analogue ligand H2L2Me. Syntheses of analogues of 1 with different
axial ligands are currently underway for the construction of the spectrochemical series and for fine
tuning of T1/2 of the present 1,2,3-triazole-based pentadentate ligand system.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/6/276/s1,
Figure S1: PXRD patterns of 1 at RT in different states: simulated from the single crystal X-ray data at 296 K;
as-synthesized; after SQUID measurements, Figure S2: IR spectra (KBr) for 1 at RT in different states: as-synthesized;
after SQUID measurements, Table S1: HS–LS energy differences of 1 and 2 for Experimental geometry, Table S2:
Relevant coordination bond lengths (Å) and structural parameters in DFT optimized structures for 1 and 2,
Table S3: HS–LS energy differences of 1, 2, 1′, and 2′ for DFT optimized geometry (LS), Table S4: Relevant
coordination bond lengths (Å) and structural parameters in DFT optimized structures for model complexes 1′ and
2′, Table S5: Cartesian coordinates (Å) of DFT optimized geometry of 1 (LS, in gas-phase), Table S6: Cartesian
coordinates (Å) of DFT optimized geometry of 1 (HS, in gas-phase), Table S7: Cartesian coordinates (Å) of DFT
optimized geometry of 2 (LS, in gas-phase), Table S8: Cartesian coordinates (Å) of DFT optimized geometry of 2
(HS, in gas-phase), Figure S3: DFT optimized structures of LS 1 (a), HS 1 (b), LS 2 (c), and HS 2 (d) in gas-phase.
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