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Abstract: The effect of the Coulomb interaction in interlayer magnetoresistance is elucidated in
collaboration with theory and experiments for the Dirac electron system in organic conductor
α-(BEDT-TTF)2I3 under a strong magnetic field. It is found that the effective g-factor enhanced
by Coulomb interaction depends on the angle of the magnetic field, resulting in the field-angle
dependence of a characteristic magnetic field in which interlayer resistance has a minimum due to
spin splitting N = 0 Landau levels. The qualitative agreement between the theory and experimental
results for the field-angle dependence of interlayer magnetoresistance is obtained.

Keywords: Dirac electron; Landau level; interlayer magnetoresistance; organic conductor;
α-(BEDT-TTF)2I3

1. Introduction

The electron correlation effects in two-dimensional Dirac electron systems have attracted much
attention [1–5]. In the Dirac electron system of organic conductor α-(BEDT-TTF)2I3 [6–13], it was shown
that the electron correlation effects become a key factor to understanding electronic properties [14–22],
since the Coulomb interaction is comparable with the band width. Moreover, the Fermi energy almost
coincides with the Dirac point in α-(BEDT-TTF)2I3; thus, any other energy bands do not overlap with
Fermi energy [23,24]. α-(BEDT-TTF)2I3 has a clean Dirac electron system, since the density of impurity
is estimated to the ppm order [23,24]. These features are also advantageous to developing the physics
of the correlated Dirac electron system.

The layered structure of α-(BEDT-TTF)2I3 enables interlayer magnetoresistance measurements,
which revealed the anomalous electronic properties of two-dimensional Dirac electron systems
connected by weak interlayer tunneling [25–30]. In the magnetic field normal to the conductive layer,

the energy of Landau levels in a massless Dirac electron system is expressed as EN = ±
√

2eh̄v2
F|N|B,

where h̄, vF, N, and B denote the Planck constant, the Fermi velocity of the Dirac cone, the Landau
index, and the magnetic-field strength, respectively. One of the characteristic features in these systems
is the appearance of N = 0 Landau levels at the Dirac points. This effect was detected in interlayer
magnetoresistance under a transverse magnetic field [25,26]. Interlayer magnetoresistance primarily
depends on the interlayer tunneling of the Landau carriers, where Landau carriers indicate the carriers
belonging to Landau levels that contribute to electric current. Note that in each Landau levels there
are states with density proportional to B. Thus, the magnetic field creates mobile N = 0 Landau level
carriers. The effect of the magnetic field appears only through the change of the N = 0 Landau level
carrier density at the vicinity of the Dirac points. Thus, negative interlayer magnetoresistance due to
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the increase of the degeneracy of the N = 0 Landau levels was observed [25,26]. It was also shown
that interlayer resistance has a minimum for gµBB0/2 ∼= h̄/τ̃ due to the Zeeman splitting of the N = 0
Landau levels, where g, µB, and τ̃ denote the g-factor, the Bohr magneton, and the relaxation time,
respectively. If the electron correlation effects in the Landau levels are negligible, B0 is independent of
the angle of the magnetic field.

The electron correlation effects in the Landau levels, however, have been controversial. Although
the possible ordered states due to Coulomb interaction, such as the valley-ordered state [31–33] and
the interlayer spin-ordered state [34,35], were proposed, it was suggested that the anomalous increase
of the spin lattice relaxation rate at low temperatures [33] can be explained by the spin transverse
fluctuation in the absence of ordered states [36].

In the present study, we investigate the effects of the electron correlation between N = 0 Landau
level carriers on interlayer magnetoresistance as a function of field-angle θ from the interlayer axis
in collaboration with theory and experiment. The effective g-factor, g∗, is treated using the mean
field theory of the Coulomb interaction between the tilted Dirac electrons in the quantum limit. It is
numerically shown that effective Coulomb interaction VHS, which enhances g∗, is approximately
proportional to (B cos θ)γ, where γ depends on the tilt of the Dirac cone. It is found that a characteristic
magnetic field B0, at which the interlayer resistance has a minimum, depends on θ and temperature
T, where the inverse of B0 is proportional to cos θ approximately and the coefficient increases as T
decreases. These results are in qualitative agreement with the experiment.

2. Method

2.1. Formulation

In α-(BEDT-TTF)2I3, there are two band-crossing points called Dirac points being assigned as
the right (R) and left (L) valleys. The effective Hamiltonian describing the Dirac electron system in
α-(BEDT-TTF)2I3 is given by [10,31]

H = H0 + H′, (1)

where kinetic energy term H0 is

H0 = ∑
qγγ′τs

a†
rγ,τs[Ĥ

τs
0 ]γγ′ arγ′ ,τs, (2)

Ĥτs
0 = −iτh̄v

(
η∂x ∂x − iτ∂ y

∂x + iτ∂y η∂x

)
, (3)

where a†
rγ,τs and arγ,τs represent creation and annihilation operators, respectively, with two dimensional

space r = (x, y), Luttinger–Kohn base γ [10,37], valley τ = ± (R, L), and spin s = ± (↑, ↓). The degree
of tilt η is defined by η = v0/v with cone velocity v and tilt velocity v0, where the anisotropy of the
cone velocity is ignored here for simplicity [31]. The energy eigenvalue of H0 is given by

E = h̄v
(

ηkx ±
√

k2
x + k2

y

)
, (4)

with two-dimensional momentum kx and ky. The left inset in Figure 1 shows the tilted Dirac cone,
where v± v0 are velocities in the ±kx directions, respectively. Interaction term Ĥ′ is given by

Ĥ′ =
1
2

∫
dr
∫

dr′V(r− r′)n(r)n(r′) (5)

with long-range Coulomb interaction V(r) = e2/εr and electron density operator n(r).
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Figure 1. Theoretical results on |B cos θ| dependences of VHS for η = 0 (circle), 0.5 (triangle),
0.8 (inverted triangle), and 0.9 (diamond). The right inset shows the η dependence of γ. The left
inset indicates the tilted Dirac cone, where v and v0 are cone velocity and tilt velocity, respectively.

The energy spectrum of the two-dimensional electronic system is quantized under a tilted
magnetic field, B = ∇ × A = (Bx, By, Bz), given by the vector potential with the Landau gauge,
A = (Byz− Bzy,−Bxz, 0). The Hamiltonian under the magnetic field is obtained by Peierls substitution
−i∇ → −i∇+ (e/h̄)A and Zeeman energy EZ = gµBB/2 with B = |B|. The Landau levels are given
by ENs = sgn(N)(h̄v/l)

√
2λ3|N| − sEZ with λ =

√
1− η2 and magnetic length l =

√
h̄/e|Bz|.

The wave function Ψτ
N,k(r) for the N = 0 Landau level is given by References [11,27,38]

Ψτ=+
N=0,k(r) =

1√
2(1 + λ)

(
−η

1 + λ

)
φN=0,k(r), (6)

Ψτ=−
N=0,k(r) =

1√
2(1 + λ)

(
−1− λ

η

)
φN=0,k(r), (7)

where

φN=0,k(r) =
λ1/4
√

2π

1(√
πl
)1/2 eikxe−Ỹ2/2 (8)

with Ỹ =
√

λ
l (y− Y) and center coordinate Y = l2k. When H = 5 T, E1

∼= 3.5 meV using values of
parameters for α-(BEDT-TTF)2I3, where velocity v = 1.0× 105 m/s and v0 = 0.8× 105 m/s are given
by the band calculation [10,23,31], 2EZ

∼= 0.5 meV with g = 2, l ∼= 14 nm.
In the present study, we consider the N = 0 Landau levels in order to study interlayer

magnetoresistivity in the quantum limit and, for the case of E1 � EZ. The effective g-factor, g∗,
is treated by the mean field theory. The Green function Gs(k, iεn) is defined by

Gs(k, iεn) =
1

iεn + µ + sEZ − Σs
, (9)

where εn = (2n + 1)π/β is fermion Matsubara frequency with β = 1/kBT and integer n, and µ is the
chemical potential, determined so that the Fermi energy coincides with the Dirac point. The self-energy
Σs is given by self-consistent equation

Σ↑ − Σ↓ = −VHSmz, (10)

with effective Coulomb interaction VHS = ∑τ′ [V(0)]τ,τ,τ′ ,τ′ , magnetization mz = n↑ − n↓, and electron
density for spin s, ns, where

Σs =
1
D ∑

k′

1
β ∑

ε′n

∑
τ′
[V(0)]τ,τ,τ′ ,τ′G−s(k′, iε′n) (11)
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and the Coulomb interaction matrix [V(q)]τ1τ2,τ3,τ4 for the N = 0 Landau levels is given by

[V(q)]τ1τ2,τ3,τ4 =
1
2

∫
dr
∫

dr′V(r− r′)×

[Ψτ2
N=0,k+q(r)

† ·Ψτ1
N=0,k(r)][Ψ

τ4
N=0,k′−q(r

′)† ·Ψτ3
N=0,k′(r

′)], (12)

where the degeneracy of center coordinate D = LxLy/2πl2 with length Lx and Ly in the x and y
directions, respectively. The effective Coulomb interaction depends on magnetic length l, so effective
Coulomb interaction depends on angle θ. Effective spin splitting E∗Z is given by

E∗Z = g∗µBB/2 = EZ + ∆ (13)

with ∆ = Σ↓ = −Σ↑ ≥ 0 for the charge neutral system µ = 0. Thus, effective g-factor g∗ is given by

g∗ = g + 2∆/µBB. (14)

Thus, the energy eigenvalues of N = 0 Landau levels are modified as follows:

EN=0,s = −sE∗Z = −s(EZ + ∆). (15)

Interlayer conductivity is given by interlayer coupling as a perturbation [25]. The perturbation
Hamiltonian H′ is given by

Ĥ′ = −2tc cos
(
−ic

∂

∂z

)(
1 0
0 1

)
(16)

where tc and c represent interlayer transfer energy and interlayer spacing, respectively. In the quantum
limit, N = 0 Landau levels are dominant in magnetotransport. The effective transfer energy between N
= 0 Landau levels in neighboring layers is given by [25]:

t̃c(Y′, z′i; Y, zi) = tc × exp

−1
4

c2e
(

B2
x + B2

y

)
h̄|Bz|


× exp

[
i
eBx

h̄
(z′i − zi)

Y + Y′

2

]
, (17)

where zi is the layer position, and the neighboring layers are z′i = zi ± c. The center coordinate of
initial state Y on one layer z = zi, and that of final state Y′ on neighboring layer z = zi ± c satisfy
the condition

Y′ = Y±
By

Bz
c. (18)

The complex interlayer conductivity σ̃zz(ω) is given by [25]:

σ̃zz(ω) = − ih̄
L2 ∑

Y,zi ,τ,s;Y′ ,z′i ,τ
′ ,s′

〈
N = 0, Y, zi, τ, s

∣∣ ĵz
∣∣N = 0, Y′, z′i, τ′, s′

〉
×
〈

N = 0, Y′, z′i, τ′, s′
∣∣ ĵz
∣∣N = 0, Y, zi, τ, s

〉
×

f (EN=0,s)− f (EN=0,s′)

EN=0,s′ − EN=0,s

1
EN=0,s′ − EN=0,s − h̄ω− ih̄/τ̃

, (19)
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where τ̃ and ĵz represent relaxation time and interlayer current density, respectively. The center
coordinate Y is associated with wavenumber k by relation expression Y = l2k. Interlayer current
density is given by ĵz = (−e)(1/ih̄)[ẑ, Ĥ′].

The leading term of real conductivity is given by [25]:

σzz =
2Ct2

c ce3τ̃|Bz|
πh̄3 exp

[
−

ec2(B2
x + B2

y)

2h̄|Bz|

]
(20)

with

C = ∑
sτ

∫
Dsτ(E)2

(
−d f

dE

)
dE (21)

where Dsτ(E), tc and c denote density of states for spin s and valley τ, interlayer transfer energy,
and interlayer spacing, respectively. Interlayer resistivity ρzz is given by ρzz ' 1/σzz, since interlayer
Hall conductivities σxz and σyz are negligibly smaller than other components [39,40].

2.2. Experimental Method

2.2.1. Crystal Growth

Either the electrolysis method or the diffusion method are generally used in the crystal growth of
organic conductors. We synthesized organic conductor α-(BEDT-TTF)2I3 by the electrolysis method
using an H-type cell. BEDT-TTF molecules and I−3 anions are desolved in a supporting electrolyte (THF,
benzonitrile, chlorobenzene, etc.). Then, we supply electrical current (1∼5 µA) between platinum
electrodes. After about 1∼2 weeks, small single crystals appear on the positively based platinum
electrode. The typical size of a crystal is 1× 0.5× 0.05 mm3.

2.2.2. Experiments of Interlayer Magnetoresistance Under Pressure

A sample with a dimension of approximately 0.7 × 0.5 × 0.05 mm3, on which four electrical
leads (gold wire with a diameter of 15 µm) are attached by carbon paste, is put in a Teflon capsule
filled with the pressure medium (Idemitsu DN-oil 7373); then, the capsule is set in a NiCrAl clamp
cell, and hydrostatic pressure of up to 1.7 GPa is applied. The hydrostatic pressure is determined at
room temperature by a Manganine resistance gauge in the pressure cell. The interlayer resistance of a
crystal is measured by a conventional DC method with an electrical current of 1 µA along the c-crystal
axis, which is normal to the two-dimensional plane. In the investigation, interlayer magnetoresistance
is measured as functions of B and θ which is the angle between the magnetic-field direction and
c-crystal axis at T = 0.5, 1.7, 2.5, 3.0, 3.5, and 4.2 K. As mentioned in the introduction, interlayer
magnetoresistance is a useful tool to detect the effects of N = 0 Landau levels, including its Zeeman
splittings.

3. Results

Figure 1 shows the theoretical results on |B cos θ| (= |Bz|) dependences of effective Coulomb
interaction VHS for tilt parameter η = 0, 0.5, 0.8, and 0.9. It is numerically shown that VHS ∝ |B cos θ|γ
approximately for |B cos θ| > 3. Effective Coulomb interaction depends on magnetic length l, which is
a function of |Bz|, as shown in Equation (12). Thus, effective Coulomb interaction depends on angle
θ. The left inset shows the tilting Dirac cone, where v and v0 represent cone velocity and tilt velocity,
respectively. The right inset shows the η dependence of γ, where γ increases as η increases. Thus,
we use a relation, VHS = u|B cos θ|γ, with γ = 0.87 for the tilted Dirac cones in α-(BEDT-TTF)2I3 with
η = 0.8 [23] hereafter. Parameter u = 0.3 is chosen to fit with the experimental results.

Figure 2a,b shows the theoretical results on the B-dependences of g∗ and E∗Z, respectively, for θ = 0,
20, 40, and 60◦ at T = 1.7 K. It is found that both g∗ and E∗Z enhance by VHS depend on θ. When
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θ = 90◦, g∗ = g and E∗Z = EZ, since VHS = 0. Although E∗Z increases monotonically as B increases, g∗

has a maximum since ∆ divided by B contributes to g∗.
Figure 3a shows the theoretical results on B-dependences of interlayer resistivity ρzz for θ = 0,

20, 40, and 60◦ at T = 1.7 K. ρzz has a minimum at B0. It is found that B0 increases as θ increases
due to θ-dependence of E∗Z. Figure 3b shows the experimental results on B-dependences of interlayer
resistance Rzz for θ = 0, 20, 40, and 60◦ at T = 1.7 K. B0 obtained in the experimental results also
increases as θ increases.

In a general two-dimensional system, E∗Z dose not depend on θ. The agreement between the
theory and experiment of interlayer magnetoresistance shown in Figure 3 indicates that effective
Coulomb interaction plays an important role to the Zeeman effects. In the following, peculiar Zeeman
effects in this system are examined.

The first step is to investigate g∗ for θ = 0 from the interlayer-magnetoresistance minimum, where
g∗µBB0 ∼ 2h̄/τ̃. Here, the rough of broadening energy h̄/τ̃ of the Landau levels in this system is 3 K
at low temperatures [32]. g∗ for θ = 0 is roughly estimated to be 5 experimentally at 1.7 K; this is close
to the theoretical value, which is approximately 5.3 at B0 ∼ 1.8 T, as shown in Figure 2a.
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Figure 3. (a) theoretical results on B-dependences of ρzz for θ = 0 (solid line), 20 (dotted line),
40 (dashed line), and 60◦ (dot-dashed line) at T = 1.7 K. (b) experimental results on B-dependences of
Rzz for θ = 0, 20, 40, and 60◦ at T = 1.7 K.

Lastly, the peculiar Zeeman effects on the θ-dependence of the interlayer magnetoresistance
minimum are detected. In Figure 4a, the theoretical results on θ dependences of B−1

0 are drawn as
functions of cos θ for T = 0.5, 1.7, 2.5, 3.0, 3.5, and 4.2 K. It is numerically shown that 1/B0 ∼= a cos θ + b
when θ is close to 0◦. Note that this numerical calculation is not applicable when θ is close to 90◦,
where contributions of higher Landau levels in interlayer resistivity are not negligible. Figure 4b
shows the experimental results on cos θ dependences of B−1

0 for T = 0.5, 1.7, 2.5, 3.0, 3.5, and 4.2 K.
The experimental results also show the same approximate relation on B−1

0 as a linear function of cos θ.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

B
0
-1
[T
-1
]

cosθ

T=0.5K

1.7K

2.5K

3.0K

3.5K

4.2K

(a)

Figure 4. Cont.



Crystals 2019, 9, 212 8 of 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

B
0
-1
[T
-1
]

cosθ

T=0.5K

1.7K

2.5K

3.0K

3.5K

4.2K

(b)

Figure 4. (a) theoretical results on cos θ dependences of B−1
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2.5 (open triangle), 3.0 (inverted open triangle), 3.5 (open diamond), and 4.2 K (open pentagon). When
cos θ is close to 1, numerical results show a relation 1/B0 ∼= a cos θ + b approximately, where a and b
are independent of θ. (b) experimental results on cos θ dependences of B−1

0 for T = 0.5 (filled square),
1.7 (filled circle), 2.5 (filled triangle), 3.0 (inverted filled triangle), 3.5 (filled diamond), and 4.2 K (filled
pentagon). As with the theoretical results, the experimental results show relation 1/B0 ∼= a cos θ + b
approximately when cos θ is close to 1.

Figure 5 shows the theoretical and experimental results on T dependencies of coefficient a. It is
found that coefficient a increases as T decreases, indicating remarkable θ dependence of B−1

0 at very low
temperatures T ≤ 1.7 K. Those results show qualitative agreement between theory and experimental
results for the field-angle dependence of interlayer magnetoresistance.
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Figure 5. Theoretical results (filled square) and experimental results (filled circle) of coefficient a as
a function of T in relation 1/B0 ∼= a cos θ + b. Coefficient a increases as T decreases. Coefficient a
especially rapidly increases at low temperatures. Theoretical and experimental results coincide.
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4. Discussion

Those theoretical curves in Figures 3a and 4a qualitatively reproduce the experimental results
including the characteristic features of the resistance minimum as shown in Figures 3b and 4b. Here,
the theoretical results do not coincide with the experimental results near B = 0 T, since only N
= 0 Landau levels are examined in the present theoretical calculation. This theoretical approach,
however, is valid because the special Landau-level structure in this system realizes the quantum limit
in the magnetic field above 0.07 T for a perpendicular component to the two-dimensional plane at
1.7 K [32,41].

In the present study, the value of u for VHS is chosen to fit with the experimental results. The value
of u will be evaluated by taking the Thomas–Fermi screening effect into account. The effects of the
Coulomb interaction in N 6= 0 Landau levels is also going to be studied in the mean field calculation.
In addition, interlayer magnetoresistance is also going to be studied, taking N 6= 0 Landau levels into
account, which leads to the maximum of the interlayer resistance under weak magnetic fields [26,28].

5. Conclusions

In conclusion, the effect of the Coulomb interaction in interlayer magnetoresistance was elucidated
in collaboration with theory and experiments for the Dirac electron system in organic conductor
α-(BEDT-TTF)2I3. It was shown that enhancement of the effective g-factor due to the Coulomb
interaction for N = 0 Landau levels depends on field angle θ. This was the key factor to explain the
field-angle dependence of B0 at which interlayer resistance has a minimum.

The value of the effective g-factor obtained in the present study at θ = 0 under a strong magnetic
field is consistent with the theoretical and experimental results of the Nernst effect [42,43]. This is
also consistent with the theoretical and experimental results of the spin-lattice relaxation rate [33,36].
The quantum Hall ferromagnetic state assumed in the present study supports the helical surface
state [29].
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