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Abstract: Dilute mixtures of nanoparticles (NPs) and nematic liquid crystals (LCs) are considered.
We focus on cases where NPs enforce a relatively weak disorder to the LC host. We use a
Lebwohl-Lasher semi-microscopic-type modeling where we assume that NPs effectively act as
a spatially-dependent external field on nematic spins. The orientational distribution of locally
favoured “easy” orientations is described by a probabilistic distribution function P. By means of a
mean field-type approach, we derive a self-consistent equation for the average degree of nematic
uniaxial order parameter S as a function of the concentration p of NPs, NP-LC coupling strength and
P. Using a simple step-like probability distribution shape, we obtain the S(p) dependence displaying
a crossover behaviour between two different regimes which is in line with recent experimental
observations. We also discuss a possible origin of commonly observed non-monotonous variations of
the nematic-isotropic phase temperature coexistence width on varying p.

Keywords: phase behaviour; weak disorder; orientational order

1. Introduction

In recent years, there has been an increasing interest in homogeneous composites [1] consisting of
soft materials doped with appropriate nanoparticles (NPs). The main goal is to combine constituents
possessing complementary properties to obtain composite materials with anomalously enhanced or
even new material properties. Diverse mixtures often exhibit complex behaviour, leading to emergent
robust, and in some cases even universal behaviour. In this contribution, we focus on the impact of
NP-induced weak disorder on anomalous host structural behaviour, in which we exploit nematic
liquid crystals as a demonstrative test bed.

Liquid crystals (LC) [2] are typical representatives of anisotropic soft materials. These extraordinary
materials combine liquid and crystalline ordering, optic transparency and anisotropy, and softness.
The latter refers to the capacity of strong responses to relatively weak perturbations. The reasons behind
the softness are weak intermolecular interactions between LC molecules and the formation of LC phases
and structures via continuous symmetry breaking (CSB) transitions [3]. Due to the latter, bulk LC phases
exhibit easily excitable Goldstone modes in the gauge field component of the relevant order parameter
field [2,3]. Due to these unique combinations of properties, LC phases and structures are inevitable

Crystals 2019, 9, 171; doi:10.3390/cryst9030171 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0003-2793-7971
https://orcid.org/0000-0002-3089-7993
https://orcid.org/0000-0002-3962-8845
http://www.mdpi.com/2073-4352/9/3/171?type=check_update&version=1
http://dx.doi.org/10.3390/cryst9030171
http://www.mdpi.com/journal/crystals


Crystals 2019, 9, 171 2 of 13

in numerous “natural” applications (e.g. biological membranes [4]), and technological applications
(e.g., LC displays [3]).

Several studies of NP-LC mixtures focused on the impact of NP-induced disorder on LC phase and
structural behaviour [5]. Namely, due to the experimental accessibility of LCs and their susceptibility
to perturbations (in this case NPs), one could exploit the rich diversity of different LC-NP combinations
to (i) control and tune disorder type and even disorder strength [6], (ii) and relatively easily measure
their impact on macroscopic order [7]. Consequently, LCs represent an ideal testing ground to study
the influence of various types of disorder on material properties [8].

Most studies so far have considered the impact of relatively weak or strong random field-type
disorders imposed by aerosil NPs on nematic [6,9,10] and smectic A phases [6,11]. These phases are
the simplest representatives of systems exhibiting orientational and translational degrees of freedom,
respectively. These studies focused mainly on the validity of the Imry-Ma argument [12], one of
the pivotal cornerstones of the statistical mechanics of disordered systems. It claims that even an
infinitesimally weak random field-type disorder destroys the long-range order of the undistorted
phase, which is reached via a CSB phase transition. The resulting structures exhibit short-range order.
Therefore, the argument applies to any configuration reached via a continuous symmetry breaking
the transition in the presence of a random field disorder. However, numerous studies, among which
several were performed in NP-perturbed LCs, that in some cases instead of short-range order [12–14],
quasi-long range order [13–16] or even long-range order [10,13,14] might appear.

In this paper, we consider cases where NPs induce a weak enough disorder, so that resulting
LC structures exhibit qualitatively bulk-like behaviour, but quantitatively complex behaviour on
increasing the disorder strength. We consider the phase and structural behaviour of thermotropic
nematic LCs doped with NPs of volume concentration p. We first discuss recent experimental
observations [17,18], which reveal nonmonotonous I-N temperature phase behaviour on varying
p in the diluted regime (typically, p < 0.01). This was observed [17,18] in ∆T(p) = T∗∗(p)− T∗(p) ∼
TIN(p)− T∗(p) dependence, where TIN(p), T∗∗(p), and T∗(p) stands for the I-N phase transition,
nematic superheating, and isotropic supercooling temperature, respectively, in mixtures. In these
cases, ∆T(p) first decreases and afterward increases on increasing p. Next, we develop a simple model
to explain recent experimental results which reveal nontrivial behaviour in bulk uniaxial nematic
order parameter S on varying p in LC doped with spherical NPs [19]. In the paper, we address
these phenomena.

2. Results

We study thermotropic nematic LCs doped with NPs of volume concentration p in the diluted
regime (i.e., p� 1). We consider the two experimental observations addressed above, for which generic
mechanism are not known: (i) non-monotonous ∆T(p) dependence [17,18], and (ii) p-driven crossover
in S(p) dependence [19]. We first describe a possible mechanism yielding the non-monotonous
∆T(p) behavior. Afterward we develop a simple phenomenological model originating from the
Lebwohl-Lasher-type lattice approach [20–22] to explain crossover behaviour in nematic ordering on
varying p.

2.1. Non-Monotonous ∆T(p) Dependence

To identify a possible origin of non-monotonous ∆T(p) behavior, we first discuss the
most probable behavior on decreasing temperature across the I-N phase transition for different
concentrations of NPs. For this purpose, we consider simple model systems, which roughly mimic
the experimentally studied systems in Reference [17–19]. We assume that NPs are essentially spatially
homogeneously distributed in the LC medium. Furthermore, the NP-LC coupling is sufficiently weak,
so that NPs do not enforce topological defects in the LC medium. We set the NPs to be spherical and
enforce a relatively weak homeotropic anchoring [2]. In this case, LC molecules tend to be aligned
along the surface normal of an infinitesimally small NP-LC interface area. Due to the weak anchoring
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condition, a local LC ordering reflects the compromise between local elastic forces, surface anchoring,
and wetting tendencies.

In our treatment, we use the volume concentration, which is defined as

p =
N v
V

, (1)

where N, v = 4πr3/3; and V stands for the number of NPs, the volume of an average spherical NP, and
sample volume, respectively. In addition to the NP radius r, there are several other lengths which play
an important role in our study. These are the average separation length lNP between neighboring NPs,
the nematic order parameter correlation length ξ, and the surface extrapolation length de. Their values
are estimated by [2]

lNP ∼
(

4π

3p

)1/3
r , ξ ∼

√
K/ f ′′c , de ∼

K
W0

. (2)

Here (see Methods and Reference [2]), K is the representative nematic Frank elastic constant, f ′′c = ∂2 fc
∂S2

is the second derivative of the nematic phase condensation free energy expressed at the equilibrium,
and w0 stands for the representative anchoring strength (see Methods). The correlation length estimates
the length over which a locally-induced perturbation in the amplitude of nematic order persists. On the
other hand, de estimates the typical length scale on which the nematic director varies near a surface
imposing an elastic distortion.

We next describe expected LC structural behaviour on decreasing temperature from the isotropic
phase. We assume that the temperature is gradually decreased (i.e., mixtures are not “quenched” into
the nematic phase). Firstly, we consider diluted samples, in which lNP > ξ in the whole temperature
regime. For such conditions, the most probable configuration for T > TIN is schematically sketched
in Figure 1. NPs act as seeds for paranematic (weakly ordered nematic) ”islands” in the isotropic
“sea”, to which we henceforth refer to as clusters. The effective radius and volume of approximately
spherical clusters equals to rcl ∼ r + ξ and vcl ∼ 4πr3

cl/3, respectively. Due to the weak anchoring,
the average preferential paranematic orientation of each cluster exists, to which we henceforth refer to
as the cluster director, that is aligned along some symmetry breaking direction. Namely, a paranematic
ordering favours parallel alignment of LC molecules, which breaks the isotropic symmetry imposed
by the homeotropic anchoring condition. On the other hand, the coupling between cluster directors is
relatively weak. Consequently, the orientational distribution function of cluster directors is expected
to be isotropic if lNP � ξ. When the phase transition temperature is reached, the nematic order
nucleated at NP-LC interfaces gradually pervades all the LC volume. This growth is slow enough
(due to sluggish kinetics of domain growth) so that previously randomly aligned cluster directors realign
along a common (in general domain) direction. In this concentration regime, the NP-imposed disorder
strength is relatively weak. On increasing p, the “paranematic stiffness” increases and remains partially
quenched in a weakly distorted metastable state on entering the nematic phase. We expect that the
disorder strength increases with increasing p in the regime lNP > 2rcl . At lNP ∼ 2rcl , the clusters are
expected to enter “percolated” regime [23]. Note that at the percolation threshold [24] the structures
typically exhibit fractal-like patterns and fractals in general fingertip “edge of chaos”. In the regime
lNP < 2rcl , the coupling between paranematic clusters becomes relatively strong (with respect to
thermal fluctuations) even in the isotropic (i.e., paranematic phase). If this interaction is strong enough,
it can partially realign neighbor clusters along a similar direction, and consequently, the disorder
strength is decreased.
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Figure 1. Schematic presentation of paranematic clusters embedded in the isotropic fluid. Double arrows
indicate average orientation within each cluster.

Such a configuration could be treated as a binary system consisting of LC molecules and
paranematic clusters. The corresponding effective free energy density could be approximately expressed
as [25] f (e f f ) = (1− pcl) fLC + pcl fcl + pcl(1− pcl) fint, where

fLC = A0(T − T∗)S2 − BS3 + CS4, (3a)

fcl = a0(p∗cl − pcl)s2
cl − bS3

cl + cS4
cl , (3b)

fint = −WSclS. (3c)

The terms fLC and fcl represent spatially averaged condensation contributions of the bulk-like LC
component and clusters, respectively. Here, S and Scl determine amplitudes of the respective nematic
(paranematic) orderings; A0, B, C, a0, b, c, T∗, p∗cl are material dependent quantities; and

pcl =
N vcl

V
= p

vcl
v
∼ p

( rcl
r

)3
. (4)

For example, for ξ ∼ r it follows pcl ∼ 8p. The term fcl models the clusters as effectively lyotropic
LC molecules diluted in an isotropic fluid. The interaction term fint models spatially averaged coupling
between LC molecules and clusters, where the coupling constant W is positive. This coupling favors
mutually supporting the ordering of LC molecules and clusters. Therefore, in cases Scl > 0 the LC
component experiences an external field-like coupling term fint = −wS, where w = WScl in “real”
samples certainly exhibits a relatively strong spatial dependence. This introduces a certain degree
of randomness in the system, in particular in the regime where percolation-like order of clusters
is expected.

The fingerprint of this phenomenon could be non-monotonous ∆T(p) dependence observed in
some LC mixtures, where examples are given in Table 1. In it, we list ∆T(p) measured in mixtures
of different LCs and NPs [17,18] in the diluted regime. The local minimum in ∆T(p) signals peaks in
NP-imposed disorder strength. Namely, theoretical studies on the impact of random type disorder [26]
on nematic ordering reveal that the bistability region decreases on increasing the disorder strength.
A rough insight into the latter behaviour is also evident from a relatively simple phenomenological
model presented in the Methods (see Equation (24)), where the dimensionless field σ estimates
NPs-induced disorder strength. On increasing σ, the nematic-paranematic coexistence temperature
interval decreases in the regime σ < 0.5 and vanishes at σ = 0.5.
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Table 1. Measured critical behavior for mixtures of different liquid crystals and nanoparticles. In
References [17,18], they used BaTiO3 nanoparticles.

Sample TIN T* T** ∆T Reference

5OCB 69.1 65.3 ~3.8 [18]
5OCB + 0.1% NPs 68.4 68.1 ~0.3 [18]
5OCB + 0.5% NPs 68.8 68.3 ~0.5 [18]

12CB 46.8 58.9 12.1 [17]
12CB + 0.1% NPs 53.4 58.9 5.5 [17]
12CB + 0.2% NPs 53.9 59.2 5.3 [17]
12CB + 0.3% NPs 54.4 58.6 4.2 [17]
12CB + 0.4% NPs 51.9 57.9 6 [17]

2.2. Impact of NPs on Average Nematic Ordering

Polarized micro-Raman spectroscopy and optical birefringence measurements [19] revealed
bulk-like equilibrium ordering in the nematic phase within the experimental resolution in the
diluted regime (p < 0.01). However, the uniaxial order parameter displayed two different regimes
on increasing p as shown in Figure 2. In the first regime (0 < p ≤ pc), where pc ∼ 0.001,
S(p) monotonously decreased. However, in the second regime (pc < p < 0.01), it gradually saturated
to a roughly constant value.
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Figure 2. Nematic orientational order parameter S as a function of nanoparticle concentration p at different
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1.4 K, •—∆T = 15.0 K ± 0.7 K, —∆T = 10.0 K ± 0.7 K, H—∆T = 5.0 K ± 0.7 K, —∆T = 1.0 K ± 0.7 K).

To reproduce the basic mechanism behind this observation, we derive a simple mean-field-type
expression at temperature T = 0 for the nematic response in a randomly perturbed nematic phase.
Our interest is in the structural behaviour which is expected to emerge in weakly disordered phases
reached via a continuous symmetry breaking phase transition in which a spatially uniform orientational
ordering is formed in the absence of disorder. We used the simplest possible modeling to reproduce
the experimental observations reported in Reference [19]. In this study, homogeneously dispersed NPs
enforce a relatively weak disorder. In the modeling, we assumed that each NP enforces in general a
different local orientation which we roughly mimic by a kind of preferentially ordered random field of
constant amplitude. Reasons for such randomness are described in the previous section. We used a
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Lebwohl-Lasher-type lattice modelling which despite its simplicity well describes general properties
of nematic ordering [20–22].

We consider a d-dimensional lattice (we study cases d = 2 and d = 3) of Nn nematic spins ni
pointing along a local direction of rod-like LC molecules at the site ri of a cubic lattice interacting by
Lebwohl-Lasher interaction [20]. To take into account the nematic head-to-tail invariance, we introduce
the traceless nematic tensor order parameter [2]

q
i
= ni ⊗ ni − I(d)/d, (5)

where I(d) is the d-dimensional unit tensor and ⊗ marks the tensor product. We define the global
nematic order parameter

Q = s(d)(ng ⊗ ng − I(d)/d) = 〈q
i
〉, (6)

of the system, where 〈. . .〉 stands for the spatial average. The global nematic director ng points along the
average nematic direction in the system and s(d) stands for the global uniaxial nematic order parameter.
Furthermore, we set that some randomly chosen sites are occupied by NPs, where their volume
concentration is determined by p ∈ [0, 1]. In our modeling, we consider dilute regimes characterized
by p < 0.01. We set that a NP located at the ith site enforces a local “easy direction” determined by
the tensor

q(NP)
i

= ei ⊗ ei − I(d)/d, (7)

and orientations of unit vectors ei are distributed according to some probability distribution P(ei).
Taking into account Equations (5)–(6), we obtain

s(d) =
1

d− 1
〈d
(
ni.ng

)2 − 1〉. (8)

Therefore, for d = 2 and d = 3 it follows

s(2) = 〈2
(
ni.ng

)2 − 1〉 = 〈cos(2θi)〉, (8a)

s(3) = 〈1
2

(
3
(
ni.ng

)2 − 1
)
〉 = 〈1

2

(
3 cos2 θi − 1

)
〉. (8b)

For later convenience, we introduce also

s(2)NP = 2
(
ei.ng

)2 − 1 = cos(2ϑi), (9a)

s(3)NP =
1
2

(
3
(
ei.ng

)2 − 1
)
=

1
2

(
3 cos2 ϑi − 1

)
. (9b)

The angles θi and ϑi are defined as

θi = ArcCos
(
ni.ng

)
, (10a)

ϑi = ArcCos
(
ei.ng

)
. (10b)

Note that {s(2), s(2)NP} ∈ [−1, 1] and {s(3), s(3)NP} ∈ [−1/2, 1]. Furthermore, s(d) = 1 (s(d)NP = 1)
fingerprints that the nematic director field (NP enforced easy direction) is strictly aligned along ng.

Isotropic distribution of ni yields s(d) = 0. Similarly, for isotropic distribution of ei, it follows 〈s(d)NP〉 = 0.
In the spirit of classical mean-field approaches [21,27], we replace the molecular field Bi

(see Equation (17)) which is introduced in the Methods by an effective molecular field acting on
each nematic spin:

B = JQ + wq(NP)
i

. (11)
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Here, J = Nnn J0, J0 describes the interaction between nearby nematic spins, Nnn stands for the number
of first neighbors, w = pw0, and w0 represents the local “impurity” field strength (see Methods).

Next, we assume that a local nematic orientation is determined by the effective molecular
field [21,27]. Hence, we request that the frames of B and q

i
coincide (are parallel) [21], i.e., q

i
= AB.

We determine the constant A from the condition Tr
(

q
i
q

i

)
= C(d), where C(2) = 1/2 and C(3) = 2/3 for

d = 2 and d = 3, respectively. Therefore, q
i
= (JQ + wq(NP)

i )/
√
(Js(d))2

+ w2 + 2Jws(d), and it follows

ng.q
i
ng =

Js(d) + ws(d)NP√(
Js(d)

)2
+ w2 + 2Jws s(d)NP

. (12)

Finally, we take the spatial average of Equation (12), which yields the self-consistent integral
equation for s(d) for a given probability distribution P(ei) :

s(d) =
1

Ω(d)

∫
P(ei)

Js(d) + ws(d)NP√(
Js(d)

)2
+ w2 + 2Jws(d)NP

dΩ(d). (13)

The integration is carried over all possible orientations ei, Ω(d) =
∫

dΩ(d), and 1
Ω(d)

∫
PdΩ(d) = 1.

In our approximate treatment, we assume a cylindrically symmetric distribution of ei values about ng.
Consequently,

s(2) =
1
π

∫ π

0
P(cosϑi)

Js(2) + ws(2)NP√(
Js(2)

)2
+ w2 + 2Jws(2)NP

dϑi, (13a)

s(3) =
1
2

∫ 1

−1
P(cosϑi)

Js(3) + ws(3)NP√(
Js(3)

)2
+ w2 + 2Jws(3)NP

dcosϑi. (13b)

Note, that Equation (13) yield s(d) = 1 for w = 0. Furthermore, in the limit w→ ∞ and the
isotropic distribution P it follows s(d) = 0.

In Figure 3, we plot S = s(3) as a function of w = pw0 for different distributions P and d = 3. In the
calculations, we impose a step-like distribution P

(
ϑ ≤ ϑ(max)

)
= P0 and P

(
ϑ > ϑ(max)

)
= 0, where P0

is a constant. The S(p) dependence monotonously decreases on increasing p, displaying a relatively
steep crossover between the two regimes, characterized by significantly different characteristic values
of S. Saturated value of Ss in the second (plateau) regime monotonously decreases with ϑ(max) and is
finite for ϑ(max) < π/2. Note that the behaviour shown in Figure 3 is relatively robust with respect
to P shape. For example, in Figure 3c, we compare S(p) behaviors for a step-like and Gaussian
distribution. One sees that Ss well fingerprints the essential property of P.

We stress that in our simulations w = w0 p is increased either by increasing w0 or p.
However, our preliminary semi-microscopic lattice simulations using interactions at finite temperatures
reveal that experimentally observed crossover behavior on varying p could be reproduced if the
anchoring strength w0 is relatively weak. To estimate the anchoring strength in experiments, we use a
simple mesoscopic model where the corresponding free energy contributions are given by Equation
(20) (see Methods). Experimental measurements reveal negligible shifts in ∆TIN(p) = TIN − TIN(p)
on varying p. Our mesoscopic estimate (see Equation (26a)) reveals that elastic and NP-LC interface
contributions tend to decrease and increase ∆TIN(p), respectively. We set that the contradicting effects
cancel each other, i.e., ∆TIN(p) = 0. It follows

p
ξ2

d
dINr

∼ 1, (14)
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where dIN = de(T = TIN), ξd estimates a typical linear length over which distortions in the nematic
director field are realized, and we assume P2 ∼ 1 (see Methods, Equation (25)). By setting ξd ∼ dIN ,
we obtain (see Equation (2)) w0 ∼ pK

r . For p ∼ 0.01, K ∼ 10−11 J/m, and r ∼ 25 nm [19] it
follows w0 ∼ 10−5 J/m2, confirming a relatively weak anchoring regime. Note that the interaction
between NPs and LCs depends on material properties of both components and also on NP surface
treatment [28].Crystals 2019, 9, x FOR PEER  8 of 13 
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Figure 3. (a) Order parameter S variation as a function of w and ϑmax. (b) S(w) variation for
several values of ϑmax; full line: ϑmax = π/2, dashed line: ϑmax = 7π/18, dash-dotted line: ϑmax

= π/3, dotted line: ϑmax = 2π/9. (c) Comparison of S(w) dependences for a step-like (full line)
and the Gaussian probability distribution (dashed line). The step-like distribution is described by

P
(

ϑ ≤ ϑ(max)
)
= P0 and P

(
ϑ > ϑ(max)

)
= 0, where P0 is a constant, and the Gaussian distribution

is described by P = PG(ϑ) = Ce−ϑ2/2σ2
, where C is the normalization constant, and σ is the standard

deviation. Both probability distributions must be normalized on the interval from ϑ = 0 to ϑ = π.
We chose the free parameters for both distributions in such a way to roughly match the observed drop
in experimentally measured S(p) dependence. For the step-like distribution, we obtain ϑmax = 0.387 π,
while for the Gaussian distribution, σ = 0.798 and C = 0.25.

3. Conclusions

Of interest were dilute mixtures of nematic liquid crystals and nanoparticles, where NPs enforce
a relatively weak disorder.
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Our research was motivated by recent experimental observations [17–19] in such dilute mixtures
where nematic structural properties were studied on varying the concentration p of NPs. It was
observed [17,18] that the temperature width of the isotropic-nematic coexistence region exhibits a
non-monotonous behaviour. Furthermore, the global nematic order parameter of mixtures exhibits
the crossover [19] between two quantitatively different bulk-like nematic ordering regimes. We claim
that these features emerge due to NP-induced disorder. Namely, owing to the continuous symmetry
breaking origin of I-N phase transition, the nematic order is strongly susceptible to even relatively
weak perturbations.

We used minimal models to discuss these phenomena. We considered a dilute NP concentration
regime where phase separation is not expected. We assumed that NPs are relatively weakly coupled
with the surrounding LC order. Consequently, in the isotropic (or weakly paranematic) phase,
NPs nucleate paranematic clusters, and each of them in general displays a preferential ordering
direction. One expects three different regimes depending on the relative value of lNP (the mean
separation of NPs) and rcl (the effective radius of clusters). For lNP > 2rcl , the clusters are
essentially decoupled. In the regime lNP ∼ 2rcl , the clusters are expected to form a percolation-type
structure, which in general display fractal properties and are consequently relatively disordered.
For lNP < 2rcl , the clusters relatively strongly interact, which suppresses the thermal fluctuation of
clusters. Consequently, there is a strong tendency to align clusters along a common direction. As a
result, the degree of disorder, which is experienced by LCs, displays the non-monotonous behaviour on
varying p. Note that a similar p-driven disorder strength impact is observed in TIN(p) non-monotonous
dependence in aerosil-LC mixtures. Note that in these mixtures the interaction between NPs and LC
molecules is relatively strong due to the formation of covalent bonds. On increasing p, the I-N phase
transition temperature first decreases. In the second regime, it increases and again decreases above
p = pmax, where the local minimum is observed in the TIN(p) dependence. The maximum at p = pmax

is attributed to the peak in disorder strength. For values of p > pmax, the disorder strength again
decreases due to elastic strain-driven rearrangement of the aerosil network. Namely, the network
rearrangement enables partial relaxation of the LC elastic strain.

In more detail, we analyzed weak disorder-driven crossover behaviour of the nematic order
parameter s on varying p deep in the nematic phase. We used a Lebwohl-Lasher-type lattice
semi-microscopic model. We set that NPs locally enforce a preferential orientational order, where
the distribution of the corresponding easy directions is determined by the probability distribution
P. We used a mean field–type approach and assumed that nematic spins locally align along
the effective local field and derived the corresponding self-consistent equation for S. A simple
cylindrically symmetric step-like shape of P yields the p-driven crossover behaviour which is observed
experimentally. This shape in P roughly mimics cases where NPs generated preferred local orientations
which are on average aligned along the global nematic order. Our analysis reveals that S(p) behaviour
is relatively robust with respect to details describing P. Note that in the experiments P distribution is
expected to quantitatively change on varying p. The modeling of this rearrangement mechanism is the
topic of our next research.

4. Methods

4.1. Semi-Microscopic Modeling

We use a Lebwohl-Lasher-type lattice model [20] to describe nematic structures perturbed by
impurities, which in our description mimic randomly dispersed nanoparticles. We consider a lattice
consisting of nematic spins ni. In our approximate treatment, we set that impurities effectively act as
an external field [21,29], which is in general spatially-dependent. We express the total energy of the
system [20–22,29] as

W = −1
2

Nn

∑
i=1

Nn

∑
j=1

JijTr
(

q
i
q

j

)
−

Nn

∑
i=1

wiTr
(

q
i
q(NP)

i

)
. (15)
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Here, Tr stands for the trace operator, and the sums run over the lattice sites. The first term
describes the interaction among nematic spins. We set Jij = J0 > 0 among the first neighbors, Jij = 0
for the other pairs and Jii = 0. This choice models short-range interaction, enforcing parallel alignment
of nematic spins. The second term, which was originally introduced by Sluckin et al. [29] to study
random-anisotropy-nematic (RAN) interactions, mimics the interaction between nematic spins and
impurities. The quantity wi stands for the effective NP-generated local interaction strength. We set
wi = w0 > 0 at the sites where NPs are present and wi = 0 otherwise. Hence, in the limit w→ ∞ the
RAN interaction locally enforces ei = ni.

One can express Equation (15) as

W = −
Nn

∑
i=1

Tr
(

Biqi

)
, (16)

where we introduce the molecular field tensor [21] as

Bi =
Nn

∑
j=1

Jijqj
+ wiq(NP)

i
. (17)

4.2. Mesoscopic Modeling

We consider the impact of the NP-LC interface interaction on paranematic and nematic order in
thermotropic LC. At the mesoscopic level, we describe nematic orientational order for d = 3 by the
tensor nematic order parameter [2]

Q = S
(

n⊗ n− I(3)/3
)

, (18)

where s ∈ [−1/2, 1] is the uniaxial order parameter, and n is the nematic director field pointing along
the local uniaxial order.

We express the free energy of the LC-NP mixture in terms of the nematic tensor order parameter
in the diluted regime as [2]

F =
∫
( fc + fe)d3r +

∫
fid2r. (19)

The first integral runs over the LC material and the second over LC-NP interfaces.
The condensation ( fc), elastic ( fe), and interface ( fi) free energy density contributions are expressed as

fc =
3A0

2
(T − T∗)TrQ2 − 9B TrQ3 +

9C
4

(
TrQ2

)2
, (20a)

fe = LTr
(
∇Q

)2, (20b)

fe = −w0 v.Qv. (20c)

The quantities A0, B, and C are positive material constants, and T∗ is the isotropic phase
supercooling temperature. In bulk LC, the isotropic-nematic phase transition takes place at TIN =

T∗ + B2

4A0C . The condensation term determines the equilibrium degree of nematic ordering below TIN ,
which equals to

Seq = s0
3 +
√

9− 8τ

4
. (21)

Here
τ =

T − T∗

TIN − T∗
, s0 = Seq[T = TIN ] =

B
2C

, (22)

where τ stands for the dimensionless temperature.
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The elastic term is expressed in the single elastic constant approximation. Here, L > 0 is
the representative bare (i.e., independent of T) nematic elastic constant, and the corresponding
temperature-dependent nematic Frank representative elastic constant is given by K ∼ LS2. This term
enforces a spatially uniform order.

The interface term determines the condition at the LC-NP interface. It is weighted by the positive
constant w0, and v is the normal surface of an infinitesimal interface area. This modeling favours
homeotropic anchoring, i.e, local alignment of n along v.

For latter convenience, we express the nematic correlation length ξ and the interface extrapolation
length at T = TIN

ξ IN = ξ[T = TIN ] ≡
√

L
A0(TIN − T∗)

, dIN = de[T = TIN ] =
Ls0

w0
. (23)

Next, we estimate the effective free energy of a mixture. For this purpose, we introduce the scaled
nematic order parameter q = S/s0, and we assume that nematic order amplitude is uniaxial and
spatially homogeneous. Furthermore, we assume that typical NP-enforced distortions in n are resolved
on the length scale ξd. Consequently, 〈 fe〉 ∼ LS2

ξ2
d

, where 〈. . .〉 denotes the spatial average. It follows

f
f0
∼ τ(e f f )q2 − 2q3 + q4 − σq, (24)

where
τ(e f f ) = τ + ξ2

IN/ξ2
d, σ = pP2ξ2

IN/(dINr), (25)

stand for the effective dimensionless temperature and effective dimensionless NP-LC interaction,
and f0 = A0(TIN − T∗)s2

0. In expressing the latter term, we set
∫

fid2r ∼ −Naw0P2, a = 4πr2 is
a NP’s surface area, P2 = 〈(3(n.v)2 − 1)/2〉NP, and 〈. . .〉NP stands for an average over an average
NP’s surface area. The phase behavior emerging from Equation (24) is as follows. For σ ∈ [0, 0.5],
the isotropic-nematic (σ = 0) and paranematic-nematic (σ > 0) are determined by the condition
τ(e f f ) = τ

(e f f )
IN ≡ 1 + σ. The corresponding dimensional critical temperature τIN and amplitude qIN of

the nematic order parameter are expressed as

∆τIN = τIN(p)− τIN(0) =
pP2ξ2

IN
dINr

−
ξ2

IN
ξ2

d
, (26a)

qIN =
1±
√

1− 2σ

2
. (26b)

Here +(−) determines the state just above (below) the critical temperature. For σ > 0.5,
the paranematic-nematic transition on varying temperature is gradual.

Author Contributions: D.Č. carried our simulations. S.K. has written the article. All authors have been involved
in developing the model to reproduce experimental observations.

Funding: This research was funded by Slovenian Research Agency (ARRS), grant numbers P1–0099, PR-08970,
P1-0125 and the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research
and Technology (GSRT), under the HFRI PhD Fellowship grant (No. 1318).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet.
Science 2006, 314, 1107–1110. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1130557
http://www.ncbi.nlm.nih.gov/pubmed/17110567


Crystals 2019, 9, 171 12 of 13

2. Lavrentovich, O.D.; Kleman, M. Soft Matter Physics: An Introduction; Kleman, M., Lavrentovich, O.D., Eds.;
Partially Ordered Systems; Springer: New York, NY, USA, 2004; ISBN 978-0-387-95267-3.

3. Palffy-Muhoray, P. The diverse world of liquid crystals. Phys. Today 2007, 60, 54–60. [CrossRef]
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