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Abstract: Perfluorophenyl-substituted compounds, 3-hydroxy-1,3-bis(pentafluorophenyl)-2-
propen-1-one (H1) and 1,5-dihydroxy-1,5-bis(pentafluorophenyl)-1,4-pentadien-3-one (H22), were
prepared in 56 and 30% yields, respectively, and only the enol forms were preferentially obtained among
the keto-enol tautomerism. Molecular conformations and tautomerism of the fluorine-substituted
compounds were certified based on X-ray crystallographic studies and density functional calculations.
The solvent dependency of the absorption spectra was only observed for the fluorinated compounds.
The compounds H1 and H22 quantitatively formed co-crystals with the corresponding non-perfluorinated
compounds, dibenzoylmethane (H3) and 1,5-dihydroxy-1,5-diphenyl-1,4-pentadien-3-one (H24),
respectively, through the arene–perfluoroarene interaction to give the 1:1 co-crystals H1•H3 and
H22•H24, which were characterized by X-ray crystallographic and elemental analysis studies.

Keywords: co-crystals; electrostatic interactions; fluorine; keto-enol form

1. Introduction

Fluorine-substituted organic molecules are being widely explored by materials scientists in
various applications encompassing battery, catalysis, and many other technological fields [1–5].
Ring fluorination dramatically changes molecular characteristics through intramolecular electron
withdrawing nature and intermolecular electrostatic interactions. One of the unique properties
of perfluoroaromatic compounds is the opposite quadrupole moment [6], which is positive for
hexafluorobenzene, 31.7 × 10−40 C m2, and negative for benzene, −29.0 × 10−40 C m2 [7,8].
Thus, unique π-interactions, such as arene–perfluoroarene [9–27] and CH···F [28–30], are observed
in the crystals of perfluorinated compounds and co-crystals containing perfluorinated and
non-perfluorinated aromatic compounds. The co-crystals have alternating layered structures and are
found to possess unique molecular recognition capabilities [10]. In this area, we have been interested in
the perfluoroarene coordination compounds and their molecular self-assembled systems for a decade;
e.g., bis[bis(pentafluorobenzoyl)]copper(II), [Cu(1)2], was prepared and applied to metal-ordered
co-crystals with unique one-dimensional metal chains [31] and several guest encapsulations in the
crystal states [32–35]. However, the corresponding ligand, 3-hydroxy-1,3-bis(pentafluorophenyl)-2-
propen-1-one (H1) (Scheme 1) [36], which is a unique target for the fluorine-substituted
dibenzoylmethane [37], has never been characterized by crystallographic studies, whereas the
corresponding coordination complexes have been reported. This fact encouraged us to characterize
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and develop the structure of the perfluorinated compound H1 and also prepare the expanded
triketone-type compound H22, of which both structures always involve the problems of keto-enol
tautomerism [38–47]. In this study, we investigated the molecular structures and the supramolecular
associations of H1 and H22 in the solution and solid states, which further co-crystallize with
the corresponding non-perfluorinated compounds H3 and H24, respectively, to give the unique
1:1 co-crystals of H1• H3 and H22•H24.
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Scheme 1. Molecular structures of perfluorinated compounds, H1 and H22, and non-perfluorinated
compounds, H3 and H24.

2. Materials and Methods

2.1. General

All the chemicals were of reagent grade and used without further purification. Non-perfluorinated
compounds H3 and H24 were commercially available. The 1H NMR spectral data were recorded
by a Bruker DRX600 (600 MHz) or JEOL ECS400 (400 MHz) spectrometer. The melting points were
determined by a Yanako MP-500D melting point apparatus. The infrared spectra were recorded by a
Shimadzu IR 8400s using a KBr disk. The electronic absorption spectra were recorded by a JASCO
V-660 spectrometer. The results of the elemental analysis (EA) of C and H were determined by a
Perkin-Elmer PE2400 analyzer. The DFT calculations were performed by the Spartan’16 package with
B3LYP/6-31G* [48,49].

2.2. Synthesis of H1 and H22

The synthesis of 3-hydroxy-1,3-bis(pentafluorophenyl)-2-propen-1-one (H1) was previously
reported [36,50]. Typically, pentafluorobenzoyl chloride and vinyl acetate were combined in
1,1,2,2-tetrachloroethane in the presence of anhydrous AlCl3. The reaction mixture was separated
by a column chromatography (silica, benzene). The H1 product was obtained at Rf = 0.8, and two
other byproducts corresponding to the aluminum complex and acethylpentafluorobenzoylmethane
were obtained at Rf = 0.9 and 0.5, respectively. With sufficient acid treatment after the reaction,
the H1 product was preferentially obtained instead of the corresponding aluminum (III) complex.
Compound H1 was further purified by gel permeation chromatography (GPC) and recrystallized from
an ethanol solution to give colorless prismatic crystals with the constant melting point of 83–84 ◦C in
56% yield. 1H NMR (600 MHz, CDCl3): δ 15.12 (s, OH), 6.26 (s, CH). 13C NMR (150 MHz, CDCl3): δ

177.0 (CO), 144.9 (d(m), J = 257 Hz, C6F5), 143.2 (d(m), J = 257 Hz, C6F5), 137.9 (d(m), J = 257 Hz, C6F5),
111.3 (m, C6F5), 106.3 (CH). IR (KBr disk, cm−1): 3457, 3144, 2926, 1651, 1593, 1524, 1497, 1335, 1319,
1206, 1180, 1099, 995, 932, 827, 642. EA: Calcd. for C15H2F10O2 (%): C, 44.58; H, 0.50. Found: C, 44.65;
H, 0.38.

1,5-Dihydroxy-1,5-bis(pentafluorophenyl)-1,4-pentadien-3-one (H22) was prepared by adding a
solution of hexamethyldisilazine (7.2 mL, 32 mmol) in dry tetrahydrofuran (THF, 15 mL) to n-BuLi
(19.4 mL, 32 mmol, hexane) at 0 ◦C under an N2 atmosphere with continuous stirring for 15 min.
Subsequently, freshly distilled acetone (0.75 mL, 11 mmol), dissolved in 15 mL of THF, was dropwise
added to the mixture, then a solution of methylpentafluorobenzoate (5 mL, 22 mmol) in THF (25 mL)
was added. The mixture was stirred for 20 h at room temperature. During the stirring, the solution
color changed from colorless to dark orange. Subsequently, the mixture was added to an aqueous
solution of 3M HCl (100 mL), neutralized by NaHCO3, and extracted with diethylether. The obtained
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mixture was purified by column chromatography (silica, CH2Cl2). The first product was assigned
to methylpentafluorobenzoate (Rf = 0.7), and the second product with Rf = 0.5 was characterized as
H22. Compound H22 was further purified by GPC and recrystallized from ethanol to give yellow
prismatic crystals. Yield 30%. mp 87–88 ◦C. 1H NMR (600 MHz, CDCl3, TMS): δ 14.26 (s, 2H, OH), 5.73
(s, 2H, CH). 13C NMR (150 MHz, CDCl3): δ 194.0 (COH), 164.4 (CO), 144.8 (d(m), J = 254 Hz, C6F5),
142.6 (d(m), J = 254 Hz, C6F5), 137.9 (d(m), J = 254 Hz, C6F5), 110.0 (m, C6F5), 104.5 (CH). IR (KBr disk,
cm−1): 3148, 1651, 1607, 1522, 1495, 1377, 1196, 1167, 1084, 1011, 837, 716. EA: Calcd. for C17H4F10O3

(%): C, 45.76; H, 0.90. Found: C, 45.84; H 0.83.

2.3. Co-Crystallizations of H1•H3 and H22•H24

The perfluorinated compound and the corresponding non-perfluorinated compound were
completely dissolved in EtOH, then combined for co-crystallization. Stoichiometric co-crystals grew
slowly under slow solvent evaporation conditions.

Co-crystal H1•H3. The crystal was obtained as a colorless prismatic. Isolated yield: 74%. mp
106–108 ◦C. IR (KBr disk, cm−1): 3457, 3119, 3082, 1672, 1653, 1524, 1497, 1371, 1107, 993, 768, 691.
EA: Calcd. for C30H14F10O4 (%): C, 57.34; H, 2.25. Found: C, 57.39; H 1.88.

Co-crystal H22•H24. The crystal was obtained as a yellow prismatic. Isolated yield: 94%.
Mp 125–126 ◦C. IR (KBr disk, cm-1): 1653, 1609, 1520, 1493, 1157, 1082, 1007, 982, 824, 775, 691.
EA: Calcd. for C34H18F10O6 (%): C, 57.32; H, 2.55. Found: C, 57.05; H 2.46.

2.4. Crystal Structure Determination

The single crystal X-ray structures were determined by a Bruker SMART APEX CCD
diffractometer with a graphite monochrometer and MoKα radiation (λ = 0.71073 Å) generated at 50 kV
and 30 mA. All the crystals were coated by paratone-N oil and measured at 120 K. SHELXT program
was used for solving the structures [51]. Refinement and further calculations were carried out using
SHELXL [52]. The crystal data and structure refinement of the perfluorinated compounds (H1 and
H22) and their co-crystals (H1•H3 and H22•H24) are summarized in Table 1. CCDC 1827049 (H1),
1827050 (H22), 1827051 (H1•H3), and 1827052 (H22•H24) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html.

Table 1. Crystal data and structure refinement for H1, H22, H1•H3, and H22•H24.

H1 H22 H1•H3 H22•H24

Chemical formula C15H2F10O2 C17H4F10O3 C30H14F10O4 C34H18F10O6
Formula weight 404.17 446.20 628.41 712.48
Crystal system monoclinic monoclinic monoclinic monoclinic

Space group P21/n P21/c P21/c P21/c
a [Å] 10.3800(11) 17.4336(12) 13.4003(10) 15.7397(14)
b [Å] 5.6285(6) 4.9910(3) 7.0784(5) 7.0887(6)
c [Å] 23.196(3) 18.3069(12) 26.1345(18) 25.835(2)
β [◦] 94.2233(12) 106.929(1) 95.2152(8) 98.842(1)

V [Å3] 1351.5(2) 1523.88(17) 2468.7(3) 2848.3(4)
Z 4 4 4 4

Dc [Mg m−3] 1.986 1.945 1.691 1.662
µ [mm−1] 0.223 0.213 0.162 0.156

F(000) 792 880 1264 1440
Rint 0.0240 0.0194 0.0238 0.0265
GOF 1.061 1.033 1.047 1.035

R [(I) > 2σ (I)] 0.0303 0.0301 0.0337 0.0334
wR (Fo

2) 0.0845 0.0849 0.0930 0.0952
CCDC No. 1827049 1827050 1827051 1827052

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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3. Results and Discussion

3.1. Enol-Type Structures of H1 and 2

Compounds H1 and H22 were prepared by using previously described protocols, purified by
column chromatography, GPC, and recrystallized to give pure single products. The 1H NMR results
of both structures in CDCl3 clearly suggested enol-type structures. The 1H NMR spectrum of H1 in
CDCl3 shows only two single peaks at δ 15.12 (OH) and 6.26 (CH), indicating the enolic form; the
enol tautomeric species generally contains a hydrogen bonded ring comprised of two equivalent
structures with Cs symmetry connected through a transition state with C2v symmetry [38]. The 1H
NMR spectrum of H22 in CDCl3 also shows two single peaks at δ 14.26 (OH) and 5.73 (CH), indicating
the highly symmetric structure of H22, while several keto- and enol-type corresponding isomers are
expected. Single crystals of H1 and H22 were obtained from ethanol as colorless and pale yellow
prismatic crystals, respectively, which were suitable for X-ray crystallographic studies.

The molecular structures in the single crystals of H1 and H22 are shown in Figure 1a,b, respectively,
with the numbering schemes. In the crystal of H1, the whole structure is an asymmetric unit, that
is distinguishable as the Cs structure; the bond lengths of O1-C7, C7-C8, C8-C9, and C9-O2 are
1.2636(17), 1.4246(18), 1.3722(18) and 1.3103(16) Å, respectively, showing the localization of the
π-conjugated system in the O1=C7-C8=C9-O2 coordination sites. The hydrogen proton is close
to O2 to give Cs symmetry of the hydrogen bonded ring, such as the β-diketonato moiety: The
distance of O1···O2 and the angle of O1···H2-O2 are 2.4857(14) Å and 146◦, respectively. The enol
form, which means keto-enol type structure, is stabilized by intramolecular hydrogen bonds to form a
six-membered ring structure of the β-ketonate O1-C7-C8-C9–O2-H2, indicating the same orientation of
the corresponding non-perfluorinated H3 [53]. This phenomenon is well known as a resonance-assisted
hydrogen bond (RAHB) by Gilli et al. [40,41]. Two pentafluorophenyl rings are highly twisted to the
ring; the dihedral angles between the two pentafluorophenyl rings and the β-ketonate six-membered
ring are 25.47◦ and 49.29◦: the torsion angles of C1-C6-C7-O1 and O2-C9-C10-C11 are 24.47(18)◦ and
47.80(17)◦, respectively. The low planarity of the molecules was compromised due to the twisting
induced by the steric hindrance between the fluorine at the o-positions of the pentafluorophenyl group
and the hydrogen at the ketonate sites. The related dihedral angles between two phenyl rings and the
β−ketonate six-membered ring of H3 are 4.69◦ and 17.42◦, showing a flatter structure [53].Crystals 2019, 9, x FOR PEER REVIEW 5 of 12 
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Figure 1. ORTEP drawings of the crystal structure of (a) H1 and (b) H22 at 120 K with 50% probability
thermal ellipsoids and (c) the packing structure of H22 viewed from the ac axis.

In the crystal of H22, O1 and O3 are also crystallographically independent. The bond lengths of
O1-C7, O2-C9, and O3-C11 are 1.3363(15), 1.2784(15), and 1.3332(15) Å, respectively, indicating the
enol-keto-enol type structure (proposed structure in Scheme 1). In this configuration, the bond lengths
of C8-C9 and C9-C10 [1.4429(17) Å and 1.4403(16) Å] are longer than those of C7-C8 and C10-C11
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[1.3617(17) Å and 1.3591(17) Å], which indicates that the localization of the π system with RAHB:
the distances of O1···O2 and O2···O3 and the angles of O1-H1···O2 and O1···H3-O3 are 2.5565(13) Å,
2.5724(13) Å, 147◦, and 146◦, respectively. The two pentafluorophenyl rings of H22 were highly twisted;
the torsion angles of C1-C6-C7-O1 and O3-C11-C12-C13 are 22.61(16)◦ and −42.47(16)◦, respectively.
The corresponding torsion angles of the non-perfluorinated H24 were flatter: 2.6(3)◦ and −21.4(3)◦ [54].
The enol structures based on the difference in the predominant bond length and the twist of the
aromatic ring in the two compounds H1 and H22 are very similar. In the crystal packings of H1 and
H22, no remarkable π-π stacking was observed; the closest intermolecular distances between the two
centroids of the pentafluorophenyl groups are sufficiently long (5.629 Å for H1 and 4.991 Å for H22)
due to the sliding orientations of the molecular planes along the b axis (Figure 1c).

3.2. UV-Vis Studies of the Perfluorinated Compounds

The UV-spectra for H1~H24 were obtained in chloroform (CHCl3), acetonitrile (CH3CN), methanol
(CH3OH), and benzene (C6H6) solutions. The electronic absorption spectra of the four ligands in
CHCl3 are shown in Figure 2a. The maximum absorptions for H1, H3, H22, and H24 are observed
at 315, 343, 351, and 383 nm, respectively. The absorption bands of the perfluorinated ligands H1
and H22 (shown in solid lines) were broad and more symmetric but those of the non-perfluorinated
ligands H3 and H24 (dashed lines) showed a peak shoulder on the side of the long wavelength
(around 370 and 400 nm for H3 and H24, respectively) [38]. The spectra of the triketonate ligands
H22 and H24 (green lines) were about 36~40 nm red shifted in comparison to the corresponding
diketone ligands H1 and H3 (black lines). The shift of each peak can be explained by expansion of
the π-conjugated system. The spectra of the perfluorinated ligands H1 and H22 were blue shifted
about 30 nm in comparison to the corresponding non-perfluorinated ligands H3 and H24. The blue
shift can be explained by a loss of planarity of both molecules [53,54]. The planarity of the molecules
was compromised due to the twisting induced by the steric hindrance between the fluorine at the
o-positions of the pentafluorophenyl group and the hydrogen at the ketonate sites, as suggested by the
crystal structures.
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Figure 2. UV-Vis absorption spectra of (a) H1~H24 in CHCl3 solution (40 µM, 1 cm, rt.); and (b) H1
and (c) H22 in following solvents, CHCl3, CH3CN, and CH3OH (1.0 mM, 1 mm, rt).
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The maximum absorption wavelength and the shape of the spectrum of the perfluorinated ligands
H1 and H22 were different depending on the solvent. The λmax of H1 in polar solvents, such as CH3OH,
was 305 nm and in the aprotic polar CH3CN solvent, it was ca. 310 nm. The spectrum in the nonpolar
CHCl3 (λmax 315 nm) was red shifted nearly 5 nm compared with that in the polar solvents as shown
in Figure 2b. The λmax of H22 in the polar solvents was at 348–349 nm and slightly shifted from that in
CHCl3 (351 nm), and the intensity of the small shoulder peak around 280 nm increased in CH3CN
(Figure 2c). These solvent effects were not observed in the solution of H3 and H24. The H1 and H22
absorption spectra in the benzene solution were almost the same as those observed in the CHCl3
solution. This indicates that solvatochromism occurs only in the polar solvents.

3.3. Co-Crystallization by Arene-Perfluoroarene Interactions

The perfluorinated compound and the non-perfluorinated compound were combined to give
1:1 co-crystal. Typically, H1 (121 mg, 0.30 mmol) in EtOH solution (2.5 mL) and H3 (67 mg, 0.30 mmol)
in EtOH solution (2.5 mL) were combined, then the mixture was slowly evaporated to give the colorless
prismatic crystals H1•H3. Although the reaction proceeded quantitatively, the co-crystal was isolated
before the filtrate disappeared so that the microcrystals did not stick to the precipitated single crystal.
The H22•H24 co-crystal was obtained as a yellow prismatic crystal using the same synthetic protocol.
The results of the elemental analysis for H1•H3 (C30H14F10O4) and H22•H24 (C34H18F10O6) clearly
showed that the crystallized products were pure with a 1:1 stoichiometry. The melting points of the
co-crystals are expected to be higher than the single perfluorinated compounds: H1•H3 (106 ◦C) > H1
(83 ◦C) and H3 (76 ◦C); H22•H24 (125 ◦C) > H22 (87 ◦C) and H24 (107 ◦C).

The molecular structures of the co-crystals H1•H3 and H22•H24 are shown in Figure 3 with
the corresponding numbering schemes. The major intra- and intermolecular interactions of H1•H3
and H22•H24 are summarized in Table 2. In Figure 3a, the co-crystal H1•H3 is comprised of H1
and H3 in a 1:1 ratio. The mean planes of both molecular structures were highly overlapped by
the arene–perfluoroarene interaction. The bond lengths of O1-C7 and O2-C9 in H1 are 1.2607(17)
Å and 1.3063(16) Å, respectively, and those of O3-C22 and O4-C24 in H3 are 1.2757(16) Å and
1.3054(16) Å, respectively, indicating the same type of π-conjugated structure of each molecular
component. The two phenyl rings of H3 were twisted to the plane of the β-diketonate moiety, and the
torsional angles of the C1-C6-C7-O1 and O2-C9-C10-C11 are -30.64(19)◦ and 32.78(18)◦, respectively.
Similarly, the pentafluorophenyl groups of H1 are twisted, producing 18.14(18)◦ and -12.71(18)◦ angles
for C16-C21-C22-O3 and O4-C24-C25-C26, respectively.
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Table 2. Major intra- and intermolecular interactions of H1•H3 and H22•H24.

H1•H3 H22•H24

Intramolecular hydrogen bonds (O-H···O) O1···O2, 2.5313(15) Å
O1···O2, 2.5495(14) Å
O2···O3, 2.5811(14) Å

O3···O4, 2.4882(15) Å
O4···O5, 2.5584(14) Å
O5···O6, 2.5632(14) Å

O1···H2-O2, 147◦
O1-H1···O2, 147◦

O2···H3-O3, 146◦

O3···H4-O4, 148◦
O4-H4···O5, 146◦

O5···H6-O6, 147◦

Intermolecular hydrogen bonds (O-H···O) not found not found

Arene-perfluoroarene
[Cg(C6F5)···Cg(C6H5)]

π(C1-6)···π(C29-34), 3.6671(8) Å π(C1-6)···π(C29-34), 3.6949(8) Å
π(C10-15)···π(C16-21), 4.1008(9) Å π(C12-17)···π(C18-23), 4.0439(8) Å

C-F···π [C-F···Cg(C6F5)] C4-F4···π(C29-34), 3.4806(11) Å C4-F4···π(C29-34), 3.4959(11) Å
C14-F9···π(C16-21), 3.2877(11) Å C16-F9···π(C18-23), 3.2621(11) Å
C15-F10···π(C16-21), 3.2364(10) Å C17-F10···π(C18-23), 3.3073(11) Å

Parts of the packing structure of H1•H3 are shown in Figure 4. The alternate stacking of
the two compounds was observed along the b axis with alternating H1 and H3 layers (Figure 4a).
The closest intermolecular distances between the two centroids of the pentafluorophenyl group
in H1 and the phenyl group in H3 are 3.6671(8) Å [Ring C1-C2-C3-C4-C5-C6 (x, y, z) and Ring
C25-C26-C27-C28-C29-C30 (x, y-1, z) indicating a weak arene–perfluoroarene interaction as shown
in Figures 3a and 4a. Remarkable intermolecular interactions were observed along the c axis
(Figure 4b); two molecules, H1 and H3, are very close between the two edges of the compounds
next to each other on the same plane by C-H···F interactions [28,31]. The corresponding distances
of C20···F4, C23···F4, C30···F4, C29···F5, and C29···F10 are 3.418(2), 3.604(2), 3.541(2), 3.282(2),
and 3.366(2) Å, respectively. Due to the CH···F interaction, the alternating columnar layers through
arene–perfluoroarene interactions are further alternately staggered to form checkered patterns.
No intermolecular hydrogen bonds are observed because of the stabilized intramolecular hydrogen
bonds of each compound.
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Figure 4. Packing structures of H1•H3: (a) the comprehensive view of the stacking structure and
(b) major intermolecular interactions.

The molecules in the co-crystal of H22•H24 have almost the same orientation (Figures 3b
and 5) as the molecules in the H1•H3 co-crystal (Figures 3a and 4). The bond lengths of O1-C7,
O2-C9, and O3-C11 are 1.3276(16), 1.2729(16), and 1.3313(16) Å, respectively, and those of O4-C24,
O5-C26, and O6-C28 are 1.3304(15), 1.2746(16), and 1.3343(16) Å, respectively. The torsional angle
of the C1-C6-C7-O1 and O3-C11-C12-C13 are -29.51(17)◦ and 30.12(17)◦, respectively, and that
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of C18-C23-C24-O4 and O6-C28-C29-C30 are 16.08(17)◦ and -11.66(17)◦, respectively. The closest
intermolecular distances between the two centroids of the pentafluorophenyl group in H22 and
the phenyl group in H24 are 3.6949(8) Å, indicating that the driving force of the co-crystal is the
arene–perfluoroarene interactions in the crystal. The C-H···F intermolecular interactions were also
observed in H22•H24, but the remarkable short distance was only observed in C25···F4 [3.344(2) Å].
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(b) major intermolecular interactions.

For understanding the intermolecular association of the two co-crystals, density functional
theory (DFT) calculations using B3LYP/6-31G* [48,49] were performed for each compound [55,56].
The electrostatic potential (ESP) surfaces for H1~H24 are shown in Figure 6. Based on the orientation
of the two aromatic rings of each compound, two stable structures with a bowl shape (the twisted
direction of the aromatic rings is the same and the corresponding twist angle is small) and twisted
shape (the twisted direction of the aromatic rings is opposite and the corresponding twist angle is
large) were obtained. For example, the torsion angles of C5-C6-C10-C15 for the diketones H1 and H3
and C5-C6-C12-C17 for the triketones H22 and H24, of which the numbering schemes are assigned
in Figure 1, were calculated to be around 1◦ and 60◦ for the bowl and twisted shapes, respectively.
Typically, the torsion angle of C5-C6-C10-C15 in compound H1 is 0.13◦ for the bowl shape and 61.63◦

for the twisted shape. In the ESP, the property range of the bowl and twisted shapes are very similar to
+118.3 ~ −142.1 kJ mol-1 and +112.6 ~ −143.8 kJ mol−1, respectively. Since all the co-crystals have a
bowl shape, the ESP shows only bowl shapes in Figure 6. In the map, the blue color shows electron poor
regions, indicating the proton atoms and the center parts of the pentafluorophenyl groups; the highest
potential energies of H1, H3, H22, and H24 are +118.3, +109.6, +119.1, and +99.6 kJ mol−1, respectively,
of the hydroxy protons. The lowest potential energies are assigned to the oxygen atoms. The most
interesting information is the inverted potential energy of the aromatic rings between the perfluorinated
and non-fluorinated compounds. In the pentafluorophenyl rings of H1 and H22, the higher potentials
due to electron poor regions (blue color) are occupied in the aromatic center (max. +106.7 kJ mol−1 for
H1 and +100.2 kJ mol−1 for H22). The lower potentials due to the electron-rich regions (green–yellow
color) are occupied in the edge of the fluorine atoms, and both of the F1 atoms in H1 and H22 shows
smaller values, approximately−40 ~−60 kJ mol−1, which gives the intermolecular CH···F interactions
in the co-crystals, as shown in Figures 4b and 5b. On the other hand, in the phenyl rings of H3 and
H24, the higher regions (blue color) are occupied on the edge of the protons (max. +104.3 kJ mol−1 for
proton H30 bound on C30 in H3 and +99.6 kJ mol−1 for the proton H34 bound to C34 in H24) and the
lower regions (green–yellow color) are occupied in the aromatic center (min. −67.6 kJ mol-1 for H3
and −63.0 kJ mol−1 for H24). These opposite electron distributions between the perfluorinated and
non-fluorinated compounds indicate co-crystallizations through the arene-perfluoroarene and CH···F
interactions [55,56], when two molecules approach each other.
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4. Conclusions

We have demonstrated arene–perfluoroarene interactions between fully-fluorinated compounds
and the corresponding non-perfluorinated compounds to give alternate layered supramolecular
associations in the crystal states. Two fully-fluorinated compounds, the diketone H1 and triketone
H22, were prepared and characterized by 1H NMR, elemental analysis and X-ray crystallography.
The UV-Vis spectra of H1 and H22 show keto-enol and enol-keto-enol structures, respectively.
The compounds further interacted with the corresponding non-perfluorinated compounds to give
1:1 alternating co-crystals, which were characterized by elemental analysis and single crystal X-ray
analysis. In the co-crystals, the intermolecular arene–perfluoroarene interactions were observed
between the pentafluorophenyl rings and phenyl rings showing that the opposite quadrupole moments
are responsible for their association as indicated by the DFT calculations.
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