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Abstract: We present a theoretical analysis and linear scaling of two-wavelength surface
nanostructures formed at the free surface of cholesteric liquid crystals (CLC). An anchoring model
based on the capillary shape equation with the high order interaction of anisotropic interfacial
tension is derived to elucidate the formation of the surface wrinkling. We showed that the main
pattern-formation mechanism is originated due to the interaction between lower and higher order
anchoring modes. A general phase diagram of the surface morphologies is presented in a parametric
space of anchoring coefficients, and a set of anchoring modes and critical lines are defined to categorize
the different types of surface patterns. To analyze the origin of surface reliefs, the correlation between
surface energy and surface nano-wrinkles is investigated, and the symmetry and similarity between
the energy and surface profile are identified. It is found that the surface wrinkling is driven by
the director pressure and is annihilated by two induced capillary pressures. Linear approximation
for the cases with sufficient small values of anchoring coefficients is used to realize the intrinsic
properties and relations between the surface curvature and the capillary pressures. The contributions
of capillary pressures on surface nano-wrinkling and the relations between the capillary vectors are
also systematically investigated. These new findings establish a new approach for characterizing
two-length scale surface wrinkling in CLCs, and can inspire the design of novel functional surface
structures with the potential optical, friction, and thermal applications.

Keywords: cholesteric liquid crystal; two-length scale surface wrinkling; capillary shape equation;
anisotropic surface energy

1. Introduction

A variety of periodic surface structures and wrinkled textures are widely found in the plant and
animal kingdoms [1–6]. Since these surface ultrastructures with micro/nano scale features provide
unique optical responses and iridescent colors [7–11], understanding their formation mechanism is
crucial in realizing structural color in nature and in biomimetic design of novel photonic systems.
As similar nano/micro scale periodic wrinkles are formed at the free surface of both synthetic and
biological cholesteric liquid crystals (CLCs) [12,13], and CLC phases are widely found in Nature
and living soft materials both in vivo and vitro [13,14], nematic liquid crystal self-assembly has been
proposed as the formation mechanism of helicoidal plywoods and the surface ultrastructures in many
fibrous composites ranging from plant cell walls to arthropod cuticles [15–19]. Moreover, it has been
shown that the characteristics of chiral phases control the unique colors and optical properties exhibited
in the films and fibers made by cellulose-based CLCs [20,21].

Inspired by surface ultrastructure in Nature, engineered surface structures incorporating chiral
nematic structures can be fabricated to mimic the unique optical properties. If the formation of the
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surface patterns can be efficiently captured by a rigorous model based on a CLC mesophase, we
can elucidate the pattern formation mechanisms for the construction of biomimetic proof-of-concept
prototypes. In our previous works [22–24], significant efforts have been made in formulating and
validating theoretical models to explain the formation of surface wrinkles in a plant-based CLC as a
model material system. We identified the chiral capillary pressure, known as director pressure, that
reflects the anisotropic nature of CLC through the orientation contribution to the surface energy as the
fundamental driving force in generating single-wavelength wrinkling. However, surface wrinkling
in nature can include more complex patterns such as multiple-length-scale undulations [11,25–27].
To elucidate this feature, we previously proposed a physical model [28,29] that combines membrane
bending elasticity and liquid crystal anchoring. A rich variety of multi-scale complex patterns, such
as spatial period-doubling and period-tripling are presented for the cases in which the anchoring
and bending effects are comparable [28]. In a recent communication [30], we briefly presented a pure
higher order anchoring model in the absence of bending elasticity, surprisingly capturing multiple
length-scale surface wrinkles. In this previous work, a novel mechanism for the formation of two-scale
nano-wrinkling was proposed, which was exclusively based on anchoring energy including quartic
harmonics. Here, we present a complete and rigorous new analysis of the multiple-length-scale surface
wrinkles based on the pure higher order anchoring model in full detail and approximate the response
of the surface structure to chirality and anchoring coefficients based on a linear model. In addition,
a fundamental characterization of the capillary vector and capillary pressures required to connect
surface geometry and mechanical forces is presented.

The objective of this paper is to identify the key mechanisms that induce and resist the
multiple-length-scale surface wrinkling in CLCs based on a pure higher order anchoring model.
To develop the anchoring model, we used the generalized shape equation for anisotropic interfaces
using the Cahn-Hoffman capillarity [31] and the Rapini-Papoular quartic anchoring energy [32].
The presented model depicts the formation mechanism of two-length scale surface patterns based on
the interaction between lower and higher order anchoring modes. The linear approximations of surface
curvatures are derived to provide the explicit relations between the anchoring coefficients, helix pitch,
and surface profile of the two-length scale wrinkles. These new findings can establish a new strategy
for characterizing two-length scale surface wrinkling in biological CLCs, and inspire the design of
novel functional surface structures with the potential optical, friction, and thermal applications.

The organization of this paper is as follows. Section 2 presents the geometry and structure of
the CLC system. Section 3 presents the governing nemato-capillary shape equation expressing the
coupling mechanism between the surface geometry and anisotropic ordering for a CLC free interfaces
with a quartic anchoring energy and a pure surface splay-bend deformation. Appendix A presents the
details of the derivation of the Cahn-Hoffman capillary vector thermo-dynamics for CLC interfaces.
Appendix B describes the capillary shape equation in terms of three capillary pressures. Appendix C
represents the shape equation based on the driving and resisting terms. Section 4 analyzes the effect of
anchoring coefficients and helix pitch on the surface normal angle and the resultant surface profile. In
this section, a general phase diagram of surface profiles in the parametric of anchoring coefficients
is presented and the origin of the two scales is revealed through the linear theory. Then, the linear
approximations of surface curvatures, assuming small values of anchoring coefficients, are derived to
identify the leading mechanism controlling the surface wrinkling. Appendix D proposes the analytical
expression for the linear approximation of the surface relief. The surface energy associated with the
CLC interface is also analyzed to establish an energy transfer mechanism from anchoring energy
of a flat surface into a wrinkled surface. Furthermore, the surface wrinkles are evaluated through
analyzing the three capillary pressures, and the pressure–curvature relations are introduced to explore
the variation of curvature profile with respect to the capillary pressures. Appendix E represents the
derivation of the pressure–curvature relations. Finally, the capillary vectors are formulated to provide
a clear physical explanation for the formation of the surface wrinkles. Appendix F formulates the
capillary vectors. Section 5 presents the conclusions.
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2. Geometry and Structure

Figure 1 depicts the schematics of the CLC structure where ellipsoids indicate fiber orientation on
each parallel layer. We assume that the helix axis, H is parallel to the surface; other complex structures
occurring when the helix axis H is distorted are beyond the scope of this paper. The fiber orientation at
the interface is defined by the director n. The pitch length P0 is defined as the distance through which
the fibers undergo a 2π rotation. For a rectangular (x,y,z) coordinate system, the surface relief that is
directed along the x axis can be described by a y(x,z) deviation from the xz plane. The amplitude of
the vertical undulation is h(x). As the surface relief is constant in the z direction for a linear texture, the
curvature in the z-direction is zero. The unit tangent, t, and the unit normal, k, to the surface can be
expressed with the normal angle, ϕ: t(x) = (sinϕ(x), −cosϕ(x), 0), k(x) = (cosϕ(x), sinϕ(x), 0).
L is the given system length in the x direction. The arc-length measure of the undulating surface is “s”.

Crystals 2019, 9 FOR PEER REVIEW  3 

 

2. Geometry and Structure 

Figure 1 depicts the schematics of the CLC structure where ellipsoids indicate fiber orientation 
on each parallel layer. We assume that the helix axis, H is parallel to the surface; other complex 
structures occurring when the helix axis H is distorted are beyond the scope of this paper. The fiber 
orientation at the interface is defined by the director n. The pitch length P0 is defined as the distance 
through which the fibers undergo a 2π rotation. For a rectangular (x,y,z) coordinate system, the 
surface relief that is directed along the x axis can be described by a y(x,z) deviation from the xz plane. 
The amplitude of the vertical undulation is h(x). As the surface relief is constant in the z direction for 
a linear texture, the curvature in the z-direction is zero. The unit tangent, t, and the unit normal, k, to 
the surface can be expressed with the normal angle, φ: 𝒕ሺ𝐱ሻ = ሺsin φሺxሻ, െcosφሺxሻ, 0ሻ , 𝐤ሺxሻ =ሺcos φሺxሻ, sinφሺxሻ, 0ሻ. L is the given system length in the x direction. The arc-length measure of the 
undulating surface is “s”. 

 
Figure 1. Schematic of a cholesteric liquid crystals (CLC) and surface structures. H is the helix unit 
vector, and P0 is the pitch. The surface director has an ideal cholesteric twist in the bulk. The helix 
uncoiling near the surface creates a bend and splay planar (2D) orientation and surface undulations 
of nanoscale relief h(x) with micron range wavelength P0/2. Adapted from [22]. 

3. Governing Equations 

In this paper, we assume that the multi-length scale surface wrinkles are formed through 
modulation in surface energy at the anisotropic-air interface of CLCs. The typical capillary shape 
equations, which are generalized forms of a Laplace equation including the liquid crystal order and 
gradient density have been comprehensively formulated and previously presented for liquid crystal 
fibers, membranes, films, and drops [33]. Here, the coupling mechanism between the surface 
geometry and CLC order are demonstrated through the capillarity shape equation for CLC free 
interfaces with a pure surface splay-bend deformation. 

The formation of surface nanostructures in CLC interfaces is a complex phenomenon involving 
interfacial tension, surface anchoring energy, and bulk Frank elasticity that requires integrated multi-
scale modelling of bulk and surface. However, the analytic solution of the problem with the usual 
formalism is very complicated. Here, we assume a cholesteric director field in the bulk region,

nb(x) = (0,cosθ,sinθ) , and a splay-bend director field at the interface ( ) (cos , sin , 0)x θ θ=n  where

θ = qx,q = 2π / Po ,θ is the director angle, q is the wave vector, and P0 is the helix pitch. 
Based on the generalized Rapini-Papoular equation [24], the interfacial surface energy, γ 

between a liquid crystal phase and another phase can be described by [32] 

Figure 1. Schematic of a cholesteric liquid crystals (CLC) and surface structures. H is the helix unit
vector, and P0 is the pitch. The surface director has an ideal cholesteric twist in the bulk. The helix
uncoiling near the surface creates a bend and splay planar (2D) orientation and surface undulations of
nanoscale relief h(x) with micron range wavelength P0/2. Adapted from [22].

3. Governing Equations

In this paper, we assume that the multi-length scale surface wrinkles are formed through
modulation in surface energy at the anisotropic-air interface of CLCs. The typical capillary shape
equations, which are generalized forms of a Laplace equation including the liquid crystal order and
gradient density have been comprehensively formulated and previously presented for liquid crystal
fibers, membranes, films, and drops [33]. Here, the coupling mechanism between the surface geometry
and CLC order are demonstrated through the capillarity shape equation for CLC free interfaces with a
pure surface splay-bend deformation.

The formation of surface nanostructures in CLC interfaces is a complex phenomenon involving
interfacial tension, surface anchoring energy, and bulk Frank elasticity that requires integrated
multi-scale modelling of bulk and surface. However, the analytic solution of the problem with
the usual formalism is very complicated. Here, we assume a cholesteric director field in the bulk
region, nb(x) = (0, cos θ, sin θ), and a splay-bend director field at the interface n(x) = (cos θ, sin θ, 0)
where θ = qx, q = 2π/Po, θ is the director angle, q is the wave vector, and P0 is the helix pitch.

Based on the generalized Rapini-Papoular equation [24], the interfacial surface energy, γ between
a liquid crystal phase and another phase can be described by [32]

γ = γ0 +
∞

∑
i=1
µ2i(n · k)

2i (1)
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where γ0 is the isotropic contribution, n is the director field at the interface, k is the surface unit normal,
and µ2i are the temperature/concentration dependent anchoring coefficients. The preferred orientation
that minimizes the anchoring energy (Equation (1)) is known as the easy axis. The actual stationary
surface director orientation is the result of a balance between surface anchoring and bulk gradient Frank
elasticity [34]. For the cases in which the gradient Frank elasticity is insignificant, the actual stationary
and preferred director fields are identical. As shown in ref. [22], for the cholesteric–air interface with
quite strong anchoring, the gradient Frank elasticity is negligible in comparison with anchoring in
the formation of the surface undulations. It should be noted that here we neglect the Marangoni flow
that is likely to be formed due to the orientational-driven surface tension gradients [35–37]. Other
effects and processes such as 3D orientation structures, strong nonlinearities, hydrodynamic [38,39],
and viscoelastic effects [40–42] discussed elsewhere are beyond the scope of this paper.

The generalized Cahn-Hoffman capillary vector Ξ [43,44], is the fundamental quantity that
reflects the anisotropic contribution of CLC in the capillary shape equation. It contains two orthogonal
components: normal vector, Ξ⊥ representing the increase in surface energy through dilation (change
in area) and tangent vector, Ξ‖ representing the change in surface energy through rotation of the unit
normal. The derivation details of the Cahn-Hoffman capillary vector thermodynamics for anisotropic
interfaces are given in Appendix A [31].

Ξ = Ξ⊥(n, k) + Ξ||(n, k) (2)

Ξ⊥ = γk; Ξ|| = Is ·
∂γ

∂k
(3)

Here Is = I-kk is the 2× 2 unit surface dyadic, and I is the identity tensor. The dyadic (kk)m is
similar to (tt)m due to (kk)m = R · (tt)m ·R−1, where t is the unit tangent and R is the rotation matrix
∈ SO(2) satisfying k = R · t(see refs [45] and [46] for details):

R =

[
0 −1
1 0

]
(4)

The following identity holds:
nn : kk + nn : tt = 1 (5)

The interfacial static force balance equation at the CLC/air interface is expressed by

− k · (Ta − Tb) = ∇s · Ts (6)

where Ta/b represent the total stress tensor in the air and the bulk CLC phase,∇s = Is · ∇ is the surface
gradient operator, and Ts is the interface stress tensor. The air and the bulk CLC stress tensor, Ta/b are
given by

Ta = −paI and Tb = −(pb − fg)I + TE (7)

where pa/b are the hydrostatic pressures, fg is the bulk Frank energy density, and TE is the Ericksen
stress tensor. The bulk Frank energy density for a CLC reads

fg = K1
2 (∇ · n)2 + K2

2 (n · ∇ × n− q)2 + K3
2 (n×∇× n)2

+ 1
2 (K2 + K4)[tr(∇n)2 − (∇ · n)2]

(8)

where {Ki}(i = 1, 2, 3) are splay, twist, and blend elastic constant, respectively. K4 is saddle-splay
elastic constant. The Ericksen stress tensor, TE is given by

TE = −
∂ fg

∂∇n
· (∇n)T (9)
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The projection of Equation (6) along direction k yields the capillary shape equation:

(pa − pb) + fg + kk :
[
−

∂ fg

∂∇n
· (∇n)T

]
︸ ︷︷ ︸

stress jump, SJ

= (∇s · Ts) · k︸ ︷︷ ︸
−pc

(10)

where stress jump, SJ, is the total normal stress jump, and pc is the capillary pressure. Usually we take
pa − pb = 0, and consider the other terms as elastic correction. The interfacial torque balance equation
is given by

− h + k ·
∂ fg

∂∇n
= λsn (11)

where λs is the Lagrange multiplier and h is the surface molecular field composed by two parts:

h = −∂γan

∂n︸ ︷︷ ︸
han

−
∂γg

∂n
+∇s.

(
∂γg

∂∇sn

)
︸ ︷︷ ︸

hg

(12)

Here γg is the gradient interfacial free-energy density defined by introducing surface gradient
energy density vector g:

g := (n · ∇)n− n(∇ · n) and γg =
1
2
(K2 + K4)k · g (13)

By multiplying (∇n)T on both sides of Equation (11), the torque balance equation can be rewritten
in a compact form:

− h · (∇n)T + k · TE = 0 (14)

Equation (14) gives an alternative path to compute kk : TE. The expansion of the term hk :
(∇n)T reads

hk : (∇n)T =

[
−∂γan

∂n
−

∂γg

∂n
+∇s ·

(
∂γg

∂∇sn

)]
· (∇n)T · k (15)

which gives hk : (∇n)T = 0. Thus, only the bulk energy density, fg, contributes to the elastic correction,
which is negligible [22]. For typical cholesteric liquid crystals, the internal length K/γ0 is in the range
1 nm (an order of magnitude estimation of the elastic constant K and the surface tension γ0 gives K ≈
10−11 J/m and γ0 ≈ 10−2 J/m2) [43]. As the ratio of W/γ0 at the cholesteric–air interface with quite
strong anchoring lies in the range (B = W/γ0 = 0.01), the extrapolation length scale K/W is about
K
W =

K
γ0
W
γ0

∼ 1 [nm]
0.01 ∼ 100 [nm]. With these values, for a typical CLC with a pitch P0 ∼ 1.2 µm, the ratio

of extrapolation length scale to pitch is in the order of K/W
P0

= 20 [nm]
1200 [nm]

= 0.08. So, the elastic correction
contributes 8% to the shape equation, and can be neglected to describe nano-scale surface undulations.
As the result, the final shape equation becomes (see Appendix B)

pc = −(∇s.Ts).k = ∇s.Ξ =
∂Ξ⊥
∂k

: (∇sk)︸ ︷︷ ︸
dilation pressure

+
∂Ξ||
∂k

: (∇sk)︸ ︷︷ ︸
rotation pressure

+
∂Ξ||
∂n

: ∇sn︸ ︷︷ ︸
director pressure

(16)

The first two terms contain ∇sk = −κtt, providing information about the surface curvature
κ = dφ

ds , where φ is the normal angle and s is the arc-length. The first term on the right-hand side of
Equation (16), which is the usual Laplace pressure, corresponds to the contribution from the normal
component of the Cahn-Hoffman capillary vector. The second term which is the anisotropic pressure
due to preferred orientation (known as Herring’s pressure) corresponds to the contribution from
the tangential component of the Cahn-Hoffman capillary vector Ξ‖. The last term in Equation (16)
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represents the additional contribution to the capillary pressure which corresponds to the director
curvature due to orientation gradients (see Appendix C). Considering a rectangular coordinate system
(x,y,z), where x is the wrinkling direction, and y is the vertical axis, and considering the typical
quartic anchoring model [24], γ = γo + γa; γa = µ2(n · k)2 + µ4(n · k)4, yields the nonlinear ordinary
differential equation (ODE) in terms of normal angle, φ:

dφ

dx
=

FDr

FRs
=

∂sn
sin φ

· 2[µ2∗ + 2µ4∗(n · k)2](n · k)t + 2[µ2∗ + 6µ4∗(n · k)2](n · t)k
1 + µ2∗[2(n · t)2 − (n · k)2] + 3µ4∗(n · k)2[4(n · t)2 − (n · k)2]

(17)

Here FDr denotes as the driving force and FRs the resistant term. The boundary condition at x = 0
is φ|x=0 = π

2 ; µ2∗ and µ4∗ are the scaled anchoring coefficients divided by isotropic surface tension γ0,
µ2∗= µ2/γ0 and µ4∗= µ4/γ0; and φ̃(x) is the approximation of φ(x). The generic features of the normal
angle and its periodicity are the important outputs of the shape equation. There are three significant
system parameters that have influence on the φ(x): the scaled anchoring coefficients (µ 2∗,µ4∗), and
the sign and magnitude of the helix pitch P0. Thus, the surface profile h(x) is a function of two material
properties (µ 2∗,µ4∗) and one structural order parameter (P0). In the following context, we always
assume that helix pitch is constant at P0 = 1.2 µm. Figure 2a depicts the regions with different surface
wrinkling in the parametric space of the scaled anchoring coefficients: O+

4 , O−4 , H+
2 , H−2 , P+

2 , H+
4 , H−4 .

Here O, H, and P refer to oblique, homeotropic, and planar director anchoring modes, respectively.
The reader is directed to reference [30] for a full discussion of these fundamental states. The subscript
numbers in O, H, and P indicate the wave number of morphologies in one period, and the superscript
sign differentiates the anchoring modes. The transition lines L1 and L2 are defined as L1 : µ4∗ = −µ2∗
and L2 : µ4∗ = −µ2∗/2, and the thermodynamic stability line (γ = 0) is S : µ4∗ = −1− µ2∗. Points A,
B, C, and D are chosen as the representative points in P+

2 , O+
4 , H+

2 , and H−4 regions with {µ2∗,µ4∗}:
A(0.002, 0.001), B(−0.002, 0.0015), C(−0.002, −0.001), and D(0.002, −0.0015). Points A and C, and B
and D are related by π rotation symmetry. It should be noted that for the cases in which the quartic
anchoring is zero, only single-wavelength sinusoidal profile can be obtained (µ4 = 0) in the linear
regime (|µ2∗| << 1).
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Two characteristic lines L1 : µ4∗ = −µ2∗ (blue dash-dot) and L2 : µ4∗ = −µ2∗/2 (purple dash-dot)
indicate wrinkling mode transitions, O+

4 , O−4 , H+
2 , H−2 , P+

2 , H+
4 , H−4 . The subscript numbers indicate

how many waves there are within one period. P, O, H represent planar, oblique, homeotropic anchoring,
respectively. The thermodynamic line, S, passing point µ2∗ = −1 illustrates the points where it ends on
µ2∗ and µ4∗ axes. A (+0.002, +0.001), B (−0.002, +0.0015), C (−0.002, −0.001), and D (+0.002, −0.0015)
are four representative points in region P+

2 , O+
4 , H+

2 , and H−4 , respectively. The region below the dotted
S line implies an unstable state because the surface tension is negative. (b) Surface relief profile in the
parametric (µ 2∗,µ4∗) space obtained using Equation (17). The anchoring coefficients correspond to all
computed curves are less than 0.01.



Crystals 2019, 9, 190 7 of 22

4. Results and Discussion

4.1. Surface Profile

The surface normal angle, φ(x) can be directly obtained through solving the governing shape
equation, Equation (17). The generic features of the normal angle φ(x), its magnitude, and its
periodicity are the three key outputs of the model. The two significant parameters influencing φ(x) are
the helix pitch P0, and the scaled anchoring coefficients µ2∗ and µ4∗, which affect the periodicity and
the magnitude of φ(x), correspondingly. Theoretically, µ2∗ and µ4∗ give two degrees of freedom to the
governing equation. But, for small anchoring coefficients and constant helix pitch, the shape of φ(x)
is only a function of the anchoring ratio, r = µ2/2µ4. The plot of normal angle φ(x) as a function of
the distance “x”, corresponding to the points A, B, C, and D, is shown in Figure 3a. As expected, the
periodicity equals the half pitch, P0/2, and the amplitude shows a slight deviation, φ(x) = π/2 + ε(x).
Figure 3b shows the effect of helix pitch on the normal angle φ(x) for the particular point B at three
different values of helix pitch P0, P0/2, and −P0/2. The helix pitch does not influence the amplitude’s
span of normal angle, but it changes the periodicity of the normal angle. By reducing the helix pitch to
half, a more squeezed normal angle profile can be observed. The sign of P0 reflects the normal angle
profile with respect to π/2. It should be noted that we can estimate the behavior of curvature κ by
checking the slope of φ(x) as κ(x) = ∂s[φ(x)] = φ′(x) sin φ(x) ≈ φ′(x).
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Figure 3. Normal angle profile. (a) The normal angle profiles corresponding to the points A, B, C, and
D as illustrated in Figure 2a: A (green; mode P+

2 ), B (blue, mode O+
4 ), C (red, full line, mode H+

2 ), and
D (red, dashed line, mode H−4 . (b) The normal angle profile for the point B at different helix pitch
values of P0, −P0, P0/2 and −P0/2, where P0 = 1.2 µm.

The surface profile is then obtained from

h(s) = −
∫ s

0
cot φ(x)dx (18)

Figure 4a shows typical surface profiles h(x) and corresponding energy profile for the point B and
point D. As shown in Figure 4a, increasing P0 results in both higher periodicity and magnitude. We can
clearly see that the surface relief profiles of points B and D exhibit the mirror symmetry, while changing
the sign of P0 result in the same mirror symmetry. These surface undulations can be validated with
the two-length-scale surface modulations observed in a sheared CLC cellulosic films [25]. The two
different scale periodical gratings include a primary set of bands perpendicular to the shear direction,
and a smoother texture characterized by a secondary periodic structure containing “small” bands.
It has been shown that the development and periodicities of the small bands are mainly ruled by
the CLC characteristics. The chirality of CLC can therefore be mainly responsible for the formation
of the secondary bands. The model can be also validated with the two-scale surface pattern of the
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Queen of the Night tulip [11], where for this specimen the ratio of amplitudes are h2/h0 = 0.01, and
corresponding wavelength is λ = 1.2 µm.

Figure 4b shows the scaled energy profile, (γ∗−1)
q , in comparison with the surface profile for point

B. The scaled energy profile gives the similar plot as the surface relief.
If we denote the parametric vector as µ∗ = (µ 2∗,µ4∗), then h(x) becomes a function depending

on two variables, the vector µ∗ and the helix pitch P0. Within a linear regime (|µ2∗| << 1, |µ4∗| << 1),
the following identities holds true:

Geometric Symmetries : h(µ∗, P0) = −h(−µ∗, P0) = −h(µ∗,−P0) = h(−µ∗,−P0) (19a)

Surface Geometry–Energy Relation : qh(µ∗, P0) = γ∗(µ∗, P0)− 1 (19b)

This identity formulates the symmetric property of surface relief, and its relation to surface energy.
Figure 4b is a clear demonstration of symmetry and scaling laws formulated in Equations (19a,b): if
we compare B and D we have mirror symmetry and if we plot the anchoring energy of B we would see

the same plot as the surface relief: −h(D, P0) = h(B, P0)︸ ︷︷ ︸
symmetry

, h(B, P0) =
γ∗(B, P0)− 1

q︸ ︷︷ ︸
geometry−energy

.
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Figure 4. Mirror symmetries observed in surface relief profiles. (a) The surface relief profiles at point B
with different helix pitches are given by the two blue curves and the black curve. The red curve gives
the surface relief profile at point D. The red and black ellipsoids depict the director orientation for point
B with P0/2 and point D with P0, respectively. These ellipsoids show where the surface extrema occur
for planar, homeotropic, and oblique anchoring. (b) The surface profile at point D and scaled energy
profile at point B. This figure indicates that there is similarity between surface relief profile and energy
profile. The helix pitch is.
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Another important parameter that categorizes the shape of surface relief is the ratio between
its two wavelengths. The origin of the two scales can be revealed through the linear theory, which
gives the signed amplitudes of h0 and h2 (the nomenclature is defined in Figure 4b) as a function of
anchoring ratio, r = µ2/2µ4:

h̃0

h̃2
=

r2

(1 + r)2 (20)

L1 and L2 are defined as the two mode transition lines. Line L1, which gives a four-wave profile within
one period corresponds to the condition µ4∗ = −µ2∗ (r = −1/2, h̃0 = h̃2). Line L2, which gives a
two-wave profile within one period corresponds to the condition µ4∗ = −µ2∗/2 (r = −1, h̃2 → 0).
In addition, if µ4∗ → 0 , then r → ∞ such that h̃0 → h̃2 , also gives a two-wave profile.

Figure 2b shows the general phase diagram of h-profiles in the parametric (µ 2∗,µ4∗) plane.
As shown in the figure, the transition lines L1 and L2 are the critical lines across which surface relief
changes its shape. We identify line L1 as a resonant line with the maximum interaction between
quadratic and quartic anchoring effects.

The computations show that h-profile is centrally symmetrical with respect to original point,
which can be observed in Figure 2b. As summarized as in Table 1, there are mainly three types of
surface wrinkling patterns. It should be noted that there is no difference between O4

+ and O4
− as

the patterns shown in one region are just a phase shift of the other; the same applies to H4
+ and

H4
−. However, there is a difference between regions L2,µ2∗ = 0 and H+

2 , H−2 , P+
2 ,µ4∗ = 0 due to

the existence of a small plateau shown in the pattern computed along the two lines: L2 and µ2∗ = 0.
This small plateau corresponds to the discontinuity of two capillary vectors diagram which will be
discussed later.

Table 1. Surface wrinkling patterns in different regions of the parametric space µ∗ = (µ 2∗,µ4∗).

Region Total Wave Number h2/h0

O+
4 , O−4 , H+

4 , H−4 4 6=1
L1 4 =1

H+
2 , H−2 , P+

2 ,µ4∗ = 0 2 =0
L2,µ2∗ = 0 2 =0

Results above are considered within one period. Nomenclature: O (oblique), P (planar), and H
(homeotropic) refer to the type of anchoring. The Li’s refer to transition lines; see text.

Table 1 summarizes the main four types of surface relief profiles. Region O+
4 , O−4 , H+

4 , H−4 and
L1 both give four waves within one period. The difference is that four waves are identical on line L1.
Region H+

2 , H−2 , P+
2 ,µ4∗ = 0 and L2,µ2∗ = 0 both give two waves within one period, so h2/h0 is equal

to 0. The difference between these two modes is that region H+
2 , H−2 , P+

2 ,µ4∗ = 0 gives very smooth
surface geometry while region L2,µ2∗ = 0 gives sharp peaks on the surface profile.

4.2. Surface Curvature

In this subsection we present, discuss, and characterize the surface curvature obtained from direct
numerical simulations of the governing equations, and from a new and highly accurate linear model.

The surface behavior is not only affected by the magnitude of the surface relief, but also by the
surface curvature. The curvature can be computed directly by two equivalent forms:

κ =
dφ

ds
or κ =

[
1 +

(
dh
dx

)2
]− 3

2 d2h
dx2 (21)

The first computing method in Equation (21) is exactly based on the governing Equation (17).
Considering that for small values of anchoring coefficients, the resistant term is mainly controlled
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by isotropic energy γ0, we obtain the resistant term denoted in Equation (17), FRs = 1. So, the linear
approximation of curvature reads

κ̃φ̃ = 2q[µ2∗ cos 2qx + 2µ4∗(3 sin2 qx cos2 qx− sin4 qx)] (22)

where κ̃φ̃ denotes the linear approximation of curvature assuming that φ = π/2. The analytical
expression for the linear approximation of the surface relief is proposed in Appendix D. By assuming
κ̃h̃ = hxx, we can also obtain another approximation for the surface curvature. It can be easily
found that κ̃h̃ = κ̃φ̃ as we made similar assumptions to approximate the surface curvature based on
Equation (21).

A more sophisticated approximation of curvature κ̃G can be derived without linearizing the
governing equation:

κ̃G = q · 2(µ2∗ + 6µ4∗ sin2 qx) cos2 qx− 2(µ2∗ + 2µ4∗ sin2 qx) sin2 qx
1 + µ2∗(2 cos2 qx− sin2 qx) + 3µ4∗ sin2 qx(4 cos2 qx− sin2 qx)

(23)

As illustrated in Figure 5, the linear approximation of curvature κ̃φ̃ obtained by Equation (22) and
κ̃G from Equation (23) provides a very good approximation of curvature. As the curvature κ̃φ̃ includes
the explicit and simple expression, it allows us to mathematically derive more feasible relations to
characterize the formation of the surface relief.
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Figure 5. Surface curvature profiles computed numerically and with the two approximation methods:
κ̃φ̃ and κ̃G. Blue and red solid lines are the numerical solutions solved from governing equation for
point B and D, respectively. Blue hollow circles and blue filled triangles represent the data points of
computed κ̃φ̃ and κ̃G at point B, respectively. Red hollow squares and red filled circles represent the
data points of computed κ̃φ̃ and κ̃G at point D, respectively. As the both approximations κ̃φ̃ and κ̃G are
identical, the filled circles and triangles are superimposed on hollow squares and circles. The helix
pitch is P0 = 1.2 µm.

4.3. Surface Energy

Understanding surface energy behavior is another perspective in realizing the surface profile
which helps us to establish an energy transfer mechanism from the anchoring energy of a flat surface
into a wrinkled surface. For sufficient small values of the anchoring coefficients, as the normal angle
profile φ(x) is fluctuating around π/2 with a very small amplitude, an explicit relation between
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the linearized surface profile and the total surface energy can be estimated based on the linear
approximation:

γ̃∗ − 1 = qh̃ (24)

where (γ̃∗ − 1) is the scaled anisotropic anchoring energy, and qh̃ is the scaled surface relief.
This correlation is detected in Figure 4b where h and (γ∗−1)

q are essentially identical for the
small anchoring coefficients. This simple expression implies an essential physical phenomenon.
The expression, Equation (24) verifies that zero anisotropic surface energy results in a flat surface
(h = 0). As the result, based on the expression, the anchoring energy is the driving force contributing
to the surface relief, which is in accordance with the previous findings [22]. Moreover, the expression
confirms the expected insight that the uppermost surface area contain the highest surface energy.

4.4. Capillary Pressures

As mentioned above, the three main contributions in the capillary pressure are (1) Pdil: dilation
pressure (Laplace pressure), Prot: rotation pressure (Herrings pressure), Pdir: director curvature which
is the anisotropic pressure due to the preferred orientation (see Equation (16)). Pdir is the driving forces
to wrinkle the interface. The explicit expansion of Equation (16) in terms of (n · k) yields:

pc = Pdil + Prot + Pdir

Pdil = −κ[1 + µ2∗(nn : kk) + µ4∗(nn : kk)2]

Prot = −κ[2µ2∗(nn : tt− nn : kk) + 4µ4∗(nn : kk)(3nn : tt− nn : kk)]
Pdir = 2[µ2∗ + 2µ4∗(nn : kk)](n · k)t · ∂sn + 2[µ2∗ + 6µ4∗(nn : kk)](n · t)k · ∂sn

(25)

As all the pressures are scaled by isotropic tension γ0, they have the same unit as curvature.
It should be noted that based on theory dim[P] = dim[γ] · dim[∂s].

Figure 6a shows the wrinkling mechanism through the capillary pressures changes along x.
The three scaled pressure contributions are plotted as function of “x” for the particular point B.
As shown in the figure, the capillary pressures cancel each other out maintaining the summation at zero.
The important observation from these pressure profiles is that Pdil and Pdir are always out-of-phase,
while Prot is always negative. These outcomes, Pdir · Pdil ≤ 0 and sgn(Prot) = −sgn(P0) can be also
interpreted from the linear model. Figure 6a also denotes that Prot is two orders of magnitude smaller
than Pdil and Pdir. This phenomenon confirms that Pdir is the formation source of wrinkling, annihilated
by inducing area change and area rotation. Another observation from the linear model is that Prot has
the similar expression of curvature, κ̃. This similarity encourages us that capillary pressures can be
also analyzed in the κ− P frame. Figure 6b shows the variation of curvature profile with respect to the
capillary pressures. We can realize from the figure that in the linear region and for the constant P0, each
capillary pressure only lay on intrinsic curves independent of the anchoring coefficients. The linear
approximation gives the intrinsic curves (see Appendix E for the details):

P̃dil = −κ̃, P̃rot = −
κ̃2

q
and P̃dir = κ̃ +

κ̃2

q
(26)

The κ − P relations approve that helix pitch P0 is the only parameter affecting the intrinsic curves.
Equation (26) implies that the intrinsic curves obtained for - P0 show the central symmetry. Variations
in anchoring coefficients do not impose any influence on the intrinsic curves, they only change the
arc-length of the intrinsic curves (denoted by l̃). The analytical expression of the arc-length for the
intrinsic curves can be obtained by

l̃dil =
√

2(κ̃max − κ̃min) (27)
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l̃rot =

κ

√(
1
2

)2
+

(
κ

q

)2
+

q
4

ln

∣∣∣∣∣∣κq +

√(
1
2

)2
+

(
κ

q

)2
∣∣∣∣∣∣
∣∣∣∣∣∣

κ̃max−κ̃min

(28)

l̃dir =
q
4

(1 +
2κ

q

)√
1 +

(
1 +

2κ

q

)2
+ ln

∣∣∣∣∣∣
(

1 +
2κ

q

)
+

√
1 +

(
1 +

2κ

q

)2
∣∣∣∣∣∣
∣∣∣∣∣∣

κ̃max−κ̃min

(29)

where κ̃ ∈ [κ̃min, κ̃max]. If we denote mina = −µ4∗ − |µ2∗ + µ4∗|, maxa = −µ4∗ + |µ2∗ + µ4∗|, and
local = −(µ2∗ + 2µ4∗) + (µ2∗ + 5µ4∗)

2/8µ4∗, then we denote minb = min{mina, maxa, local} and
maxb = max{mina, maxa, local}, considering the approximation curvature, κ̃φ̃ (Equation (22)), the
interval of κ̃ can be found by

κ̃ ∈ [2q ·mina, 2q ·maxa] if r /∈ [−5/2, 3/2] (30)

κ̃ ∈ [2q ·minb, 2q ·maxb] if r ∈ [−5/2, 3/2] (31)

These findings denote that the span of curvature is associated with the anchoring coefficients, and
ideally exhibits a linear correlation with 1/P0. So, we expect that if the helix pitch is increased to 2P0

under the same anchoring condition, the span of curvature would reduce to half. Figure 6b illustrates
the numerical solutions for director, dilation, and rotation pressures obtained by Equation (25) in
comparison with the intrinsic lines defined by Equation (26). We can observe that there are no
considerable deviations between the director pressures and the intrinsic lines approximated by the
linear model. As shown in Figure 6b, the span of actual curvature is in accordance with the minimum
and maximum values of curvature computed by Equations (30) and (31), which confirms that the
linear approximation is validated within the linear region (small anchoring coefficients).

In partial summary, in this subsection we have shown (i) the key balancing pressures are the
Laplace and director pressures (Figure 6); (ii) quadratic curvature contributions are proportional to
the pitch, the curvature–pressure relations follow intrinsic curves (Equation (26)) whose lengths are
affected by anchoring, such that lower anchoring (higher anchoring) decreases (increases) their lengths
(Equations (27)–(31)).Crystals 2019, 9 FOR PEER REVIEW  14 
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Figure 6. Capillary pressure profile. (a) Three components of capillary pressures with respect to x axis
for the point B. Black real line, black dash line, and blue dot line represent dilation pressure, director
pressure, and rotation pressure, respectively. (b) Curvature–Pressure plot at point B. Red, blue, and
purple lines represent the numerical solutions to director pressure, dilation pressure, and rotation
pressure, respectively. Black dash lines are the intrinsic lines defined by Equation (26). Green dash lines
are the span of curvature computed by Equations (30) and (31). Two black points are where the span of
numerical solution for curvature ends. The helix pitch is P0 = 1.2µm.
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4.5. Capillary Vectors

The behavior of the capillary vectors can give another perspective to analyze the surface wrinkling.
If we assume that µ4∗ = 0, then the magnitude of two capillary vectors ξ⊥ and ξ‖ naturally satisfy

[ξ⊥ − (γ0 +
1
2 µ2)]

2

( 1
2 µ2)

2 +
ξ2
‖

µ2
2
= 1 (32)

ξ denotes the magnitude of the capillary vector, Ξ. From this equation, we can read an ellipse with
eccentricity ecc =

√
3/2 which is independent of anchoring coefficient µ2. The two capillary vectors

change proportionally; ξ⊥ oscillates around γ0 +
1
2 µ2 with an amplitude of 1

2 |µ2|, while ξ‖ oscillates
around zero with amplitude of |µ2|. This ellipse with invariant shape can provide a clear physical
explanation to understand how capillary vectors are formed. Figure 7a illustrates the plots of the
ellipse equation for the anchoring coefficient |µ2∗| = 0.002. Considering that the CLC surface is
differentiable, we can introduce two foci (F1 and F2, defined by µ2∗ in Figure 7b) such that every point
P in the vector diagram is restrained by |PF1|+ |PF2| = 2|µ2∗|. When µ2∗ → 0 , two foci are very close
to each other, giving that |PF1| ≈ |PF2| = |µ2∗|. Ellipse becomes a circle with a radius of |µ2∗|, which
can be considered as a point. From Figure 7a we can also observe that ξ⊥ only reaches its extrema
when ξ‖ vanishes. This phenomenon corresponds to ξ‖ = ‖Is · ∂kγ‖ = t · ∂kξ⊥. However, when ξ‖
reaches its extrema, ξ⊥ does not vanish as isotropic surface tension prevents ξ⊥ to be reduced to zero.

The solution to ellipse equation yields

ξ‖ = ±

√
µ2

2 − 4[ξ⊥ − (γ0 +
1
2

µ2)]
2

and ξ⊥ = (γ0 +
1
2

µ2)±
1
2

√
µ2

2 − ξ2
‖ (33)

These are explicit algebraic relations between ξ⊥ and ξ‖. Recall that the capillary vectors and the
normal angle are related by

φ(x) =
π

2
+
∫ x

0

1
ξ⊥

∂xξ‖dx (34)

Replacing ξ⊥ with ξ‖ from Equation (33), the normal angle can be expressed only in term of ξ‖ (see
Appendix F):

φ = π
2 + φ‖(ξ‖) where

φ(ξ‖) = 2arcsin
ξ‖
µ2
− 2(2+µ2∗)√

1+µ2∗
arctan

[√
1

1+µ2∗
tan
(

1
2 arcsin

ξ‖
µ2

)]
or

φ(ξ‖) = −2arcsin
ξ‖
µ2
− 2(2+µ2∗)√

1+µ2∗
arctan

[√
1

1+µ2∗
cot
(

1
2 arcsin

ξ‖
µ2

)] (35)

Equation (35) clarifies the source of fluctuation; the perturbation φ‖(ξ‖), is imposed onto the
normal angle profile due to the presence of ξ‖, which is fixed by the ellipse equation.

If we assume that µ2∗ = 0, the magnitude of two capillary vectors ξ⊥ and ξ‖ satisfy

ξ2
‖

µ2
4
− 2
[

4(ξ⊥ − γ0)

µ4

] 3
2
+

16(ξ⊥ − γ0)
2

µ2
4

= 0 (36)

This equation reads a teardrop curve. Figure 7b illustrates the plots of the teardrop equation for
the anchoring coefficient |µ4∗| = 0.002. The main parameters defining this teardrop curve are given
in Figure 7b. Similar to the ellipse curves shown in Figure 7a, the magnitude of µ4∗ does not change
the shape of teardrops, while it controls the size of the teardrop curves. It should be noted that the
teardrop curves are not continuous at the original point (Point O shown in Figure 7b). Both the ellipse
and teardrop curves show a symmetry by changing the sign of the anchoring coefficients, and shrink
to zero as the anchoring coefficients go to zero.
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5. Conclusions

This paper presents a rigorous model based on nonlinear nemato-capillarity shape equation
and its linear approximation to describe the main formation mechanism of two-length scale surface
wrinkling formed at the CLC/air interface. The role of three capillary pressure contributions (dilation,
rotation, and director curvature) on the formation of surface curvature have been elucidated and the
effect of the helix pitch and the anchoring coefficients has been characterized. The linear approximation
provides a simple model to describe wrinkling behavior with high accuracy and less computation
when the two anchoring coefficients are very small. The linear approximation can also serve as the
main criteria to classify the type of surface relief. The key mechanism driving surface wrinkling
is identified and discussed through the two perspectives: capillary pressures and capillary vectors.
Moreover, the surface normal is expressed by the capillary pressures, whose summation must maintain
at zero, serving as the constraint to the system. The proposed new model and its linear approximation
augment previous models dedicated to understand and mimic complex surface patterns observed
at the free surface of synthetic and biological chiral nematic liquid crystals, chiral polymer solutions,
surfactant-liquid crystal surfaces and membranes, and in frozen biological plywoods. The present
results can inspire design and fabrication of complex surface patterns with the possible potentials in
optical, high friction, and thermal applications.
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Cahn-Hoffman capillary vector Ξ is defined as the gradient of the scalar field

Ξ := ∇(rγ) (A1)

r = rk (A2)

where r is the position vector, and r = ‖r‖. dim[Ξ] = dim[γ]. Notice that d(rγ) = ∇(rγ)dr:

rdγ+ γdr = Ξ · d(rk) = rΞ · dk + Ξ · kdr (A3)

t is the unit tangent, k is the outward unit normal, and n is director vector (see Figure A1). Equation
(A3) yields the two components of capillary vectors (scaled by γ0):

Ξ⊥∗ = Ξ⊥∗k = γ∗k = {1 + [µ2∗ + µ4∗(nn : kk)](nn : kk)}k (A4)

Ξ‖∗ = Ξ‖∗t = tt · ∂γ∗
∂k

= [2µ2∗ + 4µ4∗(nn : kk)](nn : kt)t (A5)
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Appendix B. Capillary Pressures

The purpose of Appendix B is to drive the explicit expressions of capillary pressures.
Denote linear operator ∂k(∗) = (I − kk) · ∂(∗)/∂k for simplicity, and introduce an identity

such that:
n · ∂n

∂s
= 0 (A6)

Equation (A6) holds due to ∂s(n2) = ∂s(1) = 0. We can introduce another identity:

(I− nn) · ∂M
∂n
· ∂n

∂s
=

∂M
∂n
· ∂n

∂s
(A7)

Three capillary pressures can be derived by:

Pdir =
∂Ξ‖∗

∂n : ∇sn = ∂nΞ‖∗ · ∂sn = ∂n(t · ∂kγ∗) · ∂sn
= 2[µ2∗ + 2µ4∗(nn : kk)](n · k)t · ∂sn + 2[µ2∗ + 6µ4∗(nn : kk)](n · t)k · ∂sn

(A8)

Pdil =
∂Ξ⊥∗

∂k
: ∇sk = tt · (∂γ∗

∂k
⊗ k + γ∗I) : (−κtt) = −κγ∗ (A9)

Prot =
∂Ξ‖∗

∂k : ∇sk = t · ∂kΞ‖∗ · (−κt) = t · ∂k[(I− kk) · ∂kγ∗] · (−κt)
= −κ[n · ∂k(n · ∂kγ∗) · (nn : tt)− (nn : k∂kγ∗)]

= −κ[2µ2∗(nn : tt− nn : kk) + 4µ4∗(nn : kk)(3nn : tt− nn : kk)]
(A10)

Therefore, the surface curvature is written as:

κ =
Pdir

γ∗ + tt · ∂2
kγ∗ · t

=
∂n(t · ∂kγ∗) · ∂sn

γ∗ + n · ∂k(n · ∂kγ∗) · (nn : tt)− (nn : k∂kγ∗)
(A11)
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Equation (A11) is the general curvature equation for γ = γ(n · k).

Appendix C. Governing Equation

The purpose of Appendix C is to show how we obtained governing equation and the uniqueness
of its solution within the linear region.

A trivial solution to ∇ · Ξ = 0 is that Ξ is a constant. Here, we need to consider whether this

solution can be true. Inserting boundary condition such that φ|x=0 = π/2, we get Ξ = Ξ⊥ = γ0
^
δy,

where
^
δy is the unit vector along y axis:

Ξ⊥ + Ξ‖ = γ0δ̂y (A12)

Take the square of (A12) on both side, we obtain:

(γk)2 + (tt · ∂kγ)
2 = γ2

0 (A13)

This equation does not hold true when both µ2 and µ4 are greater than 0. Therefore, Ξ is not a constant.
Equation (A11) is an ODE where we can solve for κ(x) and subsequently obtain φ(x):

κ =
dφ

ds
=

dφ

dx
sin φ =

FDr

FRs
(A14)

Here, we introduce two terms, FDr and FRs as the driving and resistant terms in the formation of
the surface wrinkles that can be defined by:

FDr := 2[µ2∗ + 2µ4∗(nn : kk)](n · k)t · ∂sn + 2[µ2∗ + 6µ4∗(nn : kk)](n · t)k · ∂sn (A15)

FRs := 1 + 2µ2∗(2nn : tt− nn : kk) + 3µ4∗(nn : kk)(4nn : tt− nn : kk) (A16)

Therefore, Equation (A14) becomes the governing equation that is going to be solved to obtain
φ(x). It is easy to find that:

FRs,min − 1 = min
{

4µ2∗,−2µ2∗ − 3µ4∗,
2
5
[(3r + 4)µ2∗ + 6µ4∗]

}
(A17)

where the last term only exists when −3/2 ≤ r ≤ 1. Thus, for very small µ2 and µ4, we can conclude
that FRs > 0 and it is bounded. So, Equation (A14) has a unique solution.

Appendix D. Linear Theory

The purpose of Appendix D is to show how the linear theory is formed and the application to
surface parameters by using linear theory presented in section (3.2).

We consider the first linear theory by simply assuming that φ = π/2. Then, governing equation
provides a simple expression of surface curvature:

κ̃G =
2(µ2∗ + 6µ4∗ sin2 qx) cos2 qx− 2(µ2∗ + 2µ4∗ sin2 qx) sin2 qx

1 + µ2∗(2 cos2 qx− sin2 qx) + 3µ4∗ sin2 qx(4 cos2 qx− sin2 qx)
(A18)

However, we could not obtain an explicit expression for the linearized surface relief h̃P =∫
(
∫

κ̃Pdx)dx using this approximated curvature. As we observed that Ξ‖ is very small compared to

Ξ⊥, the trivial solution can be obtained using an approximation such that Ξ = γ0
^
δy.
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By using the Monge parametrization, the surface equation can be expressed by:

t =
1√

1 + (∇‖h)
2

[
1
∇‖h

]
(A19)

Then we multiply by t on both side of Ξ = γ0
^
δy:

Ξ⊥ · t + Ξ‖ · t = γ0δ̂y · t (A20)

(2µ2 + 4µ4nn : kk)(nn : kt) = γ0∇‖h (A21)

By integrating on both side with respect to x, we obtain:

1
q
(µ2 + µ4nn : kk)(nn : kk) = γ0h (A22)

Replacing φ = π/2, we find the linearized surface relief:

h̃ =
1
q
(µ2∗ sin2 qx + µ4∗ sin4 qx) (A23)

Once we get h̃, we can also obtain other surface parameters:

φ̃ = −arccot(
∂h̃
∂x

) = −arccot(µ2∗ sin 2qx + 4µ4∗ sin3 qx cos qx) (A24)

Omitting the denominator in Equation (A18), we can obtain an approximation curvature κ̃φ̃ from

the linearized governing equation. We can also approximate surface curvature by h̃:

κ̃φ̃ =
dφ̃

dx
sin φ̃ = q[2µ2∗ cos 2qx + 4µ4∗(3 sin2 qx cos2 qx− sin4 qx)] (A25)

κ̃h̃ =

[
1 +

dh̃
dx

]− 3
2 d2h̃

dx2 ≈
d2h̃
dx2 = 2q[µ2∗ cos 2qx + 2µ4∗(3 sin2 qx cos2 qx− sin4 qx)] (A26)

Notice that Equations (A25) and (A26) are equivalent.
Equation (A23) also gives a simple explicit form to approximate h:

dh̃
dx

= µ2∗ sin 2qx + 4µ4∗ sin3 qx cos qx = 0 (A27)

We can also detect the two length scales h0 and h2 by finding the extrema of Equation (A27). There
are three conditions satisfying (A27): (i) sin qx = 0, (ii) cos qx = 0 and (iii) sin2 qx = −r. Condition (i)
yields that h = 0, while the other two conditions yield that h∗ = (µ2∗ + µ4∗)/q and ho = −µ2

2∗/4qµ4∗,
respectively. Therefore, we can introduce the following scaling law:

h̃0

h̃2
=

ho

ho − h∗
=

−µ2
2∗/4µ4∗

−µ2
2∗/4µ4∗ − µ2∗ − µ4∗

=
r2

(1 + r)2 (A28)

Equation (A28) indicates that the only parameter r which is defined as the anchoring ratio
r = µ2/2µ4 determines the characteristic shape of surface relief.
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Appendix E. P− κ Relations

The purpose of Appendix E is to demonstrate the relationship between capillary pressures and
curvature by using linear theory presented in section (3.3).

Applying linear theory into three capillary pressures, we obtain approximated P− κ relations in
explicit forms:

P̃rot = −κ[2µ2∗(cos2 qx− sin2 qx) + 4µ4∗(sin2 qx)(3 cos2 qx− sin2 qx)]
= −κ κ̃

q ≈ −
κ2

q
(A29)

P̃dil = −κγ∗ ≈ −κ (A30)

P̃dir = κ̃ +
κ̃2

q
(A31)

Using the linear model, we can find the approximated interval of curvature κ:

κ̃/2q = −8µ4∗ cos4 qx + 2(µ2∗ + 5µ4∗) cos2 qx− µ2∗ − 2µ4∗ (A32)

Since cos2 qx ∈ [0, 1], we need to examine whether local extremum can be achieved or not.
Considering function qua(r) as:

qua(r) = −2(µ2∗ + 5µ4∗)

2× (−8µ4∗)
=

1
4

r +
5
8

(A33)

This function describes how the x axis of local extrema changes with r.
When local extremum of κ̃/2q is not achieved, there should be qua(r) /∈ [0, 1]. This gives:

r < −5
2

or r >
3
2

(A34)

In this case, two critical values of κ̃/2q for cos2 qx ∈ [0, 1] would be:

κ̃/2q|cos2 qx=0 = −µ2∗ − 2µ4∗ or κ̃/2q|cos2 qx=1 = µ2∗ (A35)

The minimum and maximum of κ̃/2q can be expressed as:

mina = −µ4∗ − |µ2∗ + µ4∗| and maxa = −µ4∗ + |µ2∗ + µ4∗| (A36)

If −5/2 ≤ r ≤ 3/2, local extremum becomes:

local = −(µ2∗ + 2µ4∗) +
1

8µ4∗
(µ2∗ + 5µ4∗)

2 (A37)

Let minb = min{mina, maxa, local} and maxb = max{mina, maxa, local}. Summarizing all the
results above, we can find the span of curvature κ̃:

κ̃ ∈ [2q ·mina, 2q ·maxa] if r /∈ [−5/2, 3/2] (A38)

κ̃ ∈ [2q ·minb, 2q ·maxb] if r ∈ [−5/2, 3/2] (A39)

For example, if we choose point A, we have r = +1 ∈ [−5/2, 3/2]. Then, mina = −0.004,
maxa = +0.002, local = +0.0021, and subsequently κ̃ ∈ [−0.0419,+0.0220], where numerical solution
gives that κ ∈ [−0.0422,+0.0221]. As the linear theory only deviates 0.6% from exact solution, the
error can be ignored.
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The span in P− κ plot can be calculated by arc-length equation:

l̃ =
∫ κmax

κmin

√√√√1 +

(
dP̃
dκ

)2

dκ (A40)

Using the fact that:

∫ √
a2 + x2 dx =

x
2

√
a2 + x2 +

a2

2
ln
∣∣∣x +

√
a2 + x2

∣∣∣+ C (A41)

We can compute the arc-lengths corresponding to the three capillary pressures:

l̃dil =
√

2(κ̃max − κ̃min) (A42)

l̃rot =
∫ κ̃max

κ̃min

√
1 + 4

q2 κ2dκ = 2q
∫ κ̃max

κ̃min

√(
1
2

)2
+
(

κ
q

)2
d
(

κ
q

)
=

[
κ

√(
1
2

)2
+
(

κ
q

)2
+ q

4 ln

∣∣∣∣∣ κ
q +

√(
1
2

)2
+
(

κ
q

)2
∣∣∣∣∣
]∣∣∣∣∣

κ̃max−κ̃min

(A43)

l̃dir =
∫ κ̃max

κ̃min

√
1 +

(
1 + 2κ

q

)2
dκ = q

2

∫ κ̃max
κ̃min

√
1 +

(
1 + 2κ

q

)2
d
(

1 + 2κ
q

)
= q

4

[(
1 + 2κ

q

)√
1 +

(
1 + 2κ

q

)2
+ ln

∣∣∣∣∣(1 + 2κ
q

)
+

√
1 +

(
1 + 2κ

q

)2
∣∣∣∣∣
]∣∣∣∣∣

κ̃max−κ̃min

(A44)

Using Equation (A42) to Equation (A44), we can compute the arc-length of each P− κ curve.

Appendix F. Capillary Vectors

The purpose of Appendix F is to derive the equations related to capillary vectors that are being
used in section (3.4).

The following equation holds for capillary vectors:

∂sΞ = ∂s(Ξ⊥ + Ξ‖) =
[

t k
]([ ∂s −κ

κ ∂s

][
Ξ‖
Ξ⊥

])
(A45)

The projection of capillary vector along k direction reduces Equation (A45) to:

∇s · Ξ = ∂sΞ‖ − κ Ξ⊥ = 0 (A46)

Replacing Ξ⊥ with Ξ‖ from ellipse equation (assuming that µ4 = 0), we obtain:

dφ

ds
=

∂sΞ‖[
(γ0 +

1
2 µ2)± 1

2

√
µ2

2 − Ξ2
‖

] (A47)

Considering that µ2 > 0, we can use symmetry role for evaluating the cases where µ2 < 0. Within
the linear region, we can integrate on both side of Equation (A47) and obtain:

φ =
π

2
+ 2

Ξ‖∫
0

1[
(2γ0 + µ2)±

√
µ2

2 − Ξ2
‖

]dΞ‖

︸ ︷︷ ︸
φ(Ξ‖)

(A48)
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There are two φ(Ξ‖) depending on the positive or the negative sign showed inside the integrand
of Equation (A48). The explicit expression of φ(Ξ‖) reads:

φ(Ξ‖) = 2arcsin
Ξ‖
µ2
− 2(2 + µ2∗)√

1 + µ2∗
arctan

[√
1

1 + µ2∗
tan
(

1
2

arcsin
Ξ‖
µ2

)]
(A49)

Assume that µ2 = 0, Ξ⊥ and Ξ‖ satisfy:

Ξ2
‖

µ2
4
− 2
[

4(Ξ⊥ − γ0)

µ4

] 3
2
+

16(Ξ⊥ − γ0)
2

µ2
4

= 0 (A50)

We can find that the extrema of Ξ⊥ − γ0 are 0 and µ4. As Ξ⊥ shows symmetry, we only consider
the positive branch and find the derivative:

dΞ‖
dΞ⊥

=
µ4

2

{
2
[

4(Ξ⊥ − γ0)

µ4

] 3
2
− 16(Ξ⊥ − γ0)

2

µ2
4

}− 1
2
{

12
µ4

[
4(Ξ⊥ − γ0)

µ4

] 1
2
− 32(Ξ⊥ − γ0)

µ2
4

}
(A51)

The non-trivial extrema of Ξ‖ occur at:

Ξ⊥ − γ0 =
9
16

µ4 and Ξ‖ = ±
3
√

3
4

µ4 (A52)

It should be noticed that Equation (A51) is singular at Ξ⊥ − γ0 = 0, implying that the plot is not
continuous at the point where Ξ⊥ − γ0 = 0.
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