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Abstract: Stimuli-responsive materials with coexisting nonlinear optical (NLO) and dielectric
properties are technologically important, which enable simultaneous conversion of optoelectronic
properties between different states under external stimuli. By rationally screening guest cations
(C6H5NF2)+ in the crown-ether inclusion system, we synthesized a crown-ether supramolecular
compound [(C6H5NF2)(18-crown-6)][PF6] (1). Differential scanning calorimetry (DSC) showed
that 1 undergoes a reversible phase transition above room temperatures (305 K/292 K), with a
thermal hysteresis of 13 K. Temperature-dependent dielectric and NLO measurements show that
the compound exhibits two distinct switching response behaviors. Structural analysis indicates that
the order–disorder change of the host molecule 18-crown-6 and the guest organic cation during the
phase transition induces the dielectric and NLO switching behavior of the compound.

Keywords: optical-electrical duple switch; phase transition; host-guest inclusion

1. Introduction

As an important class of functional materials, compounds with switchable physical properties
via optical, electrical, magnetic, or mechanical manipulation are technologically important, because
they can be used in a wide range of applications, including switches and memory devices [1–5].
Recently, a great deal of effort in this field has been devoted to the design of molecule-based
materials with multiple switching effects of physical properties for potential application in the fields
of digital processing, optoelectronic devices, and sensors [6–8]. Among them, crown-ether-based
rotator-stator-type supramolecular compounds have shown advantages in realization of such effects [9–
13]. This is due to the structural characteristics of the supramolecular compounds, where the dipolar
rotator molecules easily undergo the order–disorder change, leading to rich structural phase transitions
accompanied by ferroelectric, dielectric, and nonlinear optical (NLO) switching, as exemplified by
[(C7H10NO)(18-crown-6)][BF4], [(DIPA)(18-crown-6)][ClO4] (DIPA = 2,6-diisopropylanilinium cation),
[(DPA)(18-crown-6)][ClO4] (DPA = dipropylamine cation), [(m-FAni)(DB-18-crown-6)][Ni(dmit)2]
(m-FAni = m-fluoroanilinium cation; dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate cation), and [(Hcha)
(18-crown-6)][ClO4] (Hcha = protonated cyclohexyl ammonium) [4,14–17].

Although a few novel crown-ether-based clathrates have been synthesized recently, there is
still much room for structural tailoring, because (i) the switching behaviors of most of the reported
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crown-ether-based clathrates were observed at below room-temperatures, which should be the major
obstacle for their practical application, and (ii) most of them crystallize in the centrosymmetric space
group, resulting in NLO switching materials of them few [16,18–21].

We recently synthesized a crown ether-based inclusion complex [(C6H5NF2)(18-crown-6)][ClO4]
by tetrahedral anion, which shows dielectric and NLO switching effects simultaneously [22]. As a
continuation, we have constructed a new inclusion complex [(C6H5NF2)(18-crown-6)][PF6] (1) based
on octahedral anions, in which optical-electrical duple switching properties are realized at above room
temperature (Scheme 1). This differs from most of the crown ether inclusion complexes reported,
which have a SHG switch response below room temperature [17,23]. Moreover, it is interesting to find
that 1 shows a high second harmonic generation (SHG) state in the low temperature phase (LTP) and
a low SHG state in the high temperature phase (HTP), totally different from that observed for the
previous compound [(C6H5NF2)(18-crown-6)][ClO4]. Herein, we report the synthesis, structural phase
transitions, dielectric, and NLO switching effects of 1.
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2. Results

2.1. Thermal Properties of 1

Differential Scanning Calorimetry (DSC) measurement was performed on 1 to detect their
phase transition behaviors and confirm transition temperatures (Tc). From this, 1 shows a pair
of endo-/exothermic peaks at 305/292 K (Ttr(1) = 299 K) with a large thermal hysteresis of 13 K.
We estimate the entropy changes (∆S) to be 17.62 J/(mol K). According to the Boltzmann’s equation
∆S = R ln(N), where R is the gas constant, N represents the ratio of the numbers of respective
geometrically distinguishable orientations; the calculated values of N is 8.32. These features
suggesting that there is a reversible first-order phase transition at Ttr(1) (Figure 1). For convenience,
the phase above Ttr(1) is assigned as the high-temperature phase (HTP) and the phase below
Ttr(1) as the low-temperature phase (LTP). To explain the phenomenon in microscopic view, the
variable-temperature X-ray single-crystal structural analyses are introduced in great detail (see below).
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2.2. Variable-Temperature Structures of 1

To systematically investigate the structural phase transitions of 1, we determined variable-temperature
single-crystal structures. They display zero-dimensional cation-anion packing structures (Figure 2b,c
and Figure S4). At 293 K in the LTP, 1 crystallizes in the orthorhombic non-centrosymmetric space
group Pna21, with a = 13.425(3) Å, b = 11.817(2) Å, c = 15.660(3) Å, Z = 4, V = 2484.4(8) Å3 (Table S1).
The asymmetric unit of the crystal structure is comprised of one [(C6H5NF2)(18-crown-6)]+ complex
cation and one PF6

– anion, as shown in Figure 2a. The guest cation sits in the cavity of the 18-crown-6
molecule via N–H···O hydrogen-bonding interactions (for hydrogen bond geometries, see Table S2).
All components for compound 1 are ordered. At 293 K, compound [(C6H5NF2)(18-crown-6)][ClO4]
includes the same [(C6H5NF2)(18-crown-6)]+ complex cation and a distinct ClO4

− anion. The ClO4
−

anion is highly disordered, which is different from compound 1. As the temperature increases,
compound 1 crystallized in the same crystal system and point group, but the space group transforms
into the Cmc21 at 323 K of the HTP, with a = 11.9791(10) Å, b = 13.6041(12) Å, c = 15.4202(8) Å, Z =
4, V = 2513.0(3) Å3 (Table S1). The [(C6H5NF2)(18-crown-6)]+ complex cation undergoes a transition
from order state to disorder state (Figure 2b). The 18-crown-6 macrocycle is modeled with two
orientations having the same occupancy of 0.5. For the 3,4-difluoroanilinium group, the meta F
atom is distributed over two positions with a site occupancy ratio of 1:1. The N–H···O hydrogen
bond geometries show no obvious changes (Table S2). This is diverse, with the change of compound
[(C6H5NF2)(18-crown-6)][ClO4] from the orthorhombic system in LTP to the monoclinic system in
HTP. Therefore, we believe that the interaction between different anions and the same cations may be
diverse, leading to diversities in physical properties.
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Figure 2. (a) The asymmetric units of 1 in low-temperature phase (LTP). (b) The asymmetric units of 1
in high-temperature phase (HTP). The disordered parts in (b) are distinguished by different bond colors.
(c) The crystallographic packing diagrams of 1 in LTP. (d) The crystallographic packing diagrams of 1
in HTP.

2.3. Dielectric Properties of 1

Testing the dielectric permittivity of a compound can systematically investigate whether the
compound is a phase transition material. The temperature dependence of ε´ (the real part of the
complex dielectric permittivity, ε = ε′ − iε”, where ε” is the imaginary part) at selected frequencies was
tested on the polycrystalline samples. As shown in Figure 3a, obvious step-like dielectric anomalies
were found at the Ttr(1) in the heating run, and it was also shown that the phase transition temperature
of 1 is independent of the various frequencies. However, the value of ε´ is sensitive to frequency, and
the dielectric constant gradually increases with the decrease of frequency, which demonstrates the
general characteristics of dielectric materials. As exhibited in Figure 3b, the real component ε′ shows
a step-like increase from 4.10 to 6.65 at around Ttr(1) in the heating and cooling modes at 100 kHz,
and the high dielectric state (ON) is about 1.62 times greater than that of the low dielectric state (OFF).
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The reversible dielectric anomalies observed from 1 correspond to the results of DSC. The reversible
switching behavior between the corresponding low- and high-dielectric states is demonstrated for
a powder-pressed pellet at 100 kHz in several sequential cycles (Figure 3c). Within a few runs,
the dielectric signal between the corresponding switch “ON” and switch “OFF” remains essentially
unchanged. The mentioned results show that 1 exhibits excellent dielectric switching characteristics
above room-temperature, making it promising for the stimuli-responsive or solid-state materials.
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2.4. SHG Properties of 1

NLO activity measurement for sieved crystalline samples reveals that 1 has a macroscopic
SHG-active response. The relationship between particle size and SHG response at 298 K is shown
in Figure 4a—the larger particle size, the higher the SHG intensity. This indicates that they are of
phase-matching NLO materials. The temperature-dependent SHG effect of compound 1 was then
measured (Figure 4b). In the LTP, compound 1 has a high SHG-active response state, approximately
0.4 times as large as that of KH2PO4 (KDP). This response is small in comparison with those of existing
excellent SHG materials, but moderate in comparison with those of existing analogous crown-ether
compounds [14]. With the temperature increasing to HTP, SHG intensity 1 suddenly decreases to
0.34 times that of KDP, showing another low SHG response state. Considering that SHG coefficient
for polar materials is the function of the spontaneous polarization, we estimated the polarization of
1 by using the point charge models to understand the contrary switching effects (Tables S3 and S4).
For 1, as the space group changes from Pna21 to Cmc21, the spontaneous polarization is reduced from
12.9 µC/cm2 to 12.2 µC/cm2, which may lead to the decrease of SHG signal. Moreover, a recoverable
switching effect of the SHG was examined. The intensity and the switching period of the SHG signals
remain virtually unchanged after many switching cycles (Figure 4c). These make them promising
candidates in the field of SHG switches.
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2.5. The Flexible Thin Films of 1

In order to further explore more attractive practical applications, we tried to grow films on
flexible substrates. The fabricated thin films on the flexible substrates are transparent, flexible,
and not fragile; they can be bent by applying external forces, indicating good mechanical property
(Figure 4d). Attractively, similar to crystalline samples, thin films also show the NLO effects (Figure 4d).
By changing the rotational speed, thin films with 1 um, 850 nm, and 750 nm thicknesses were prepared
and measured by atomic force microscopy (AFM). By comparing the SHG signal intensity of films with
different thickness, we find that the SHG signal increases with the increase of film thickness (Figure
S5). This will surely improve its application in optoelectronic devices in the future.

3. Experiment Section

3.1. Preparation of Crystals and Thin Films

All analytical grade chemicals were purchased from Energy Chemical and used without further
purification. Colorless block crystals of 1 were obtained by the slow evaporation of the methanol
solution containing 3,4-difluoroaniline, HPF6, and 18-crown-6 with 1:1:1 molar ratio (Figure S1).
The phase purity of 1 was confirmed by IR spectra (Figure S2) and PXRD (powder X-ray diffraction)
pattern at room temperature (Figure S3). The transparent thin films for 1 were fabricated on a flexible
substrate of polyethylene terephthalate (Figure 4d). The single-phase compound 1 was dissolved in
DMF to form a saturated solution having a solubility of about 40%. Polyethylene terephthalate (PET)
substrates were treated by Digital UV Ozone System for half an hour, and then 1–2 layers of the films
were repeatedly deposited on the substrates. Through a convenient and inexpensive spin-coating
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approach with rotary speeds of 3000, 4000, and 6000 rev/min, dendrite growth was induced on the
substrates to form single crystal thin films. The spin-coating films were annealed at 353K for one hour.
The thickness of the films were about 1 um, 850 nm, and 750 nm by measuring the artificial gap with
an atomic force microscope (AFM).

3.2. Single-Crystal X-ray Crystallography

Variable-temperature X-ray diffraction was collected with Mo-Kα radiation (λ = 0.71073 Å) on a
Rigaku Saturn 724 diffractometer equipped with gas spray cooler device. The direct methods were used
to solve the structures and the full-matrix least-squares methods on F2 were also introduced to refine
the structures by using SHELXLTL-2014 software package. The non-hydrogen atoms were refined
anisotropically using all the reflections with I > 2σ(I). The hydrogen atoms were added geometrically at
idealized positions and refined with the “riding” model. Crystallographic data, structure refinements,
and details of the data collection of 1 are summarized in Table S1.

3.3. General Measurements

The infrared (IR) spectra was recorded by a Nicolet 5700 spectrometer. PXRD measurements were
performed on a Rigaku D/MAX 2000 PC X-ray diffractometer instrument in the 2θ range of 5◦–50◦

with a step size of 0.02◦. Differential scanning calorimetry (DSC) measurements were implemented
using a NETZSCH instrument with a rate of 5 K min−1 in N2 flow and a temperature range of 220 K to
328 K for 1. Dielectric measurements were performed on a Tonghui TH2828A instrument between
230 K and 350 K over a frequency range from 80 kHz to 1 MHz with an applied electric field of 1 V.
The SHG measurements were collected on an Ins 1210058, INSTEC Instrument with the laser Vibrant
355 II, OPOTEK (pulsed Nd: YAG at a wavelength of 1064 nm, 1.6 MW peak power, 5 ns pulse duration,
10 Hz repetition rate).

4. Conclusions

In summary, we have successfully synthesized a new crown-ether supramolecular inclusion
compound [(C6H5NF2)(18-crown-6)][PF6] with a solid state reversible phase transition above room
temperature. Crystal structure analysis reveals that it undergoes a reversible structural phase transition
from the polar space group of Pna21 to the polar space group Cmc21, induced by the order-disorder
change of the host molecule 18-crown-6 and the guest organic cation. This change in crystal structure
results in compound 1 exhibiting different dielectric and NLO switching response behavior. Compound
1 shows the high SHG state in the LTP and the low SHG state in the HTP, whereas 1 presents the low
dielectric state in the LTP and high dielectric state in the HTP. The contrary switching effects in 1 should
expand application areas of dielectric and NLO dual switch. These results will surly provide new
impetus for the design of novel multifunctional stimuli-responsive materials based on crown-ether
host-guest supramolecular clathrates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/4/184/s1,
CCDC 1847880, 1847883, Figure S1: Crystal morphology of 1. Figure S2: IR spectra of 1. Figure S3: PXRD patterns
of 1 measured at room temperature. Figure S4: The packing diagrams of 1 at (a) 293 K and (b) 323 K. Hydrogen
atoms in were omitted for clarity. Table S1: Crystallographic Data for compound 1. Table S2: Hydrogen bonds (Å,
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