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Abstract: A series of three-dimensional numerical simulations were performed to understand the
thermal-solutal capillary-buoyancy flow of Ge1-xSix melts during Czochralski crystal growth with
a rotating crystal or crucible. The crystal and crucible rotation Reynolds numbers in this work are
0∼3.5 × 103 (0∼4.4 rpm) and 0∼−2.4 × 103 (0∼−1.5 rpm), respectively. Simulation results show that if
the thermal capillary Reynolds number is relatively low, the flow will be steady and axisymmetric,
even though the crystal or crucible rotates at a constant rate. The critical thermal capillary Reynolds
number for the initiation of the three-dimensional oscillatory flow is larger than that of pure fluids.
As the crystal or crucible rotation rate increases, the critical thermal capillary Reynolds number first
increases and then decreases. The dominant flow pattern after the flow destabilization is azimuthal
traveling waves. Furthermore, a reversed evolution from the oscillatory spoke pattern to traveling
waves appears in the melt. Once the crystal or crucible rotation rate is relatively large, the traveling
waves respectively evolve to rotating waves at the crystal rotation and a spindle-like pattern at the
crucible rotation. In addition, the maximum amplitude of solute concentration oscillation on the free
surface initially decreases, but finally rises with the crystal or crucible rotation rate increasing.

Keywords: flow instability; Ge1–xSix melt; Czochralski method; numerical simulations

1. Introduction

Single crystals of oxides and semiconductors mostly grow from melt, which takes on an important
role in microelectronic and optoelectronic devices [1]. More than 80% of single crystals are grown by
the Czochralski (Cz) method [2]. This method is particularly successful for the growth of germanium
(Ge), silicon (Si), gallium-arsenide (Ga1–xAsx), germanium-silicon (Ge1–x Six) and so on. Here, x is the
mass fraction of arsenide or silicon.

A classical Cz crystal growth system consists of four important parts, crucible, crystal, melt,
and heater. The crucible is heated by a heater to keep the materials in molten state. The crystal is kept
in a lower temperature and placed so as to contact the surface of the melt. The crystal and crucible
are usually rotated to improve the uniformity of thermal distribution and get a high quality of single
crystals. Several forces, including surface tension, buoyancy, Coriolis, and centrifugal forces interact
with each other on different scales through the crystal growth process, which makes the process difficult
to characterize and control [3,4]. Due to the interaction between aforementioned forces, different flow
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instabilities always occur and significantly affect the transport process in the melt [3–6]. This transport
process, in turn, considerably affects the quality of single crystals. Therefore, there is an urgent demand
to fully understand flow phenomena in melts during the Cz crystal growth process.

The thermal capillary effect generated by the temperature difference between the crystal and the
crucible during the Cz crystal growth process, as well as the buoyancy, have great effects on the flow
field. Galazka and Wilke [7] numerically predicted that the coupling action of thermal capillary and
buoyancy forces leads to the interface being much more convex to the melt, compared to the results
without the thermal capillary flow. Schwabe [8] carried out experiments on the thermal capillary
flow in a Cz configuration with various gravities. The thermal capillary flow penetrates fully into the
liquid pool under conditions of microgravity, whereas it separates into a layer-like flow close to the
free surface on the earth. Li et al. [9,10] studied the flow bifurcation of the thermal capillary flow in
a shallow molten silicon pool. They observed that the steady two-dimensional (2D) flow bifurcates to
a steady three-dimensional (3D) flow, and then evolves to a 3D oscillatory flow as the thermal capillary
Reynolds number rises. However, a steady 2D flow is directly invaded by a 3D oscillatory flow in
a deep pool filled with molten silicon. Subsequently, Shen et al. [11,12] observed the flow patterns and
the transitions of the thermocapillary-buoyancy flow of a pure fluid in a Cz configuration with rotating
crystal and crucible.

The solute/impurity concentration shows an uneven distribution, generated by segregation during
the Cz crystal growth process, which induces the solutal capillary force and the solutal buoyancy force
in the melts [13–15]. It is obvious that the coupling effect of various driving forces makes the melt
flow become much more complex. Bergman [16] first reported that, even if the solutal and thermal
capillary forces are equal but opposite due to horizontal solute concentration and temperature gradients,
the thermal-solutal capillary flow can be observed in the absence of a buoyancy force, because of
the difference between mass and thermal diffusivities. Soon after, Chen et al. [17,18] systematically
investigated flow instability with different Prandtl (Pr) numbers, Lewis (Le) numbers, and aspect ratios
by 3D numerical simulations. Kamotani et al. [19] reported complex flow patterns and the bifurcations
of the thermal-solutal capillary-buoyancy convection at different buoyancy ratios. If the buoyancy ratio
is relatively small, a unicellular flow pattern, accompanied by secondary cells, was observed. However,
a three-layered pattern with secondary cells appears with a large buoyancy ratio. Arafune et al. [20,21]
observed that the classical surface velocities in solutal capillary flows are about 3–5 times larger than
those in thermal capillary flows.

Recently, thermal-solutal capillary-buoyancy flows in annular pools have attracted much more
attention. The annular pool is a classic simplified model of a Cz configuration. Firstly, Li et al. [22]
conducted 2D simulations to study the thermal-solutal capillary-buoyancy flow of binary mixtures.
They found that the development from a steady flow to an oscillatory flow experiences a typical Hopf
bifurcation. Due to the limit of a 2D geometric model in the azimuthal direction, Yu et al. [23–25]
pursued a similar direction by conducting experiments and 3D numerical simulations. They reported
that the solutal capillary and buoyancy forces, which are generated by the solute gradient as a result
of the Soret effect, promote the destabilization of the thermal-solutal capillary-buoyancy flow in
binary mixtures. However, they have almost no impact on flow patterns and their transition. It is
surprising that the thermal-solutal capillary-buoyancy flow can always be observed, even if the solutal
and thermal capillary effects are equal but opposite. The critical thermal Reynolds number for the
generation of a 3D flow decreases with the aspect ratio of the annular pool. However, it increases
alongside the increase of the capillary ratio. Flow patterns strongly depend on the capillary ratio,
aspect ratio, and thermal capillary Reynolds number.

Although annular pools can fulfill fundamental requirements for the study of flow instability
during the crystal growth process, it still has some limitations, such as the lack of the crystal face
touching the melt free surface, its inability to realize crystal and crucible rotations and so on. Therefore,
it is necessary to explore thermal-solutal capillary-buoyancy flow in a Cz configuration. Abbasoglu and
Sezai [26] reported that the approximate range of capillary ratios in a Ge1-xSix melt, due to the segregation
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during Cz crystal growth, varies from −2.44 to −0.20. In addition, the radial solute concentration
difference decreases along the rising of the aspect ratio and radial temperature difference. This is
because the strong flow suppresses the solute concentration difference. Unfortunately, the rotations of
crystals and crucibles were not taken into consideration, which is an essential industrial practice for
improving the quality of crystals in the Cz crystal growth process. A lot of previous works focusing
on the melt flow and the flow instability have not yet paid attention to solute diffusion in binary
alloys [27–30].

Therefore, it is indispensable to carry out numerical simulations to precisely understand the
influences of rotating crystals and crucibles on the thermal-solutal capillary-buoyancy convections in
a Cz configuration. The present work is beneficial for improving crystal qualities in Cz crystal growth.

2. Physical and Mathematical Model

2.1. Basic Assumptions and Governing Equations

Figure 1 gives the physical model, which is a classical simplified model of the Cz growth
system [31–33]. A disc with the radius of rs = 23 mm contacts the free surface of Ge1–xSix melt.
The Ge1–xSix melt is in a cylindrical crucible with the radius of rc = 46 mm (hereafter are respectively
called as “crystal” and “crucible”). The crystal and crucible rotate at constant rates ns and nc.
The melt/crystal interface and sidewall of the crucible are maintained at constant temperatures and
solute concentrations are Ts, Cs, Tc, and Cc, where Ts = Tm < Tc and Cs < Cc. Tm = 1271.3 K, is the
melting point of the Ge1–xSix melt. The depth of the Ge1–xSix melt is h. Furthermore, the Ge1–xSix
melt is considered as an incompressible Newtonian fluid with constant properties, except for the
surface tension and density in the buoyancy term of the momentum equation. The flow is laminar.
The melt/crystal interface and free surface are non-deformable and flat, where the solute and thermal
capillary forces are considered. A no-slip condition is adopted in all solid-liquid boundaries. In addition,
the free surface and crucible bottom are assumed to be impermeable and adiabatic.
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Figure 1. Physical model and the coordinate system.

The surface tension and density are linear functions of temperature and solute concentration,
respectively, which are defined as

σ(T, C) = σ0 − γT(T − T0) − γC(C−C0) (1)

ρ(T, C) = ρ0[1− βT(T − T0) − βC(C−C0)] (2)
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where γT = −(∂σ/∂T)C,γC = −(∂σ/∂C)T, βT = −(∂ρ/∂T)C,βC = −(∂ρ/∂C)T. Here, T0 and C0 are the
reference temperature and solute concentration, respectively.

Using rc, rc
2/ν, ν/rc, and µν /rc

2 as the scale quantities for length, time, velocity, and pressure,
the governing equations are expressed by following dimensionless forms,

∇ ·V = 0 (3)

∂V
∂τ

+ V · ∇V = −∇P +∇2V + GrT(Θ + RρΦ)eZ (4)

∂Θ
∂τ

+ V · ∇Θ =
1

Pr
∇

2Θ (5)

∂Φ
∂τ

+ V · ∇Φ =
1

Le · Pr
∇

2Φ (6)

where V (U, V, W) is the dimensionless velocity vector and eZ is the unit vector in the Z direction.
P, τ, Θ = (T − Ts)/(Tc−Ts), and Φ = (C − Cs)/(Cc − Cs) are the dimensionless dynamic pressure,
time, temperature, and solute concentration, respectively. Rρ = βC∆C/(βT∆T), GrT = gβT∆T(ro-ri)3/ν2,
Pr = ν/α, and Le = α/D are the ratio of the solute to thermal buoyancy forces, the thermal Grashoff

number, Prandtl number, and Lewis number. Where ∆T = Tc − Ts and ∆C = Cc − Cs. Thus, the last
term in Equation (4) shows the buoyancy effect. In addition, D, a, ν, and µ are the mass diffusivity of
the silicon, thermal diffusivity, kinematic viscosity, and dynamic viscosity.

Based on these assumptions, the boundary conditions can be expressed as follows.
At the free surface

Rs < R < Rc, 0 < θ ≤ 2π, Z = G (7)

W = 0,
∂U
∂Z

= −ReT
∂Θ
∂R
−ReC

∂Φ
∂R

(8)

∂V
∂Z

= −ReT
∂Θ
R∂θ

−ReC
∂Φ
R∂θ

(9)

∂Θ
∂Z

=
∂Φ
∂Z

= 0 (10)

Here, Г is the aspect ratio, which is defined as Г = H/Rc. ReT and Rec are the thermal and solutal
capillary Reynolds numbers. They are respectively defined as

ReT =
γTrc(Tc − Ts)

νµ
, ReC =

γCrc(Cc −Cs)

νµ
(11)

The ratio between the solutal and thermal capillary effects is denoted as the capillary ratio Rσ,
which is defined as:

Rσ =
ReC

ReT
=
γC∆C
γT∆T

(12)

At the bottom (0 < R < Rc, 0 < θ ≤ 2π, Z = 0)

U = W = 0, V = Rec ·R,
∂Θ
∂Z

=
∂Φ
∂Z

= 0 (13)

Rec is the crucible rotation Reynolds number, which is expressed as

Rec =
2πncrc

2

60ν
(14)

At the melt/crystal interface (R ≤ Rs, 0 < θ ≤ 2π, Z = Г)

U = W = 0, V = Res ·
R
Rs

, Θ = Φ = 0 (15)
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Here, Res is the crystal rotation Reynolds number, which is defined as

Res =
2πrsnsrc

60ν
(16)

At the sidewall of the crucible (R = Rc, 0 ≤ θ ≤ 2π,0 ≤ Z ≤ Γ)

U = W = 0, V = Rec, Θ = Φ = 1 (17)

The initial conditions (τ = 0)
U = W = V = 0 (18)

Θ = Φ = 0(R ≤ Rs) (19)

Θ = Φ = ln(R/Rs)/ln(Rc/Rs), (Rs < R < 1) (20)

2.2. Calculations’ Conditions and Numerical Method

The radius ratio and aspect ratio of the Cz configuration are fixed at Rs = Г = 0.5. The Ge1−xSix melt
is chosen as the working fluid. Its initial mass fraction of silicon is 1.99% (x = 1.99%), which corresponds
to the molar fraction of 5%. This mass fraction agrees well with the mean solute concentration in the
melt, due to segregation during Cz crystal growth [26,34]. The physical properties of the Ge1–xSix
melt at 1271.3 K are shown in Table 1 [26,34]. As reported in Reference [26], the approximate range of
capillary ratios in the GexSi1–x melt due to segregation during Cz crystal growth is from −2.44 to −0.20.
Therefore, Rσ is fixed at −0.8, which ensures that much more attention is paid to the influence of the
rotating crystal and crucible on the thermal-solutal capillary-buoyancy flow. The crystal and crucible
rotation Reynolds numbers range from 0 to 3.5 × 103 and −2.4 × 103. The thermal capillary Reynolds
number ranges from 0 to 4 × 104.

Table 1. Physical parameters of the Ge0.98Si0.02 melt.

Property Symbol Unit Value

Density ρ kg/m3 5246.00
Thermal diffusivity α m2/s 2.20 × 10−5

Viscosity µ kg/(m·s) 7.34 × 10−4

Mass diffusivity of species D m2/s 1.00 × 10−8

Temperature coefficient of surface tension γT N/(m·k) 8.10 × 10−5

Concentration coefficient of surface
tension γC N/m −0.536

Prandtl number Pr - 6.37 × 10−3

Lewis number Le - 2197.80

The governing equations are handled by the finite volume method (FVM). The QUICK scheme is
applied for the convective terms. The second order central-difference approximation is introduced for
the diffusion terms. Meanwhile, the SIMPLEC algorithm is adopted to deal with the coupling between
the velocity and pressure. The dimensionless time step is from 1.2 × 10−5 to 1.1 × 10−4. When the
largest relative error of these governing equations in the computational domain gets below 10−5 at
each time step, the solution is taken for converging.

In order to verify the grid convergence, simulations on the thermal-solutal capillary-buoyancy flow
of Ge1–xSix melt with three different meshes at Rec = 9.4 × 102, Res = −1.2 × 103, and ReT = 2 × 104 were
conducted. Table 2 gives the corresponding wave numbers and oscillation frequencies. It is obvious that
the 62R

× 50Z
× 80θ grid is a suitable choice for accurate simulations in this work.
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Table 2. Mesh dependence tests at Rec = 9.4 × 102, Res = −1.2×103
, and ReT = 2 × 104.

Grids m f (Hz)

42R
× 40Z

× 60θ 4 0.1879
62R
× 50Z

× 80θ 4 0.1887
80R
× 60Z

× 104θ 4 0.1848

In order to validate the numerical method, simulations on the double-diffusive capillary convection
in rectangular cavities were conducted at the same conditions with Refs. [17,35]. Results show that
the maximum deviations of the Nusselt number and oscillation frequency are 1.1% [35] and 1.5% [17],
respectively, as listed in Tables 3 and 4. In addition, the present numerical method was also
checked by experiments. The results from the numerical simulations agree well with those from the
experiments [23]. Therefore, the thermal-solutal capillary-buoyancy flow can be solved well by the
present numerical method.

Table 3. Comparisons of the Nusselt numbers at the left vertical wall.

ReT
Nu

Deviation (%)
Present Reference [35]

10 1.010 1.007 0.30
120 1.332 1.328 0.30
200 1.496 1.497 0.07
340 1.770 1.762 0.45
380 1.832 1.821 0.60
450 1.933 1.953 1.02

Table 4. Comparisons of the oscillation frequencies.

ReT
f/Hz

Deviation (%)
Present Reference [17]

350 6.94 6.84 1.46
410 7.89 7.82 0.90
500 9.35 9.26 0.97
540 10.14 10.02 1.20

3. Results and Discussion

3.1. Basic Flow

When the thermal capillary Reynolds number is relatively low, the flow is axisymmetric and
steady, even though the crystal and crucible rotate at constant values. The steady axisymmetric flow is
an ideal flow condition for the Cz growth process, due to its thermal and crystal uniformities. This
typical flow was also reported in binary mixtures or pure fluids in a crystal or crucible rotating system,
which is usually called “basic flow” [36–38]. The dimensionless stream function ψ is applied to show
the flow field and defined as

U = −
1
R
∂ψ

∂Z
, W =

1
R
∂ψ

∂R
(21)

Figure 2 shows the streamlines and iso-concentration lines at ReT = 2 × 103 with different rotation
Reynolds numbers. When Rec = Res = 0, the flow is only moved by the buoyancy and capillary
forces. When the capillary ratio is fixed at −0.8, the thermal capillary force is dominant, which induces
flow movement from the crucible sidewall to the crystal edge along the free surface, as displayed in
Figure 2a. The iso-concentration lines mainly concentrate near the crucible sidewall and below the
crystal. Once the crucible rotates, for example, at Rec = 46.8 and Res = 0, the flow is slightly suppressed.



Crystals 2019, 9, 217 7 of 15

The maximum stream function of the basic flow decreases from 16.4 to 16.1. However, the streamlines
and iso-concentration lines have slight changes, as shown in Figure 2b. When only the crystal rotates,
at Rec = 0 and Res = −467.5, the melt near the crystal rotates along with the crystal. In addition, the
maximum stream function decreases from 16.4 to 15.8 (see Figure 2c). It implies that the flow strength
is slightly weakened by the rotation.
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3.2. Critical Conditions for the Flow Destabilization

As the thermal capillary Reynolds number increases, the basic flow is clearly enhanced. Once the
thermal capillary Reynolds number is over a threshold value, the basic flow rapidly destabilizes and then
bifurcates into a 3D oscillatory flow. Figure 3 gives the variations of critical thermal capillary Reynolds
numbers along the crystal or crucible rotation Reynolds number. This dichotomy is successfully applied
for obtaining the critical thermal capillary Reynolds numbers [24,25], and maximum deviation is
controlled below 100. The critical thermal capillary Reynolds number at a non-rotation Cz configuration
is 4.1 × 103, which is much larger than that of pure fluids [9,10]. This discrepancy is because of the
opposite directions of the thermal and solutal capillary forces at Rσ = −0.8 [25]. Thus, the quality of a
pure component crystal is much more essential to the temperature difference between the crystal and
crucible than that of a compound.

The critical thermal capillary Reynolds number rises first, and then reduces along the crystal or
crucible rotation rate. When Rσ = −0.8, the thermal capillary effect plays a dominant role on the flow.
The melt on the free surface moves from the crucible sidewall to crystal edge. Once the crystal rotates
only at a relatively low rate, the centrifugal force suppresses the surface melt flow. Therefore, the
crystal rotation enhances the flow stability until |Res| = 470, which is also reported in pure fluids [9,39]
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or binary mixtures [37]. With the crystal rotation rate increasing, a clockwise rotating cell under the
crystal is formed for the crystal rotation, which shears with a counter-clockwise rotating cell, driven by
the coupling action between the thermal and solutal capillary effects. Thus, the fluctuation of the melt
flow is enhanced, while the flow stability is weakened, as displayed in Figure 3.
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At Rec ≤ 230 and Res = 0, almost all melt moves azimuthally with the crucible, which leads to
the melt flow being much more uniform and more stable [36]. As the crucible rotation Reynolds
number rises, the disturbance formed by the rotation is enhanced, which promotes the steady flow
towards bifurcating to a 3D oscillatory flow. Thus, the critical thermal capillary Reynolds number
initially grows, and then decreases, alongside the crucible rotation Reynolds number rising. When the
crystal or crucible rotation rate is smaller than a certain value, the rotation benefits the quality of a
crystal. However, the crystal or crucible rotation can have negative effects on the quality of a crystal at
a larger rotation rate. Once the crystal and crucible rotation Reynolds numbers respectively exceed
about 1.2 × 103 and 1.4 × 103, the 3D oscillatory flow is dominated by the crystal or crucible rotation.
Furthermore, the flow is almost independent of the thermal Reynolds number [11,36].

3.3. Characteristics of the 3D Oscillatory Flow

The fluctuation δX of physical quantity X is usually used to extract the spatial
disturbance characteristics,

δX(R,θ, Z, τ) = X(R,θ, Z, τ) −
1

2π

∫ 2π

0
X(R,θ, Z, τ)dθ (22)

It should be pointed out that X is the dimensionless velocity, solute concentration, or temperature.
Since the Schmidt number is much greater than the Prandtl number of a Ge1–xSix melt, the solute
concentration fluctuation attracts more attention here. Figure 4 gives the overview of surface solute
concentration fluctuations of 3D oscillatory flows in a non-rotation Cz system. The flow pattern in
Figure 4 looks like spokes of a wheel. It was named the “spoke pattern” in Reference [40]. The spoke
pattern, with three traveling waves along a clockwise direction, is observed at ReT = 5 × 103, as shown
in Figure 4a. The wave number m is obtained from the bright and dark spokes. This flow pattern does
not appear in pure fluids [9]. In pure fluids, the thermal capillary and buoyancy are the only driving
forces. However, in a Ge1–xSix melt, there is a nonuniform solute concentration distribution along the
axial direction, close to the free surface. This unique solute concentration distribution in Ge1–xSix melts
will result in the Rayleigh-Marangoni-Benard instability.
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The wave number of spoke pattern increases as the thermal capillary Reynolds number increases.
For example, once the thermal capillary Reynolds number grows from 5 × 103 to 104, the wave number
increases from 3 to 9. Furthermore, the azimuthal traveling spoke pattern transits to an oscillatory
spoke pattern. The distribution of spokes on the free surface becomes nonuniform. The enhanced
buoyancy-driven flow, due to the nonuniform solute concentration distribution in the axial direction,
carries a lot of Ge1–xSix melt from the crucible bottom to the free surface, close to the sidewall at a
large thermal capillary Reynolds number. Thus, the oscillatory spoke pattern swings in the azimuthal
direction and merges, which is reported in Reference [24]. On the other hand, the amplitude of the
surface solute concentration fluctuation decreases slightly, because of the increase of the wave number.
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3.3.1. The Influences of Crystal Rotation

Figure 5 shows the effects of the crystal rotation on 3D oscillatory flow at Rec = 0 and ReT = 104.
When the crystal rotates at Res = −4.7 × 102, the oscillatory spoke pattern (see Figure 4b) develops to
the azimuthal traveling spoke pattern with three waves, as shown in Figure 5a. The traveling waves
at Rec = 0, Res = −4.7 × 102 and ReT = 104 are the same, with the flow pattern at ReT = 5 × 103 in a
non-rotation Cz system. As reported in Ref. [25], the capillary effect is a key factor of flow destabilization
for the binary mixtures at −0.8 ≤ Rσ ≤ −0.2. Compared with the flow transition in a non-rotation Cz
system, a reversed evolution from the oscillatory spoke pattern to traveling waves is observed when
the crystal rotation rate increases. Thus, the crystal at a relatively low rotation rate plays a suppression
effect on the flow instability. When Res = −1.8 × 103, the traveling waves are disturbed by the rotating
waves, which is induced by centrifugal force instability [11,12], as displayed in Figure 5b. The traveling
waves still take a dominant role, while the rotating waves will affect the traveling waves. The wave
number reduces from 3 to 2. Meanwhile, the traveling waves begin to exhibit disorder, especially in the
region close to the crucible sidewall. The rotating waves are further enhanced with the increased crystal
rotation rate. The rotating waves are observed near the crucible sidewall (see Figure 5c).Crystals 2018, 8, x FOR PEER REVIEW  10 of 15 
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Figure 5. Overview of surface solute concentration fluctuation on the free surface at Rec = 0 and
ReT = 104. (a) Res = −4.7 × 102; (b) Res = −1.8 × 103; (c) Res = −2.3 × 103.
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Figure 6 gives the time dependence of azimuthal velocity at the monitoring point P (R = 0.75,
Z = 0.5, θ = 0). At Rec = 0, Res = −1.8 × 103, and ReT = 104, the azimuthal velocity appears as
quasi-periodical variation with a period of 0.1, as shown in Figure 6a, which means that the traveling
wave shows a quasi-periodic oscillatory flow. If the crystal rotation Reynolds number increases
to 2.3 × 103, the average amplitude of azimuthal velocity rapidly increases, while its periodicity
diminishes, as displayed in Figure 6b. When the crystal rotation Reynolds number rises from 1.8 × 103

to 2.3 × 103, the rotating waves are enhanced significantly, as shown in Figure 5b,c. Meanwhile,
the traveling waves lose the dominant position and then compete with the rotating waves. The flow
loses its periodicity, since the competition between the traveling waves and rotating waves becomes
fiercer alongside the crystal rotation Reynolds number increasing. Thus, the maximum azimuthal
velocity is not observed at the crystal rotation Reynolds number of 2.3 × 103 (see Figure 6b). Figure 7
shows that the maximum amplitude of solute concentration fluctuation initially decreases, but finally
increases as the crystal rotation rate grows. If the crystal rotation rate is relatively low, the capillary
effect plays a leading role. Meanwhile, the crystal rotation suppresses the flow instability generated
by the capillary effect. Thus, the amplitude of solute concentration fluctuation reduces with the rise
of the crystal rotation rate. The rotating waves are dominant when the crystal rotates at a large rate.
The centrifugal force instability related to the rotation results in the increase of the amplitude of the
solute concentration fluctuation along the crystal rotation.
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3.3.2. The Influence of Crucible Rotation

Once the crucible rotates, the oscillatory spoke pattern also converts to traveling waves, as shown
in Figure 8. Here, the traveling waves are mainly located close to the crystal. This flow bifurcation
with the crucible rotation is same as that with the crystal rotation (compare Figures 5 and 8). Thus,
the crucible rotation with a low rotation rate also has a suppression effect on flow instability. Figure 9
gives the streamlines and iso-concentration lines of 3D oscillation flow at the R-Z plane of θ = 0 when
Res = 0, Rec = 9.4 × 102 and ReT = 1.4 × 104. Two counter-clockwise rotating cells are observed. These
two rotating cells are the result of the coupling action of the thermal and solutal capillary effects.
This has also been reported in non-rotating annular pools [25]. Due to the suppression role of the
crucible rotation, the other one close to the crucible sidewall is weakened. Therefore, the oscillations of
the solute concentration close to the crucible sidewall are much smaller than those near the crystal.
The wave number m rises from 3 to 4 as the crucible rotation Reynolds number is raised from 9.4 × 102

to 1.4 × 103. In addition, the traveling waves gradually extend to the sidewall. If the crucible rotates at
a large rate, the traveling waves develop a spindle-like pattern, as displayed in Figure 8c. As reported
in Refs. [11,12], the spindle-like pattern should be a result of the circular shear instability.Crystals 2018, 8, x FOR PEER REVIEW  12 of 15 

 

 
Figure 8. Overview of surface solute concentration fluctuations at Res = 0 and ReT = 104. (a) Rec = 9.4 × 
102; (b) Rec = 1.4 × 103; (c) Rec = 2.3 × 103. 

 
Figure 9. The streamlines (left) and iso-concentration lines (right) of 3D oscillation flow at the R-Z 
plane of θ = 0 when Res = 0, Rec = 9.4 × 102 and ReT = 1 × 104. ψmax(-) = 24.1; δΦ = 0.05. 

Figure 10 gives the variations of the maximum amplitude of solute concentration fluctuation 
along the crucible rotation Reynolds number. Obviously, the tendency of the maximum amplitude 
of solute concentration fluctuation with the crucible rotation is similar to that of the crystal rotation. 
Specifically, the maximum amplitude of solute concentration fluctuation first decreases, then 
increases with the growth of the crucible rotation Reynolds number. The crucible rotation 
effectively suppresses the solute fluctuation of traveling waves at first. After that, the flow is 
gradually affected by the circular shear instability. Thus, the maximum amplitude of solute 
concentration fluctuation rises with the crucible rotation.  

0.0 0.5 1.0 1.5 2.0 2.5
0.05

0.10

0.15

0.20

0.25

0.30

0.35
 ReT=1×104

 ReT=2×104

δΦ
m

ax

Rec×10−3

 
Figure 10. Variations of the maximum fluctuation amplitude of solute concentration with the 
crucible rotation at Res = 0. 

4. Conclusions 

Figure 8. Overview of surface solute concentration fluctuations at Res = 0 and ReT = 104. (a) Rec = 9.4
× 102; (b) Rec = 1.4 × 103; (c) Rec = 2.3 × 103.



Crystals 2019, 9, 217 12 of 15

Crystals 2018, 8, x FOR PEER REVIEW  12 of 15 

 

 
Figure 8. Overview of surface solute concentration fluctuations at Res = 0 and ReT = 104. (a) Rec = 9.4 × 
102; (b) Rec = 1.4 × 103; (c) Rec = 2.3 × 103. 

 
Figure 9. The streamlines (left) and iso-concentration lines (right) of 3D oscillation flow at the R-Z 
plane of θ = 0 when Res = 0, Rec = 9.4 × 102 and ReT = 1 × 104. ψmax(-) = 24.1; δΦ = 0.05. 

Figure 10 gives the variations of the maximum amplitude of solute concentration fluctuation 
along the crucible rotation Reynolds number. Obviously, the tendency of the maximum amplitude 
of solute concentration fluctuation with the crucible rotation is similar to that of the crystal rotation. 
Specifically, the maximum amplitude of solute concentration fluctuation first decreases, then 
increases with the growth of the crucible rotation Reynolds number. The crucible rotation 
effectively suppresses the solute fluctuation of traveling waves at first. After that, the flow is 
gradually affected by the circular shear instability. Thus, the maximum amplitude of solute 
concentration fluctuation rises with the crucible rotation.  

0.0 0.5 1.0 1.5 2.0 2.5
0.05

0.10

0.15

0.20

0.25

0.30

0.35
 ReT=1×104

 ReT=2×104

δΦ
m

ax

Rec×10−3

 
Figure 10. Variations of the maximum fluctuation amplitude of solute concentration with the 
crucible rotation at Res = 0. 

4. Conclusions 

Figure 9. The streamlines (left) and iso-concentration lines (right) of 3D oscillation flow at the R-Z
plane of θ = 0 when Res = 0, Rec = 9.4 × 102 and ReT = 1 × 104. ψmax(-) = 24.1; δΦ = 0.05.

Figure 10 gives the variations of the maximum amplitude of solute concentration fluctuation
along the crucible rotation Reynolds number. Obviously, the tendency of the maximum amplitude
of solute concentration fluctuation with the crucible rotation is similar to that of the crystal rotation.
Specifically, the maximum amplitude of solute concentration fluctuation first decreases, then increases
with the growth of the crucible rotation Reynolds number. The crucible rotation effectively suppresses
the solute fluctuation of traveling waves at first. After that, the flow is gradually affected by the circular
shear instability. Thus, the maximum amplitude of solute concentration fluctuation rises with the
crucible rotation.
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4. Conclusions

3D numerical simulations were performed to investigate the influence of a rotating crystal and
crucible on the thermal-solutal capillary-buoyancy flow of a Ge1–xSix melt in a Cz configuration.
The critical condition for the initiation of a 3D oscillation flow was obtained, and the mechanism of
flow destabilization was analyzed. Meanwhile, the basic characteristics of steady and 3D oscillatory
flows were discussed. This work contributes to the development of the Cz crystal growth method.
Based on these above results, some conclusions are drawn as follows.

1. If the thermal capillary Reynolds number is relatively low, the flow appears as a steady
axisymmetric flow, even though the crystal and crucible rotate at constant values. A steady axisymmetric
flow is an ideal flow condition for the Cz growth process, due to its good thermal and crystal uniformity.
This steady axisymmetric flow is suppressed by the crystal or crucible rotation. The strength of the
steady axisymmetric flow exists as a decreasing trend as the crystal or crucible rotation rate increases.
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2. The critical thermal capillary Reynolds numbers for the onset of a 3D oscillatory flow in a Cz
configuration are much greater than those of pure fluids. Furthermore, the critical thermal capillary
Reynolds number first rises, and then falls as the crystal or crucible rotation rate increases. Clearly,
the quality of a pure component crystal is much more essential to the temperature difference than
that of a compound. If the crystal or crucible rotation rate is smaller than a certain value, the rotation
benefits the quality of a crystal. However, the crystal or crucible rotation can have negative effects on
the quality of a crystal at a large rotation rate.

3. Due to the suppression effect of the crystal or crucible rotation at a low rotation rate, a reversed
evolution from an oscillatory spoke pattern to traveling waves is found as the crystal or crucible
rotation rate increases. Once the crystal or crucible rotates at a large rate, the traveling waves transition
to rotating waves in a crystal rotation system and a spindle-like pattern in a crucible rotation system.
In addition, the maximum amplitude of the solute concentration fluctuation of the 3D oscillation flow
initially decreases, but finally increases alongside the growth of the crystal or crucible rotation rate.
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