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Abstract: CeAlO3 crystals were grown in different growth atmospheres by the Czochralski method.
The lattice parameters and space group of CeAlO3 crystal were determined by Rietveld structure
refinement of X-ray diffraction (XRD) data. The influence of Ce4+ ions in the crystal on the transmittance
and crystal color was confirmed by XPS analysis. Magnetization curve at room temperature and
temperature dependencies of the magnetic susceptibility in two different directions were measured,
indicating that CeAlO3 crystal has remarkable magnetic anisotropy and there is an abnormal magnetic
behavior in the vertical <001> direction in the temperature range of 50–150 K. Faraday characteristics
of CeAlO3 crystal were investigated at room temperature. Verdet constants of CeAlO3 at 532, 635
and 1064 nm are about 2.1 times as large as those of CeF3. The reason of large Verdet constants was
analyzed based on the Van Vleck–Hebb theory and the magnetic circular dichroism (MCD) spectrum.
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1. Introduction

Faraday isolators are important components currently used for high-power-laser machinery
and advanced optical communications, guaranteeing a unidirectional light propagation in the laser
systems [1,2]. Due to recent development in laser applications such as precise measurements and
advanced display systems, the demand for optical Faraday devices using wavelengths of 400–1100 nm
is increasing, where ferrimagnetic yttrium iron garnets (YIG) and doped YIG are inapplicable because
of their poor transparency. Paramagnetic magneto-optical materials containing rare earth ions (such as
Tb3+, Eu2+ and Ce3+) are suitable for use in this band, although their Verdet constants are smaller than
those of doped YIG. As is known, crystals [3–6], glasses [7–9] and ceramics [10,11] containing Tb3+

ions have been extensively investigated as Faraday rotator materials due to its good magneto-optic
effect in the visible and near-infrared bands and relatively easy preparation process. However, at the
present, the crystals containing Ce3+ ions have drawn people's attention [12–15]. Compared to Tb3+

ions, Ce3+ ions have larger electron effective transition wavelengths and higher transition efficiency,
and CeO2 raw material is relatively cheap.

Rare earth aluminate (REAlO3) crystallizes in a perovskite-type structure. It has a high content
of rare earth ions per-unit volume, which is advantageous for enhancing the magneto-optical effect
of the crystal. TbAlO3 crystal belongs to an orthorhombic system with two optical axes, although
exhibiting good magneto-optical properties [16], it is difficult to apply to Faraday devices in the
400–1100 nm band due to its low symmetry. Different from TbAlO3, CeAlO3 shows a tetragonal
symmetry with a space group of P4/mmm or I4/mcm at room temperature [17–20]. In this series
of rare earth aluminate, CeAlO3 is an unusual one, undergoing three phase transitions above room
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temperature [21]. In the past three decades, the crystal structure and phase transition of CeAlO3

compounds have been extensively studied and confirmed. Its magnetic and electrical properties have
also been reported [22,23], but little research has been done on the growth and properties of bulk
crystals. Until 2015, CeAlO3 crystals with large sizes were obtained first time through the Edge-defined
Film Fed Growth (EFG) techniques by Arhipov et al. [24]. The optical, luminescence and magnetic
properties of CeAlO3 were studied. They also tried to grow the CeAlO3 crystals by varying different
growth parameters using the Czochralski method, but did not obtain cylindrically shaped crystals.

To our knowledge, there are few reports on the magneto-optical properties of Ce-containing
crystals. In this paper, Czochralski growth, magnetic properties and magneto-optical characteristics of
CeAlO3 crystals are investigated.

2. Experimental Procedure

The polycrystalline materials for crystal growth were prepared by solid-state reaction according
to the following chemical reaction equation:

CeO2 + 0.5Al2O3→CeAlO3 + 0.25O2↑ (1)

Stoichiometric amounts of CeO2 (4N) and Al2O3 (4N) were weighed accurately, then the mixture
was sintered at three different temperatures (1350, 1450 and 1500 ◦C) for 12 to 20 h in the flowing
5% H2 + 95% Ar atmosphere each with intermediate grinding and pressing into tablets. Sintering
needed to be performed multiple times until the strongest diffraction peak of CeO2 near 28.5 degrees
in the X-ray diffraction (XRD) patterns disappeared substantially. CeAlO3 crystals were grown by
the Czochralski method, in a Φ60 mm × 38 mm iridium crucible with radio frequency (RF) induction
heating. It was found when pure Ar was used as protection atmosphere in the growth process, CeAlO3

crystal obtained presented a flat shape and dark green color, as shown in Figure 1a. Parameters such
as growth rate and rotation speed were adjusted, and the crystal shape did not change significantly.
Finally, when 5% H2 + 95% Ar was used as growth atmosphere, the CeAlO3 crystal obtained was
cylindrical and the green color was obviously lighter, as shown in Figure 1b. A portion of the greenish
CeAlO3 crystal was cut out and annealed under the following conditions: a flowing 5% H2 + 95% Ar
atmosphere, and a constant temperature of 1550 ◦C for 30 h. The annealed CeAlO3 sample presents a
light yellow color, as shown in Figure 1c.
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Figure 1. Photographs of as-grown CeAlO3 crystals: (a) grown at pure Ar atmosphere, (b) grown at 5%
H2 + 95% Ar atmosphere, (c) annealed sample.

X-ray powder diffraction was performed by a computer automatic diffractometer (Rigaku Ultima
IV, Rigaku, Tokoy, Japan ) using Cu-Kα radiation (λ = 1.54056Å) in the range 10◦ ≤ 2θ ≤ 80◦ with a
scanning step of 0.01◦ and a scanning rate of 0.15◦/min. The annealed and unannealed greenish CeAlO3

crystals were cut along (001) plane, which were oriented by X-ray diffraction, and then grounded
and polished carefully to 1.0 mm thickness for spectra and XPS measurement. Transmission spectra
were measured over the wavelength range 250–2500 nm (Lambda 900, Perkin-Elmer, Waltham, MA,
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USA). Ce valance band spectra of two samples were recorded by XPS ( ESCALAB 250XI, ThermoFisher,
Waltham, MA, USA). The oriented CeAlO3 sample with sizes 3.5 mm × 3.5 mm × 3.5 mm was used for
magnetic susceptibility testing (JDAW-2000D vibrating sample magnetometer, YINGPU MAGNETIC,
Changchun, China) and DC magnetization measurements (PPMS6000, Quantum Design, San Diego,
CA, USA). Faraday rotation of annealed CeAlO3 crystal at 532, 635 and 1064 nm were measured by the
extinction method, and a commercial CeF3 crystal (Beijing Scitlion Technology Corp., LTD, Beijing,
China) was as a comparison during the test process. The magnetic field could be adjusted from 0
to 1.2 T continuously. Magnetic circular dichroism (MCD) spectra of annealed crystal samples with
0.2 mm thickness were measured by using a circular dichroism spectrometer (MOS-450, Bio-Logic,
Auvergne-Rhône-Alpes, France) equipped with a magnetic field equipment of 2500 Oe intensity
(the magnetic field paralleled to the propagation direction of probe light). All measurements were
performed at room temperature.

3. Results and Discussion

3.1. Crystal Growth

CeAlO3 is congruent compound with a melting point of about 2348 K [25], it could be grown by
the Czochralski method. It is difficult to obtain CeAlO3 crystals with high optical quality due to the
high melting point and oxidation of Ce3+. When pure Ar was used as the growth atmosphere, A small
amount of Ce3+ oxidation may be present in the melt, CeAlO3 crystallized from the melt is dark in
color and strongly absorbs thermal radiation, resulting in a decrease in temperature gradient between
the melt and crystal, making crystal growth in the length direction becomes difficult. The longitudinal
temperature gradient can be increased by the crucible position adjustment and the thickness decrease
of the insulation layer of the post-heat chamber, but the surface temperature of Ir crucible may exceed
2600K, and Ir has a risk of melting (2727K). Arhipov et al. [24] used a tungsten crucible as growth
container through CZ method, as-grown CeAlO3 crystal also showed a flat shape. When the weakly
reducing atmosphere, 5% H2 + 95% Ar, was used, it can inhibit the oxidation of Ce3+ in the melt,
resulting in the crystallized CeAlO3 crystal becoming lighter in color, reducing the absorption of
thermal radiation, and finally obtaining a cylindrical CeAlO3 crystal with diameter 20 mm and length
22 mm.

3.2. Structure Determination

Tas and Akinc [26], and Shishido et al. [17,18] reported the structure of CeAlO3 at room temperature
with space group P4/mmm and the primitive tetragonal cell a = 3.7669(9) Å and c = 3.7967(7) Å.
In 2004, Fu et al. reinvestigated the room temperature structure of CeAlO3 through Rietveld refinement,
and revealed a super cell a = 5.32489(6) Å and c = 7.58976(10) Å, with the space group I4/mcm [19].
In order to verify the rationality of these two space groups, powder X-ray diffraction data of CeAlO3

crystal was used for Rietveld refinement according to the above two space group models, the refined
results are listed in Tables 1 and 2. Indeed, there were only small differences between the two agreement
factors, but the refined thermal parameters based on the P4/mmm model were larger than those of
based on I4/mcm, particularly, the thermal anisotropy between basal oxygen atoms which can be found
in Table 1. So, I4/mcm is considered to be a more reasonable space group for CeAlO3, the refined
cell parameters are a = 5.32064(12) Å, c = 7.5810(3) Å. Figure 2 shows the observed, calculated and
differences between X-ray diffraction profiles of the as-grown CeAlO3 crystal.



Crystals 2019, 9, 245 4 of 11

Table 1. Refined structural parameters for the as-grown CeAlO3 crystal according to the P4/mmm model.

Atoms Site x y z B (Å2)

Ce 1d 0.5 0.5 0.5 0.0087 (4)
Al 1a 0 0 0 0.0232 (12)

O(1) 2f 0.5 0 0 0.056 (5)
O(2) 2f 0 0.5 0 0.01 (2)
O(3) 1b 0 0 0.5 0.000 (3)

Weighted profile R-factor Rwp = 9.78% and Profile residual Rp = 7.35% with the Goodness-of-fit of 1.76.

Table 2. Refined structural parameters for the as-grown CeAlO3 crystal according to I4/mcm model.

Atoms Site x y z B (Å2)

Ce 4b 0.5 0 0.25 0.0055 (6)
Al 4c 0 0 0 0.0076 (15)

O(1) 4a 0 0 0.25 0.005 (4)
O(2) 8h 0.2812 (11) 0.7812 (11) 0 0.005 (3)

Weighted profile R-factor Rwp = 8.64% and Profile residual Rp = 8.22% with the Goodness-of-fit of 1.79.

Crystals 2019, 9, x FOR PEER REVIEW 4 of 11 

 

Figure 2 shows the observed, calculated and differences between X-ray diffraction profiles of the as-

grown CeAlO3 crystal.  

Table 1. Refined structural parameters for the as-grown CeAlO3 crystal according to the P4/mmm 

model. 

Atoms Site x y z B (Å2) 

Ce 1d 0.5 0.5 0.5 0.0087 (4) 

Al 1a 0 0 0 0.0232 (12) 

O(1) 2f 0.5 0 0 0.056 (5) 

O(2) 2f 0 0.5 0 0.01 (2) 

O(3) 1b 0 0 0.5 0.000 (3) 

Weighted profile R-factor Rwp = 9.78% and Profile residual Rp = 7.35% with the Goodness-of-fit of 

1.76. 

Table 2. Refined structural parameters for the as-grown CeAlO3 crystal according to I4/mcm model. 

Atoms Site x y z B (Å2) 

Ce 4b 0.5 0 0.25  0.0055 (6) 

Al 4c 0 0 0  0.0076 (15) 

O(1) 4a 0 0 0.25  0.005 (4) 

O(2) 8h  0.2812 (11) 0.7812 (11) 0  0.005 (3)  

Weighted profile R-factor Rwp = 8.64% and Profile residual Rp = 8.22% with the Goodness-of-fit of 

1.79. 

 

Figure 2. X-ray diffraction (XRD) patterns of the as-grown CeAlO3 crystal. 

3.3. Transmission Spectra and Ce Valence State Analysis 

Figure 3 shows the transmission spectra of different growth atmosphere and annealed CeAlO3 

samples at 250–2500 nm waveband. The transmittance of CeAlO3 grown in Ar was relatively low, 

which corresponds to the dark color presented by the crystal. Although the transmittance of CeAlO3 

grown in 5% H2 + 95% Ar was improved, there was still a large absorption in the 500–1500 nm band. 

After annealing at 1550 ℃ for 30 h in a flowing 5% H2 + 95% Ar, the transmittance of CeAlO3 crystal 

increased obviously, up to 68% or higher at 550–2500 nm regions and the short wavelength edge of 

optical absorption was shifted to ~380 nm. In order to verify that the above transmittance and 

corresponding crystal color change were related to the presence of Ce4+ ions, the valence state of Ce 

ions in the crystal was analyzed.  Figure 4; Figure 5 show the Ce3d XPS spectra collected from 

greenish and yellowish CeAlO3 samples, respectively. Both XPS spectra have four peaks at almost 

20 40 60 80

0

2000

4000

6000

8000

10000

12000

In
te

n
si

ty
 (

a
.u

.)

2 theta (deg)

 obs

 cal

 dif

Rwp=8.64%

Figure 2. X-ray diffraction (XRD) patterns of the as-grown CeAlO3 crystal.

3.3. Transmission Spectra and Ce Valence State Analysis

Figure 3 shows the transmission spectra of different growth atmosphere and annealed CeAlO3

samples at 250–2500 nm waveband. The transmittance of CeAlO3 grown in Ar was relatively low,
which corresponds to the dark color presented by the crystal. Although the transmittance of CeAlO3

grown in 5% H2 + 95% Ar was improved, there was still a large absorption in the 500–1500 nm band.
After annealing at 1550 °C for 30 h in a flowing 5% H2 + 95% Ar, the transmittance of CeAlO3 crystal
increased obviously, up to 68% or higher at 550–2500 nm regions and the short wavelength edge
of optical absorption was shifted to ~380 nm. In order to verify that the above transmittance and
corresponding crystal color change were related to the presence of Ce4+ ions, the valence state of
Ce ions in the crystal was analyzed. Figure 4; Figure 5 show the Ce3d XPS spectra collected from
greenish and yellowish CeAlO3 samples, respectively. Both XPS spectra have four peaks at almost the
same position, located at 882.1 ± 0.1 eV, 886.0 ± 0.1 eV, 900.3 ± 0.1 eV and 904.4 ± 0.1 eV. The peaks at
882.1 ± 0.1 eV and 886.0 ± 0.1 eV correspond to the pairs of Ce 3d5/2 spin-orbit doublets, while peaks
at 900.3 ± 0.1 eV and 904.4 ± 0.1 eV correspond to the pairs of Ce 3d3/2 spin-orbit doublets. The band
energies of spin-orbit splitting between 3d5/2 and 3d3/2 are about 18.3 eV, in agreement with that of
CePO4 [27]. However, due to the overlap of the photo-electron peaks of Ce(III) and Ce(IV), these four
peaks cannot be used to identify the valence state of the Ce ions. It is believed that the peak near
917eV is the fingerprint of the Ce(IV) compound [28]. The small peak observed at 916.7 eV in Figure 4
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confirms the presence of Ce4+ ions in the greenish CeAlO3 crystal, and estimates that its percentage
ratio does not exceed 1%. However, no Ce4 + ion was found in the yellowish CeAlO3 crystal within the
error of XPS measurement.
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Figure 5. Ce3d XPS spectrum of the yellowish CeAlO3 crystal sample.

3.4. Magnetic Analysis

As shown in Figure 6, the magnetization curve displays that CeAlO3 is a paramagnetic compound,
which is magnetically anisotropic. The calculated mass magnetic susceptibility at room temperature in
the vertical and parallel <001> directions are 1.04 × 10−7 m3/Kg and 1.78 × 10−7 m3/Kg, respectively.
The degree of anisotropy increases by a factor of approximately six upon cooling from room temperature
to 2 K. The magnetic behavior of paramagnetic lanthanide compounds was mainly influenced by
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dipole–dipole interactions and crystal-field (CF) effects, whereas super-exchange interactions were
relatively unimportant. The influence of dipole–dipole interactions can be described by the Curie–Weiss
law [29]. Temperature dependencies of the inverse magnetic susceptibility χ−1 of CeAlO3 crystal in
the vertical and parallel <001> directions are shown in Figure 7. The curve of χ−1 vs T in the parallel
<001> direction shows a good linear trend over the 4–300 K range, fitted data based on the Curie–Weiss
law gives an effective moment of 2.57µb, is consistent with the theoretical value 2.54µb for the free ion
2F5/2 ground state of Ce3+. The corresponding Curie–Weiss temperature is approximately −2.34 K,
which is different from the result of polycrystalline or unoriented single CeAlO3 crystals reported
by other authors [22,24]. But in the vertical <001> direction, the relationship between χ−1 and T at
50−150 K range does not obey the Curie-Weiss law. In light of the interpretation of magnetic properties
of oriented CeF3 single crystals [30], this anomalous behavior of the magnetic susceptibility could be
explained in the crystal-field model with Ce3+ ion energy levels based on the D2d site symmetry. It is
noted that abrupt magnetic changes in both directions of the CeAlO3 crystal near 4 K were observed,
which indicates the transition of the CeAlO3 crystal from a paramagnetic phase to an antiferromagnetic
one. This magnetic phase transition was also found in TbAlO3 and DyA1O3. Most analyses assume
that the ordering of magnetic sublattices at low temperature is due to a combination of exchange and
dipole interactions [31].
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Figure 6. Magnetization curve of CeAlO3 crystal at different directions.
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Figure 7. Temperature dependencies of the inverse magnetic susceptibility of CeAlO3 crystal at
different directions.

3.5. Faraday Rotation

It is well known that Faraday rotation in a paramagnetic material is proportional to the applied
magnetic field, the length of light-passing medium and the Verdet constant, which is itself a function
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of the wavelength. Faraday rotations of CeAlO3 and CeF3 crystals vs the magnetic field in the range of
0–1.2 T are linear at three wavelengths, as shown in Figure 8. The Verdet constants of the two crystals
can be calculated from the slope of lines, which are −389 rad/m·T at 532 nm, −270 rad/m·T at 635 nm
and −79.7 rad/m·T at 1064 nm for CeAlO3, −180 rad/m·T at 532 nm, −125 rad/m·T at 635 nm and
−39.1 rad/m·T at 1064 nm for CeF3, respectively. Compared with CeF3 and TGG, Verdet constants of
CeAlO3 at the corresponding wavelengths are about 2.1 times those of CeF3 and about two times those
of TGG reported [32].
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Figure 8. Relationships between the Faraday rotation and magnetic field of CeAlO3 and CeF3 crystals
at different wavelengths.

As for paramagnetic materials of glass or crystal, when the interaction between rare earth ions is
small, based on the Van Vleck–Hebb theory with a single-oscillator model, the relationship between
Verdet constants V and wavelength λ is used as the following equation [33–35]:

V−1 =
gµBch

4π2nχCt
(1−

λ2

λ2
t

) (2)

where g is the Landé factor, µB the Bohr magneton, c the velocity of light, h the Planck constant,
n the refraction index (it can be estimated by the transmittance of crystal [4]), χ the volume magnetic
susceptibility and Ct the transition probability. The terms n, χ and Ct are functions of temperature, and
when the temperature is constant, could be considered as a constant, so the inverse of Verdet constant is
in linear relationship with proportional to the wavelength square. Fitting the wavelength-dependence
data for two crystals to Equation (2) yields the effective transition wavelength λt and probability Ct at
room temperature, listed in Table 3 together with n and χ for comparison. According to Equation (2)
and Table 3, CeAlO3 has larger Verdet constants than those of CeF3 owing to its large refraction index,
volume magnetic susceptibility and effective transition wavelength, although the 4f to 4f5d transition
efficiency of Ce3+ in the CeAlO3 perovskite is relatively small. Substituting the above calculated
parameters into Equation (2), the relationships between Verdet constants and the wavelength of CeAlO3

and CeF3 were plotted, as shown in Figure 9.

Table 3. The fitting and calculated parameters of two crystals at room temperature according to
Equation (2). (The refraction index and volume magnetic susceptibilities are also listed).

Crystals
Parameters

n (at 1064 nm) χ (emu/cm3
·T) λt (nm) Ct (10−45 J·cm3)

CeAlO3 2.08 0.942 280 22.0
CeF3 1.64 0.686 239 26.2
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3.6. Magnetic Circular Dichroism

Faraday magneto-optical effect of rare earth ions is mainly caused by the transitions of 4f–4f5d [36,37],
which is essentially the circular birefringence induced by the applied magnetic field. MCD signal of
the rare earth magnetic ions at the transition absorption can be indicative of their magneto-optical
activity (MOA) [38]. Usually the shorter the transition absorption wavelength and the stronger the
intensity, the stronger the corresponding MCD signal. Figure 10 shows the MCD spectra of CeAlO3

and CeF3 crystals at 2500 Oe magnetic fields. At the 350–800 nm waveband, MCD spectrum of CeAlO3

shows two peaks centred at 366.3 nm and 372.7 nm, respectively, which can correspond to the 4f–5d
transition of Ce3+ ions in the perovskite. Below 350 nm, no MCD signal can be detected because of the
absorption of right-handed and left-handed light by CeAlO3 sample exceeds the detection range of
the instrument. Reducing the thickness of sample may detect the MCD signal below 350 nm, but it is
difficult to process the CeAlO3 sample. Due to the strong influence of the surrounding coordination
ions and the weak crystal-field interaction, the 4f–5d transition absorption position of Ce3+ ions in
the CeF3 matrix is below 300 nm, so only a MCD signal of CeF3 peaked at 271.3 nm can be found at
the 200–800 nm waveband. The peak intensity is much smaller than that of CeAlO3 at 366.3 nm and
372.7 nm, indicating the relatively weak MOA of Ce3+ ions in the CeF3 matrix.
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4. Conclusions

The CeAlO3 crystal with a diameter of 20 mm and a length of 22 mm has been grown in 5% H2 +

95% atmosphere by the Czochralski method. Rietveld structure refinement of XRD data confirms that
the CeAlO3 crystallizes in the tetragonal system at room temperature, space group I4/mcm. The green
color and corresponding optical absorption exhibited by as-grown CeAlO3 crystal are related to the
presence of Ce4+ ions according to the XPS analysis. Secondary annealing of optimized conditions
can greatly reduce the content of Ce4+ in CeAlO3 crystal and improve the transmittance. Above 4 K,
CeAlO3 crystal exhibits paramagnetism and magnetic anisotropy. There is an anomalous behavior of
the magnetic susceptibility in the vertical <001> direction over 50–150 K range, which can be explained
in the crystal-field model. The present investigations demonstrate CeAlO3 crystal have larger Verdet
constants than those of CeF3 and TGG at 532, 635 and 1064 nm wavelengths at room temperature.
So CeAlO3 crystal maybe a candidate magneto-optical material for Faraday devices in the visible and
near-infrared regions. Based on the analysis of Van Vleck–Hebb theory, the co-contribution of the
large refraction index, volume magnetic susceptibility and effective transition wavelength is the reason
why CeAlO3 have large Verdet constants, which will help to find other new magneto-optical crystals
containing Ce3+ applied in the visible and near-infrared regions.
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