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Abstract: The unified analytic melt-shear model that we introduced a decade ago is generalized
to multi-phase materials. A new scheme for calculating the values of the model parameters for
both the cold (T = 0) shear modulus (G) and the melting temperature at all densities (ρ) is
developed. The generalized melt-shear model is applied to molybdenum, a multi-phase material
with a body-centered cubic (bcc) structure at low ρ which loses its dynamical stability with increasing
pressure (P) and is therefore replaced by another (dynamically stable) solid structure at high ρ. One of
the candidates for the high-ρ structure of Mo is face-centered cubic (fcc). The model is compared
to (i) our ab initio results on the cold shear modulus of both bcc-Mo and fcc-Mo as a function of ρ,
and (ii) the available theoretical results on the melting of bcc-Mo and our own quantum molecular
dynamics (QMD) simulations of one melting point of fcc-Mo. Our generalized model of G(ρ, T) is
used to calculate the shear modulus of bcc-Mo along its principal Hugoniot. It predicts that G of
bcc-Mo increases with P up to ∼240 GPa and then decreases at higher P. This behavior is intrinsic
to bcc-Mo and does not require the introduction of another solid phase such as Phase II suggested
by Errandonea et al. Generalized melt-shear models for Ta and W also predict an increase in G
followed by a decrease along the principal Hugoniot, hence this behavior may be typical for transition
metals with ambient bcc structure that dynamically destabilize at high P. Thus, we concur with
the conclusion reached in several recent papers (Nguyen et al., Zhang et al., Wang et al.) that no
solid-solid phase transition can be definitively inferred on the basis of sound velocity data from shock
experiments on Mo. Finally, our QMD simulations support the validity of the phase diagram of Mo
suggested by Zeng et al.

Keywords: quantum molecular dynamics; thermoelasticity; melting curve; multi-phase materials

1. Introduction: Unified Analytic Melt-Shear Model

A reliable model of the adiabatic (isentropic) shear modulus (G) of a polycrystalline solid at all
temperatures from zero to close to Tm, the melting temperature, and up to pressures (P) of order
100 GPa is needed for many applications, including the modeling of plastic deformation at extremes of
pressure and temperature, numerical calculations of elastic and shock wave propagation, and even
calculations of the oscillations of low-mass astrophysical objects. In 2003–2004 we developed a unified
analytic model for the melting temperature as a function of density, Tm(ρ), and the density-temperature
dependence of the shear modulus, G(ρ, T), at all densities and 0 ≤ T ≤ Tm [1,2]. The model for Tm(ρ)

is based in part on our analytic model for the Grüneisen parameter,
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γ(ρ) =
1
2
+

γ1

ρ1/3 +
γ2

ρq , (1)

where the parameters γ1, γ2, and q can be determined from ambient data by solving a system of three
algebraic equations [1,2]. Equation (1) in conjunction with the Lindemann melting criterion [3] yields

Tm(ρ) = Tm(ρre f )

(
ρ

ρre f

)1/3

exp

6γ1

 1

ρ1/3
re f

− 1
ρ1/3

+
2γ2

q

(
1

ρ
q
re f
− 1

ρq

) , (2)

where ρre f is a conveniently chosen reference density. The melting temperature and shear modulus
along the solidus approximately satisfy the relation [1,4,5]

G(ρ, Tm(ρ))

ρ Tm(ρ)
=

G(ρre f , Tm(ρre f ))

ρre f Tm(ρre f )
. (3)

Preston and Wallace [6] modeled G(ρ, T) as a linear function of the reduced temperature T/Tm with
the correct value G(ρ, 0) at T = 0 :

G(ρ, T) = G(ρ, 0)
(

1− β
T

Tm(ρ)

)
. (4)

The thermoelastic softening parameter β may be density dependent. Combining Equations (2)–(4)
results in

G(ρ, 0) = G(ρre f , 0)

(
ρ

ρre f

)4/3

exp

6γ1

 1

ρ1/3
re f

− 1
ρ1/3

+
2γ2

q

(
1

ρ
q
re f
− 1

ρq

) . (5)

Equations (2), (4), and (5) constitute our unified model of Tm(ρ) and G(ρ, T) for single-phase metals.
For polymorphic (multi-phase) metals, the γ1-γ2-q values for the ambient solid structure may

differ significantly from those for the high-P structure(s), and therefore the model may fail in
its description of those high-P structure(s). Here we generalize our unified melt-shear model to
polymorphic materials. Let Gi(ρ, 0) be the cold shear modulus of phase i, and similarly let Tmi(ρ)

denote the melting curve of phase i. In our multi-phase model both G(ρ, 0) and Tm(ρ) are accurate
envelopes of the Gi(ρ, 0) and Tmi(ρ). We shall explain how such envelopes are constructed, and
demonstrate the fidelity of the generalized model using molybdenum as an example.

2. Molybdenum: An Example of a Multi-Phase Material

Molybdenum is one of the most important technological materials. Although its phase diagram
is not known in detail, there are several features of the phase diagram that have been firmly
established. First, melting on the shock Hugoniot of Mo occurs at ∼400 GPa [7–9], and presumably
at T ∼ 10,000 K [7]. Second, the stability of body-centered cubic (bcc) Mo has been confirmed
experimentally to 560 GPa under room-T isothermal compression [10], and to 1000 GPa under
ramp-wave compression [11]. There is presently no experimental evidence for a solid-solid (s-s)
transition in Mo. However, there is compelling theoretical evidence for a s-s phase transition at high
pressures [12–16]. Our calculations of the phonon spectrum of bcc-Mo presented below (see Figure 1)
clearly show its dynamic instability at 1000 GPa and low T, and previous simulations indicated that
bcc-Mo dynamically destabilizes at ∼700 GPa [17,18]. Hence, a s-s phase transformation to another
solid phase that is dynamically stable is expected to occur at ∼700 GPa at low T. Two candidates for
the high-P structure of Mo are face-centered cubic (fcc) [17,19,20] and double hexagonal close-packed
(dhcp) [12,18,21]. Simulations show that the bcc-fcc (bcc-dhcp) phase boundary has positive slope
at P ≥ 700 GPa [12,17]. We emphasize that this theoretical phase boundary is consistent with
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the aforementioned experimental results for room-T isothermal compression to 560 GPa, and with
ramp-wave compression to 1000 GPa. The ramp-wave trajectory (RWT) in the P-T plane has a positive
slope and lies at sufficiently high temperatures that the bcc-fcc (bcc-dhcp) transition boundary lies
below the RWT; e.g., T ∼ 5000 K on the RWT at 700 GPa [11], and at 800 GPa the bcc-fcc transition is
predicted to occur at ∼5000 K [17] or ∼4500 K [12], while T ∼ 6500 K on the RWT [11]. Therefore at
P ≤ 700 GPa the crystal structure is bcc from 0 to Tm, and is also bcc at high T to at least 1000 GPa.

Figure 1. Phonon spectra of the bcc-Mo at (a) V = 10 Å3/atom) and (b) V = 7 Å3/atom), i.e., around
350 GPa and 1000 GPa, respectively. Imaginary frequences, shown for simplicity as negative numbers,
that appear in the bcc-Mo phonon spectrum at 1000 GPa indicate dynamical instability.

For our present purposes of demonstrating the generalization of the unified melt-shear model,
it is not essential to definitively identify the high-P structure (fcc or dhcp). Numerous examples show
that the elastic properties of different hexagonal arrangements of the same material (AB for hcp, ABC
for fcc, ABAC for dhcp, etc., where A, B and C denote the layer stacking in the unit cell) are very
close to each other; e.g., the results of [22] reveal that the shear moduli of both hcp-Be and fcc-Be are
virtually identical, and so are the corresponding melting curves [23]. Hence, we expect both the shear
moduli and the melting curves of fcc-Mo and dhcp-Mo to be close to each other. Although our QMD
simulations strongly suggest that the high-density phase of Mo is dhcp, simply because fcc elastic
constants are generally easier to calculate than the dhcp ones, for the purpose of comparing our ab initio
results to the new generalized melt-shear model here we assume that the high-P structure of Mo is fcc.

An analysis of longitudinal sound speed data along the principal Hugoniot of Mo by
Errandonea et al. [24] shows a decrease in the shear modulus with increasing pressure. They concluded
that such behavior is indicative of a transformation of bcc-Mo into another solid phase. However,
the conclusion of earlier theoretical work by Cazorla et al. [25] and Zeng et al. [17] is that there is no
s-s phase transformation on the Mo Hugoniot. More recent calculations of CL along the Hugoniot
in bcc-Mo by Lukinov et al. [16] again suggests that a s-s transition occurs at ∼200 GPa. However,
we have carefully analyzed the calculations of Lukinov et al., and we find that their conclusion is
incorrect. We maintain that a s-s transition along the Mo Hugoniot is ruled out by both experiment
and theory. A detailed discussion of the experimental and theoretical/computational investigations of
a possible s-s transition on the Mo Hugoniot is presented in Appendix A.

In the following we construct a thermoelasticity model for bcc-Mo that predicts a decrease in G
with P on the principal Hugoniot at pressures above ∼240 GPa, hence the decrease in G with P is not
evidence for another solid phase of Mo. Thus our model supports the conclusion of References [8,9,26]
that no s-s phase transition should be inferred from the sound velocity data on Mo.



Crystals 2019, 9, 86 4 of 25

3. Generalization of the Unified Melt-Shear Model to Multi-Phase Materials

As mentioned above, the unified melt-shear model [1,2] is based on the simplifying approximation
that both G(ρ, 0) and Tm(ρ) are related to a common Grüneisen parameter. In the general case,
this approximation may fail. Indeed, since G(ρ, 0) ∼ Θ2

D(−3, ρ) ρ1/3 [27,28],

d ln G(ρ, 0)
d ln ρ

≈ 2 γ(−3, ρ) +
1
3

, γ(−3, ρ) ≡ d ln ΘD(−3, ρ)

d ln ρ
. (6)

Similarly, since in the Lindemann formulation Tm(ρ) ∼ Θ2
D(−2, ρ) ρ−2/3 [27,28],

d ln Tm(ρ)

d ln ρ
≈ 2 γ(−2, ρ)− 2

3
, γ(−2, ρ) ≡ d ln ΘD(−2, ρ)

d ln ρ
. (7)

In the above equations, ΘD(n, ρ) ∼ h̄〈ωn
i 〉1/n/kB, n ≥ −3 are the Debye characteristic

temperatures [28]. As noted in [27], Wallace argued that ΘD(0, ρ) should be used in the Lindemann
melting formula, Equation (7), instead of ΘD(−2, ρ). The two gammas appearing in Equations (6)
and (7) must asymptote to 1/2 as ρ→ ∞ [1,2,28]. For single-phase materials they are approximately
equal at all densities and are accurately modeled as γ(ρ) = 1/2 + γ1/ρ1/3 + γ2/ρq [29]. However,
this approximate equality of γ(−3, ρ) and γ(−2, ρ) most likely fails for multi-phase materials having
solid phases that dynamically stabilize (or destabilize) at elevated P. For example, consider a high-P
solid structure stable at low T but unstable at high T, and assume that the s-s phase boundary has
a positive slope. Then there is a range of P in which the cold shear modulus exists and is described
by Equation (6), but Tm does not exist for this high-P phase since the material melts from another
stable solid phase. The same Grüneisen gamma cannot be used for both G(ρ, 0) and Tm(ρ). If the
solid-solid boundary has negative slope then there is a range of P for which Tm exists and is described
by Equation (7) but the cold shear modulus does not exist, and again a single Grüneisen gamma cannot
be used for both cold G and Tm.

In such cases we assume that both G(ρ, 0) and Tm(ρ) can be constructed as the envelopes of the
Gi(ρ, 0) and Tmi(ρ) for a sequence of solid phases, but they are not necessarily coupled to each other in
terms of a common set of parameters. We introduce the corresponding two Grüneisen gammas, γG(ρ)

and γTm(ρ), so that Equations (6) and (7) are generalized to

d ln G(ρ, 0)
d ln ρ

≡ 2 γG(ρ) +
1
3

, (8)

d ln Tm(ρ)

d ln ρ
≡ 2 γTm(ρ)−

2
3

. (9)

Using the approach developed in [2], it is easy to show that both gammas must be analytic functions
of ρ−1/3, essentially the interatomic distance. Since both gammas asymptote to 1/2 as ρ→ ∞,

γG(ρ) =
1
2
+

∞

∑
i=1

gG i

(
ρ−1/3

)i
≡ 1

2
+

γ1,G

ρ1/3 +
γ2

ρq2
, (10)

γTm(ρ) =
1
2
+

∞

∑
i=1

gTm i

(
ρ−1/3

)i
≡ 1

2
+

γ1,Tm

ρ1/3 +
γ3

ρq3
. (11)

Below we show that γ1 is common to both G and Tm, and that

γ1,G ≈ γ1,Tm ≡ γ1 =
7

40
Z2/3, (12)

where Z is the atomic number of the material. In Equations (10) and (11) the terms γ2/ρq2 and γ3/ρq3

represent the contributions of the quadratic and higher-order terms. Note that since these equations
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are meant to describe the envelopes of the Gi(ρ, 0) and Tmi(ρ) for each of the stable solid phases of the
material, the signs in front of the terms gG i/ρi/3 and gTm i/ρi/3 can in principle be arbitrary, and so
may be the signs of both γ2 and γ3. Based on general grounds, however, we expect that both q2 and q3

are positive.
With Equations (10)–(12) it follows from Equations (8) and (9) that

G(ρ, 0) = G(ρ0, 0)
(

ρ

ρ0

)4/3
exp

{
6γ1

(
1

ρ1/3
0

− 1
ρ1/3

)
+

2γ2

q2

(
1

ρ
q2
0
− 1

ρq2

)}
, (13)

Tm(ρ) = Tm(ρm)

(
ρ

ρm

)1/3
exp

{
6γ1

(
1

ρ1/3
m
− 1

ρ1/3

)
+

2γ3

q3

(
1

ρ
q3
m
− 1

ρq3

)}
, (14)

where ρ0 and ρm are the corresponding initial densities, usually taken as those at ambient P.

The Value of γ1: Ultrahigh Density Limit

The value of γ1 is found in the limit of ultrahigh densities. In this limit, it follows from
Thomas-Fermi theory that P/Z10/3, B/Z10/3, and G/Z10/3 are functions of ZV, where Z is the atomic
number and V is the molar volume [30]. The theoretical limiting forms of P, B and G as V → 0 imply
that P/Z10/3, B/Z10/3 ∼ (ZV)−5/3 exp{−a (ZV)1/3} (P and B have similar ZV dependences since
B ≡ −V dP/dV), but G/Z10/3 ∼ (ZV)−4/3 exp{−a (ZV)1/3}. The limiting form of P includes an
exponential screening correction to the EOS of a free electron gas [2], and this correction also enters the
limiting form of G in view of G ∼ (B− 2/3 t P), where t→ 5/2 as V → 0 [2]. The exact expressions
for P and G in the V → 0 limit are [31,32]

P(V) = 1003.6 Z5/3 V−5/3 exp{−a (ZV)1/3} GPa · cm5, (15)

G(V) = 190 Z2 V−4/3 exp{−a (ZV)1/3} GPa · cm4. (16)

The corresponding limiting form of Tm is (Γm = 175) [2]

Tm(V) =

(
4π

3

)1/3 Z2 e2

kB Γm
V−1/3 exp{−b (ZV)1/3} = 1300 Z2 V−1/3 exp{−b (ZV)1/3} K · cm. (17)

Below we show that b ≈ a.
We now convert the above functions of V into functions of ρ to directly compare with

Equations (13) and (14) and extract the value of γ1. This is done by using V = M/ρ, where M
is the molar mass, so that Equations (16) and (17) reduce to

G(ρ) = 190
Z2

M4/3 ρ4/3 exp
{
− a

Z1/3M1/3

ρ1/3

}
GPa · cm4 (18)

and

Tm(ρ) = 1300
Z2

M1/3 ρ1/3 exp
{
− b

Z1/3M1/3

ρ1/3

}
K · cm. (19)

Comparison with Equations (13) and (14) shows that the following two conditions must
be fulfilled: γ1,G = a Z1/3M1/3/6 and γ1,Tm = b Z1/3M1/3/6. Fitting the functional form
(ZV)−5/3 exp{−a (ZV)1/3} to the three sets of data on P/Z10/3, B/Z10/3 and G/Z10/3 [30] leads
to a ≈ 0.8 cm−1.

Now consider the ratio A/Z as a function of Z; here A = M g−1 is the atomic mass. Its values for
the first six elements (H through C) are 1.0, 2.0, 2.3, 2.25, 2.16, and 2.0. Starting with N, this ratio is a
monotonically increasing function of Z with a nearly constant slope, such that A/Z ≈ 2 for N and
O and reaches ∼2.6 by the end of the table [33]; hence A/Z = 2.3± 0.3. We expect A/Z = 2.3 to be
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a reliable approximation for the vast majority of elements, specifically for those in the middle of the
table (Mo with Z = 42 is one of them).

With a = 0.8 cm−1 and A = 2.3 Z, we get

γ1,G =
0.8× 2.31/3

6
Z2/3 ≈ 0.176 Z2/3 (20)

in units of (g/cc)1/3. Our independent analysis of the numerical sets of parameters for 32 melting
curves (of 28 elemental solids and 4 alloys) [29] revealed that fitting Z2/3 to the set of 32 values of the
corresponding γ1,Tm leads to

γ1,Tm =
4

23
Z2/3 ≈ 0.174 Z2/3 (21)

in units of (g/cc)1/3. Equations (20) and (21) show that b ≈ a in Equations (16) and (17) and that

γ1,G ≈ γ1,Tm ≡ γ1 = 0.175 Z2/3 =
7

40
Z2/3. (22)

Relation (22) is expected to be valid for all the elements except perhaps (i) both low-Z and high-Z
elements; (ii) the alkali and alkaline-earth metals which are not described by the above equation of state
with an exponential screening correction in the Thomas-Fermi regime [2]; and (iii) rare-gas elements
for which the corresponding values of γ1,Tm s are different from those predicted by 4

23 Z2/3 [29].
By equating Equations (13) and (14) to (18) and (19), respectively, and taking the P→ ∞ limit we

obtain the following two systems of equations for the two sets of parameters:

6γ1

ρ1/3
0

+
2γ2

q2ρ
q2
0

= ln
190 Z2ρ4/3

0
A4/3G(ρ0)

, (23)

1
2
+

γ1

ρ1/3
0

+
γ2

ρ
q2
0

= γG(ρ0), (24)

and
6γ1

ρ1/3
m

+
2γ3

q3ρ
q3
m

= ln
1300 Z2ρ1/3

m

A1/3Tm(ρm)
, (25)

1
2
+

γ1

ρ1/3
m

+
γ3

ρ
q3
m

= γTm(ρm), (26)

where G is in GPa, Tm in degrees K, and both ρ0 and ρm are in g/cc. With γ1 = 7
40 Z2/3, the solution to

this system of equations is

q2 = 2
γG(ρ0)− 1

2 −
7

40
Z2/3

ρ1/3
0

ln 190 Z2ρ4/3
0

A4/3G(ρ0)
− 21

20
Z2/3

ρ1/3
0

, (27)

q3 = 2
γTm(ρm)− 1

2 −
7

40
Z2/3

ρ1/3
m

ln 1300 Z2ρ1/3
m

A1/3Tm(ρm)
− 21

20
Z2/3

ρ1/3
m

; (28)

the corresponding values of γ2 and γ3 are then found from (24) and (26). The values of γG(ρ0) and
γTm(ρm) are determined by Equations (8) and (9) with ρ = ρ0 and ρ = ρm, respectively:

γG(ρ0) =
1
2

(
d ln G(ρ)

d ln ρ

∣∣∣
ρ=ρ0
− 1

3

)
=

1
2

ρ0

G(ρ0)

dG(ρ)

dρ

∣∣∣
ρ=ρ0
− 1

6
, (29)

γTm(ρm) =
1
2

(
d ln Tm(ρ)

d ln ρ

∣∣∣
ρ=ρm

+
2
3

)
=

1
2

ρm

Tm(ρm)

dTm(ρ)

dρ

∣∣∣
ρ=ρm

+
1
3

; (30)
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both dG(ρ)
dρ

∣∣∣
ρ=ρ0

and dTm(ρ)
dρ

∣∣∣
ρ=ρm

come from experimental and/or theoretical data.

4. Generalized Melt-Shear Model for Molybdenum

In the remainder of this paper we apply the generalization of the unified melt-shear model
developed in the previous section to molybdenum, and compare it to the available experimental and
theoretical results.

We first determine the values of the two sets of parameters for G and Tm.

Model Parameters for Mo

The values of γ1, γ2, q2 and γ3, q3 are calculated using the following input from the literature:
Z = 42, A = 95.95, ρ0 = 10.25 g/cm3, ρm = 9.56 g/cm3, G(ρ0) = 128.2 GPa, and Tm(ρm) = 2896 K.

Our ab initio study of the thermoelasticity of Mo described below resulted in a T = 0 shear
modulus for bcc-Mo that is described by the following equation (G in GPa, ρ in g/cm3):

G(ρ, 0) = 113.0 + 33.5 (ρ− 10.25) + 4.65 (ρ− 10.25)2 − 0.68 (ρ− 10.25)3 + 0.018 (ρ− 10.25)4. (31)

Hence dG(ρ)
dρ

∣∣∣
ρ=ρ0

= 33.5, and Equation (24) gives

γG(ρ0) = 1.173. (32)

To determine the corresponding value of γTm(ρm) we use the theoretical bcc-Mo melting curve of
Alfe et al. [34] based on ab initio quantum molecular dynamics (QMD) simulations. The experimental
melting curve of Errandonea et al. [35,36] measured using laser-heated diamond anvil cells (DAC) is
highly controversial: it is “flat” and lies considerably below the shock-melting datapoint at ∼(400 GPa,
10,000 K), now firmly established, as discussed above (Figures 2 and 3). The very recent experimental
study by Hrubiak et al. [37] demonstrates that, on increasing T, compressed Mo undergoes a
transformation that results in a texture (microstructure) change: large Mo grains become unstable at
high T due to high atom mobility and reorganize into smaller crystalline grains. This transformation
occurs below melting, and the pressure dependence of the transformation temperature is consistent
with the previous DAC melting curve by Errandonea et al. [35,36]. On the other hand, the experimental
melting curve of Mo determined in [37] is consistent with the theoretical melting curve of Alfe et al. [34].
Hence, most likely, Errandonea’s curve is an intermediate DAC transition boundary, while Alfe’s curve
is the actual melting curve of Mo. Therefore, it is indeed Alfe’s theoretical melting curve that should
be used for the determination of the generalized melt-shear model parameters for Mo.

The theoretical data of Alfe et al. [34] are consistent with Tm = 2896 K at ρm = 9.933 g/cm3.
The density shift of 3.9%, compared to the experimental value of ρm = 9.56 g/cm3, comes from
the specific implementation of density functional theory (DFT) in their calculations. For the same
reason, a density shift of similar magnitude is present in our calculations as well: as follows from
(31), the experimental G = 128.2 GPa corresponds to ρ0 = 10.67 g/cm3 which is 4.1% higher than
the experimental ρ0 = 10.25 g/cm3. The same density shift is responsible for a small offset of the
theoretical curve relative to the experimental points of Reference [38], as seen in Figure 4.
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Figure 2. The shear modulus of bcc-Mo along the principal Hugoniot. The experimental data are
from Reference [24]; different symbols coincide with those in Figure 2 of [24]. Above ∼390 GPa
G effectively drops down to zero, which implies that melting has occured at this pressure. The results
of Lukinov et al. [16] are shown as open diamonds.
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Figure 3. Sound velocities in bcc-Mo along the principal Hugoniot: unified analytic melt-shear model
vs. experimental data. The 3σ-wide confidence interval around the model curve is shown with
dashed lines.



Crystals 2019, 9, 86 9 of 25

ø

ø

ø ø

ø

ø

í
í

í
í
í
í

í

í í

í

í

í

í

ò

ò

ò
ò

õ

õ

õ

õ

õ

fcc-Mo, 14e

fcc-Mo, 12e

bcc-Mo, 14e

bcc-Mo, 12e

experiment, Liu et a{.

10 15 20 25

0

200

400

600

800

Density Hg�ccL

S
h
ea

r
m

o
d
u
lu

s
HG

P
aL

Mo, T=0

Figure 4. The lower-density portion of Figure 5. The experimental room-T data of Reference [38]
covering a range of densities up to 10.654 g/cm3 (pressures up to 12 GPa) are included. The dashed line
represents Equation (26). 12e and 14e distinguish between the results obtained with 12 and 14 valence
electrons, respectively.

The melting data of Alfe et al. [34] are described by the following equation:

Tm(ρ) = 2896 + 695 (ρ− 9.933)− 5.5 (ρ− 9.933)2 + 21 (ρ− 9.933)3 − 1.4 (ρ− 9.933)4. (33)

with the density shift taken into account, this curve should model the actual melting curve of Mo with
dTm(ρ)

dρ

∣∣∣
ρ=ρm

= 695; hence, via (30),

γTm(ρm) = 1.48. (34)

we note that dTm(ρ)
dρ

∣∣∣
ρ=ρm
∼ 700 also follows from an alternative approach: dTm(ρ)

dρ = Bm
ρm

dTm
dP

∣∣∣
P=0

, where

Bm ≡ B(ρm, Tm(ρm)) is the bulk modulus at the ambient melting point. There are no data on Bm for
solid Mo, but there are data on Bm for liquid Mo, and we assume that the Bms are close to each other
so that Bm for liquid Mo can be used in the above formula. Its value can be found from the data
on the density dependence of the sound velocity in liquid Mo: C = C(ρ) = 0.8573ρ− 3.3241 [39].
Using Bm = ρmC2 with ρm = 9.33 g/cm3 for liquid Mo [39], we obtain Bm = 201 GPa, and then,

with dTm/dP
∣∣∣
P=0

= 34± 6 K/GPa [40], we get dTm(ρ)
dρ

∣∣∣
ρ=ρm

= 715± 26 K/(g cm−3).

With γ1 = 7
40 422/3 = 2.1145, the solution to (27) and (28) is

q2 = 0.63, γ2 = −1.31, and q3 = 0.45, γ3 = −0.045. (35)

5. Comparison to Data

In this section we compare our generalized melt-shear model for Mo to (i) our ab initio calculations
of the T = 0 shear moduli of both bcc-Mo and fcc-Mo and (ii) our ab initio melting datapoint on fcc-Mo,
as well as the theoretical melting data on bcc-Mo from the previous section. We also incorporate
our generalized analytic model for Tm(ρ) in a model for G(P) along the principal Hugoniot and find
excellent agreement with data.
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5.1. Cold Shear Modulus of bcc-Mo and fcc-Mo from VASP

In the following we present the results of our calculations of the T = 0 shear moduli of both
bcc-Mo and fcc-Mo, as well as the finite-T shear modulus of bcc-Mo using the DFT code VASP
(Vienna Ab initio Simulation Package). We use the generalized gradient approximation (GGA) with the
Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. We model Mo using two core-valence
representations, namely [30Zn] 4p6 4d5 5s1 and [18Ar 3d10] 4s2 4p6 4d5 5s1, i.e., we assign, respectively,
the 12 or 14 outermost electrons of Mo to the valence. The valence electrons are represented with a
plane-wave basis set with a cutoff energy of 400 eV for the 12-electron representation, and 550 eV
for the 14-electron one, while the core electrons are represented by projector augmented-wave (PAW)
pseudopotentials. The core radii (the largest values of RCUTs among those for each of the quantum
orbitals) of the two pseudopotentials are, respectively, 2.5 a.u., or 1.323 Å and 2.3 a.u., or 1.217 Å.
Numerical errors in the calculations using VASP will remain almost negligible until the nearest
neighbor distance reaches 2 × RCUT/(1.25± 0.05) [41]. Hence, with these pseudopotentials, one can
study systems with densities up to ∼35 g/cm3 and ∼45 g/cm3. At higher densities one should expect
the overlap of interatomic spheres starting to develop. But since this overlap is generally allowed and
handled well by VASP, in contrast to some other electronic structure codes that give huge errors when
the atomic spheres overlap considerably [41], numerical errors in the VASP calculations should remain
small at densities much higher than the above two values, specifically at T = 0 when atoms remain in
the equilibrium positions. Hence, we expect our calculations of the cold elastic constants to be fairly
accurate to the highest density considered.

We used a 5× 5× 5 (250-atom) supercell for bcc-Mo and a 4× 4× 4 (256-atom) supercell for
fcc-Mo with a 5× 5× 5 k-point mesh in both cases. Full energy convergence (to >0.5 meV/atom)
was checked in each simulation. We followed the scheme for the calculation of the shear modulus
suggested by Hill, namely, averaging the Voigt (V) and Reuss (R) upper and lower bounds on the
isotropic shear modulus, which for a cubic system are

GV =
2C′ + 3C44

5
, GR = 5

(
2
C′

+
3

C44

)−1
. (36)

The Voigt-Reuss-Hill average shear modulus obtained in this way is

GVRH =
GV + GR

2
=

3 C′2 + 3 C2
44 + 19 C′C44

15 C′ + 10 C44
. (37)

Here C′ ≡ (C11−C12)/2 and C44 are the single-crystal elastic constants. A methodology for calculating
C′ and C44 was developed by Söderlind et al. [42]. To evaluate C′, the cubic lattice is deformed by the
(volume conserving) transformation 1 + δ 0 0

0 1 + δ 0
0 0 1

(1+δ)2

 .

The resulting energy change is
∆E
Veq

= 6C′δ2 + O(δ3), (38)

where Veq is the equilibrium volume of the system. Similarly, C44 is obtained by applying the
(volume conserving) transformation  1 δ 0

δ 1 0
0 0 1

1−δ2

 ,
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resulting in an energy change
∆E
Veq

= 2C44δ2 + O(δ4). (39)

In our calculations, we have evaluated the energy as a function of δ at intervals of 0.01 up to δ = 0.05
for the C44 case. For the C′ case, the energy is not an even function of δ, and so negative values of δ were
used as well (−0.03 ≤ δ ≤ 0.03). The resulting E(δ) were fit to third- and fourth-degree polynomials
for C′ and C44, respectively, and the quadratic coefficient was used to evaluate the elastic constant
from Equation (38) or Equation (39).

In Figure 5 our multi-phase analytic model for G(ρ, 0) is compared with our ab initio results for
bcc-Mo and fcc-Mo.

ò ò
ò

ò

ò

ò

ò

ò

ò

õõõ
õ

õ

íííííííííí íí

í

øøø øø

ø

fcc-Mo, 14e

fcc-Mo, 12e

bcc-Mo, 14e

bcc-Mo, 12e

Γ1-Γ2-q

10 20 30 40 50 60 70

0

2000

4000

6000

8000

10 000

12 000

Density Hg�ccL

S
h
ea

r
m

o
d
u
lu

s
HG

P
aL

Mo, T=0

Figure 5. The T = 0 shear modulus of Mo: the unified analytic model (γ1-γ2-q) vs. ab initio
calculations using VASP. 12e and 14e distinguish between the results obtained with 12 and 14 valence
electrons, respectively.

5.2. bcc-fcc Phase Transition in Mo

Figures 4 and 5 show that with increasing density the cold shear modulus of bcc-Mo first increases
but then decreases and eventually turns negative at ρ ? 30 g/cm3. This behavior is due to a dynamic
instablity which sets in at ∼20 g/cm3 (V ∼ 8 Å3/atom, or P ∼ 700 GPa), and which is confirmed by
the DFT-based phonon spectra shown in Figure 1. At the same time, at T = 0 fcc-Mo dynamically
stabilizes at ∼14.5 g/cm3 (P ∼ 200 GPa). The T = 0 free energy calculations demonstrate that fcc-Mo
becomes thermodynamically more stable than bcc-Mo at ρ ∼ 20 g/cm3 (P ∼ 700 GPa); see Figure 6.
The accurate calculation of the two enthalpies gives the following bcc-fcc transition parameters:

Pbcc−fcc = 680.0 GPa, ρ(bcc)bcc−fcc = 20.033 g/cm3, ρ(fcc)bcc−fcc = 20.404 g/cm3, (40)

that is, a volume change of ∼2%. At lower P fcc-Mo dynamically stabilizes at nonzero T (the P-T
stability regions of fcc-Mo are discussed in [17]) but, as we noted above, full free energy calculations
rule out the possibility of fcc-Mo being thermodynamically more stable than bcc-Mo below 700 GPa.
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Figure 6. The T = 0 bcc-Mo–fcc-Mo total energy difference as a function of density.

5.3. Melting Curve of Mo

Figure 7 compares our generalized melt-shear model for Mo to the available theoretical data on the
melting of Mo [34,43,44], including our own ab initio QMD result for the melting temperature of fcc-Mo
at a density of 23.6 g/cm3. Our simulations were carried out using the Z method implemented with
VASP which is described in detail in Reference [45]. We used a 500-atom (5× 5× 5) fcc-Mo supercell.
The simulations were carried out with a single Γ-point (full energy convergence, to >1 meV/atom,
was achieved with such a large supercell), having 14 electrons of Mo in the valence. We chose to
generate a melting datapoint for fcc-Mo to check that the unified model describes this phase as well as
it describes bcc-Mo on which the model is based. Since bcc-Mo is dynamically unstable at a density of
23.6 g/cm3 (a pressure of ∼1300 GPa), it is reasonable to assume that Mo melts from fcc at this density.
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Figure 7. The melting curve of Mo: the unified analytic model (γ1-γ2-q) vs. the shock
melting datapoint [7] and theoretical calculations including the most recent point from our own
QMD simulations.
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We carried out seventeen QMD runs on fcc-Mo at ρ = 23.6 g/cm3 (a lattice constant of 3.0 Å) with
initial temperatures from 42,500 K to 47,500 K separated by an increment of 312.5 K. Figures 8 and 9
illustrate the time evolution of T and P in three of these seventeen QMD runs, with initial Ts of
44,687.5, 45,000, and 45,312.5 K. The 45,000 K run is the melting run [45] for which (Pm, Tm) ∼
(1300 GPa, 18,500 K).
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To = 45000.0 K
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Figure 8. Time evolution of temperature in three QMD runs with initial temperatures (T0s) separated
by 312.5 K. The middle run is the melting run, during which T decreases from ∼22,000 K for the
superheated state to ∼18,300 K for the liquid at the corresponding melting point.
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Figure 9. The same as in Figure 9 for the time evolution of pressure (in kbar; 10 kbar = 1 GPa). During
melting P increases from ∼1280 GPa for the superheated state to ∼1300 GPa for the liquid at the
corresponding melting point.
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As Figure 7 clearly demonstrates, the analytic melting curve of our unified model is in excellent
agreement with all the theoretical data on bcc-Mo, including our QMD datapoint on fcc-Mo.

5.4. Thermoelastic Softening Parameter

In the Preston-Wallace (PW) thermoelasticity model [6] the thermoelastic softening parameter β

can in principle be a function of density, so the most general analytic form of the PW model is

G(ρ, T) = G(ρ, 0)
(

1− β
T

Tm(ρ)

)
, (41)

instead of Equation (4). It was determined in [6] that for Mo at P = 0, β = 0.23. In order to ascertain if
there is any density dependence of β, we carried out QMD simulations of elastic constants at a set of
four nonzero Ts, specifically, ∼Tm/4, Tm/2, 3Tm/4 and Tm, at three different densities. The slope of
a straight line fitted to the four nonzero T values combined with the T = 0 value calculated earlier
gives the value of β at the corresponding density. We followed the same strategy as for the T = 0
simulations described above. We employed a Nosé-Hoover thermostat and used the Nosé algorithm
with controlled temperature oscillations around the initial T so that their frequency is the same as
the characteristic phonon frequency of the atomic system at the P-T conditions of the QMD run.
The finite-T simulations typically require between 5000 and 10,000 time steps of 1 fs to achieve full
energy convergence and to produce sufficiently long output for the extraction of reliable averages for
the values of energy that are used in Equations (38) and (39) to calculate the corresponding values of
the elastic constants.

Our QMD simulations of G as a function of T at three different densities, shown in Figure 10,
demonstrate that, at least for bcc-Mo, β does depend on density. The best fit to the three datapoints
subject to the constraint that β(ρ = 10.25) = 0.23 (ρ in g/cm3) is

β = β(ρ) = 0.23 + 0.0212 (ρ− 10.25)1.11. (42)

ô ô
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ô ô
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Figure 10. The shear modulus of bcc-Mo as a function of T at three different densities. The dashed
lines represent the three corresponding forms of Equation (36).
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6. Thermoelasticity Model of Molybdenum

The unified analytic melt-shear model for a multi-phase material developed in this paper gives
the cold shear modulus and melting temperature at all densities across all solid phases. For example,
in Figure 5 the model curve covers bcc-Mo at densities up to ∼20 g/cc and smoothly transitions to
fcc-Mo at higher ρ. In order to have a model of the thermoelasticity of any given solid phase of a
multi-phase material, the corresponding unified model must be supplemented with the information on
(i) the density interval in which the solid phase is dynamically stable; and (ii) the density dependence
of the thermoelastic softening parameter over this density interval. In the following, we consider
bcc-Mo as an example of such a complete thermoelasticity model.

Equation (41) with G(ρ, 0) and Tm(ρ) given by Equations (13) and (14), respectively, and β(ρ) as
in Equation (42) define the complete thermoelasticity model of bcc-Mo over the range of densities
in which it is dynamically stable. To illustrate its fidelity, we now consider shear modulus along the
principal Hugoniot of Mo. This is one of the applications of our model that can be directly compared
to experiment.

Shear Modulus and Sound Velocities Along the Principal Hugoniot

Using the cold G from Equation (31) in the PW elasticity model, along with (i) Tm(ρ) from the
new analytic model; (ii) β = β(ρ) from Equation (42); and (iii) the temperature along the Hugoniot
gives the shear modulus along the Hugoniot.

We found two different sources of data on T(ρ) along the Hugoniot: [46,47]. The best fits to the
two sets of data are, respectively,

T(ρ) = 293 + 58.98 (ρ− 10.206)2.78586, (43)

and
T(ρ) = 293 + 52.2891 (ρ− 10.215)2.87282. (44)

The intersection of the melting curve (14) with the parameter values from (35) with either of the above
T(ρ) along the Hugoniot predicts the corresponding Hugoniot melting point, and it turns out to be
(ρ, T) = (16.19, 8900) and (16.10, 8800), respectively, in good agreement with the theoretical estimate
(16.5, 9300) by Hixson et al. [7] based on their experimental results. Here we take Equation (43) as that
for T(ρ) along the principal Hugoniot of Mo.

We use the experimental P(ρ) (those of [46,47] are virtually identical) to calculate G as a function
of pressure along the bcc-Mo Hugoniot; our results are shown in Figure 2 and are in good agreement
with experiment. The experimental data are consistent with bcc-Mo along the entire Hugoniot; there is
no evidence for any other crystal structure such as Phase II [24]. Our G = G(P) model curve can be
approximated by

G(P) = 122.0 + 0.94 P− 3.0× 10−3 P2 + 1.2× 10−5 P3 − 2.8× 10−8 P4 − 2.4× 10−11 P5 + 8.3× 10−14 P6. (45)

We also calculated sound velocities CL and CB along the Hugoniot; they are shown in Figure 3.
We used B = ρ dP/dρ calculated from the experimental P(ρ).

Our results on the shear modulus and sound velocities in bcc-Mo along its principal Hugoniot
are compared to experimental data in Figures 2 and 3. The shear modulus of bcc-Mo increases with P
up to ∼240 GPa but then decreases. This P dependence is not due to a high-P phase such as Phase II
proposed by Errandonea et al. [24] for its explanation but is rather a property of bcc-Mo.

In Appendix B we consider two additional examples of transition metals with ambient bcc
structure that dynamically destabilizes with increasing pressure, namely, tantalum and tungsten.
We find the same behavior of G along their Hugoniots as that of Mo. These two additional examples
strongly suggest that this behavior may be typical for transition metals with ambient bcc structure that
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becomes dynamically unstable at higher P. The parameters for the thermoelasticity models of Mo, Ta,
and W are given in Table 1.

Table 1. Numerical values of the parameters for the thermoelasticity model, Equation (41) (in the
corresponding units). In Equation (41) G(ρ, 0) and Tm(ρ) are given by Equations (13) and (14),
respectively. The last three columns of the table apply to the bcc phases of the three transition metals
for which β = β(ρ) = β(ρ0) + a (ρ− ρ0)

b.

Z γ1 γ2 q2 γ3 q3 ρ0 ρm G(ρ0, 0) Tm(ρm) β(ρ0) a b

Mo 42 2.11450 0.63 −1.31 0.45 −0.045 10.25 9.56 128.2 2896 0.23 0.0212 1.11
Ta 73 3.05670 1.0 −6.6 3.0 −3000 16.74 15.30 72.2 3290 0.23 0.0210 1.09
W 74 3.08456 0.84 −5.8 1.5 −11.1 19.31 17.96 163.4 3695 0.23 0.0211 1.07

7. The Phase Diagram of Molybdenum

The results obtained in this work suggest that the phase diagram of Mo cannot be extended
beyond Figure 1 of Reference [11]. Indeed, if there are other solid phase fields on the phase diagram of
Mo, in addition to bcc which is well established experimentally, and perhaps some other solid structure
(fcc, hcp, dhcp, etc.) which is so far only predicted theoretically, neither Hugoniot nor ramp-wave
compression curves cross into them. Hence, further refinement of the phase diagram of Mo is not yet
feasible. However, we have confirmed that the topology of the phase diagram of Mo is essentially
the same as in Figure 1 of Reference [11] and is represented in Figure 11. To this end, we carried out
two sets of independent inverse Z runs [48] to solidify liquid Mo and to check whether there is any
solid-solid phase boundary so that liquid Mo solidifies into bcc on one side of this boundary and
into another solid structure on the other side. We used a computational cell of 512 atoms prepared
by melting a 8× 8× 8 solid simple cubic (sc) supercell which would eliminate any bias towards
solidification into bcc or any other solid structure (fcc, hcp, dhcp, etc.). We used sc unit cells of 2.225
and 1.985 Å; the dimensions of bcc unit cells having the same volume as the sc ones are 2.80 and 2.50 Å,
respectively, which corresponds to ∼200 and 700 GPa.

sc liquid solidified into bcc

sc liquid solidified into dhcp
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Figure 11. The phase diagram of Mo. RWT and shock Hugoniot are shown as black thick and thin
lines, respectively.
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We carried out NVT simulations using the Nosé-Hoover thermostat with a timestep of 1 fs.
Complete solidification typically required from 15 to 25 ps, or 15,000–25,000 timesteps. The inverse
Z runs indicate that liquid Mo only solidifies into bcc at ∼200 GPa in the whole temperature range
from 0 to essentially the corresponding Tm. However, at ∼700 GPa it solidifies into bcc above the
transition boundary in Figure 11, while below this boundary it solidifies into another solid structure.
The radial distribution functions (RDFs) of the final solid states are noisy; upon fast quenching of the
three structures to low T, where RDFs are more discriminating, and by comparing them to the RDFs of
fcc, hcp and dhcp, we conclude that dhcp is the closest strucure to those that liquid Mo solidies into
below the transition boundary.

The RDFs of the solidified states at ∼700 GPa above the transition boundary are shown in
Figure 12, and of those solidified below the transition boundary in Figure 13. The 2500 K state virtually
lies on the boundary. We tentatively assign it to bcc, because it definitely has features of bcc (RDF
peaks at R ∼ 55, 65 and 90, small peak at R ∼ 80, etc.). At the same time it certainly has some features
that are both uncharacteristic of bcc (e.g., the disappearance of the bcc split-peak at R ∼ 40) and
characteristic of dhcp (a small peak at R ∼ 50, etc.). The RDF of this 2500 K state is shown in Figure 13
also, for comparison to other dhcp states, including the real dhcp-Mo (at 2500 K). Most likely, this
2500 K state is a mixture of both bcc and dhcp.

A few more comments are in order. The 8750 K state at ∼700 GPa did not solidify, most likely for
the reason of not being supercooled enough to intiate the solidification process [48]. Indeed, 8750 K
constitutes ∼0.8 of the corresponding Tm (20% of supercooling) while for the other set of points at
∼200 GPa, the highest solidification T of 5000 K constitutes ∼0.75 of the corresponding Tm (25% of
supercooling) which apparently allows for the solidification process to go through in this case.
The 625 K state at ∼700 GPa is amorphous, with a characteristic RDF shoulder at R ∼ 60–70, for the
reason of the corresponding solidification T being too low, most likely below the corresponding T
of vitrification.

T = 8750 K

T = 7500 K

T = 6250 K
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T = 3750 K

T = 2500 K

0 50 100 150 200 250
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2
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Mo, solidified from sc-based liquid

Figure 12. RDFs of the final states of the solidification of liquid Mo at∼700 GPa at higher temperatures.
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Figure 13. RDFs of the final states of the solidification of liquid Mo at ∼700 GPa at lower temperatures.
RDF of dhcp-Mo at T = 2000 K is also shown for comparison.

8. Concluding Remarks

We have generalized the unified analytic melt-shear model that we introduced a decade ago to
multi-phase materials. We have described a new scheme for calculating the values of the model
parameters for both G and Tm at all densities. The new model was applied to molybdenum,
a multi-phase material having body-centered cubic (bcc) structure at low ρ and face-centered cubic
(fcc) structure at high ρ. The new model was compared to (i) our ab initio results on the T = 0 shear
modulus of both bcc-Mo and fcc-Mo as a function of ρ; and (ii) the available theoretical results on the
melting of bcc-Mo and our own quantum molecular dynamics simulations of one high-P melting point
of fcc-Mo.

We have constructed a model for G(ρ, T) of bcc-Mo at all ρ for which bcc-Mo remains dynamically
stable, and all T from 0 to Tm. The model is described by Equation (41) in which G(ρ, 0) and β(ρ) are
given by Equations (31) and (42), respectively, and Tm(ρ) is given by Equation (14) with γ1 = 2.1145
and γ3 and q3 from Equation (35). We then applied this thermoelasticity model to the calculation of the
shear modulus of bcc-Mo along its principal Hugoniot. Our results were compared to experimental
data and showed that G of bcc-Mo increases with P up to ∼240 GPa but then decreases. We emphasize
that this P dependence is not due to a high-P phase such as Phase II proposed by Errandonea et al. [24]
for its explanation. Similar behavior of G along the Hugoniot is also found in the transition metals Ta
and W, thereby suggesting that it may be typical for transition metals with ambient bcc structure that
become dynamically unstable at higher P. Thus, we agree with the common conclusion of a number of
recent papers [8,9,26] that no s-s phase transition can be definitively inferred from the sound velocity
data on Mo. If there are other solid phase fields on the phase diagram of Mo, in addition to bcc,
neither Hugoniot nor ramp-wave compression curves cross into them. In the absence of additional
experimental and/or theoretical information on other solid phases, our current knowledge of the
phase diagram of Mo cannot be extended beyond Figure 1 of Reference [11].

Finally, our thermoelasticity model for bcc-Mo predicts a decrease in G with P on the principal
Hugoniot at pressures above ∼204 GPa, hence the decrease in G with P is not evidence for a s-s
transition on the Hugoniot.
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Appendix A. Is There a Solid-Solid Transition on the Mo Hugoniot?

Sound velocities along the Mo principal Hugoniot have been measured (to the best of our
knowledge) in just three sets of experiments: Hixson et al. in 1989 [7], Nguyen et al. in 2014 [8],
and Zhang et al. in 2015 [26]. The data of Hixson et al. show two discontinuities in the longitudinal
sound velocity, CL, at pressures of 210 GPa (T ≈ 4100 K) and 390 GPa (T ≈ 10,000 K). The first
discontinuity was attributed to a s-s phase transition (bcc-hcp was suggested in [7]), and the second
one to melting. Subsequent studies confirmed melting on the Hugoniot at ∼390 GPa [8,9]. However,
Nguyen et al. [8] claimed that a careful statistical analysis of their shock data excludes a discontinuity
in CL at ∼200 GPa, that is, their experiments do not indicate a s-s transition along the principal
Hugoniot in Mo, nor was it confirmed in subsequent studies [9,26]. Errandonea et al. [24] converted
the sound velocity data of References [8,26] into the shear modulus along the Hugoniot using the
formula C2

L = (B + 4
3 G)/ρ, where B is the bulk modulus, and concluded that the P dependence of G,

specifically a decrease in G with increasing P, is indicative of a transformation of bcc-Mo into another
phase, which they called Phase II, at 210–240 GPa.

A presumed s-s phase transition on the Mo Hugoniot has also been a subject of theoretical
studies. Using the DFT approach with VASP and employing the quasi-harmonic approximation,
Belonoshko et al. [12] determined the high-T bcc-fcc transition boundary at megabar pressures which
is consistent with Hixson’s first discontinuity at 210 GPa and ∼4100 K. This result was subsequently
challenged by Cazorla et al. [49] who claimed that the stability of other solid phases of Mo is affected
by taking into account anharmonicity; specifically, bcc-Mo remains thermodynamically more stable
than fcc-Mo if the corresponding anharmonic free energies are used. This conclusion was further
corraborated by Zeng et al. [17] who also disprove the high-T bcc-fcc transition at megabar pressures
based on the corresponding full (anharmonic) free energies. A careful experimental study of the
structure of Mo along the Hugoniot using X-ray diffraction [9] found no solid structure other than bcc.

Despite the results of [17,49] that preclude the high-T s-s phase transition in Mo (at least,
the bcc-fcc one) on the Hugoniot, a more recent calculation of CL in bcc-Mo along the Hugoniot
by Lukinov et al. [16] revives this idea. Since their results for bcc-Mo disagree with experiment they
conclude that the experimental results are evidence for another solid phase of Mo. A detailed discussion
of their work goes beyond the scope of this paper. We will, however, focus on three points which imply
that the conclusion drawn by the authors of [16] may be incorrect.

1. Lukinov et al. calculate CL along the Hugoniot in bcc-Mo and find out that their theoretical
results diverge from experiment above ∼200 GPa and this divergence is beyond experimental error
bars. They conclude that the high-P CL data are for another solid phase, hence there is a s-s phase
transition on the Hugoniot at ∼200 GPa, in agreement with [7]. They find that CL in the high-P solid
phase of Mo is larger than that in bcc. However, an increase in CL across a s-s transition is a very exotic
case: the emerging solid phase must be less dense or have smaller elastic constants, or both. No such
cases have ever been observed in experiment. In a more realistic scenario, bcc-Mo would convert to
either fcc or hcp, one of the two candidates mainly discussed in the literature, and in such a case its CL
would go down across the s-s transition; see, e.g., Figure 3 of Reference [50] which shows that CL in
fcc-Mo is considerably smaller than that in bcc-Mo.

2. The Hugoniot of another solid phase will have a slope different from that of bcc-Mo and will
cross the melting curve at P different from ∼400 GPa. A calculation shows that the Hugoniot of fcc-Mo
has a smaller slope than that of bcc-Mo and crosses the Mo melting curve at ∼450 GPa [50]. In fact,
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the fcc segment of the Mo Hugoniot would have to cross the fcc-Mo melting curve rather than the
bcc-Mo one. If fcc-Mo were the physical phase of Mo, its melting curve would be higher than that
of bcc-Mo, hence its Hugoniot crossing point would be at even higher pressure, likely ∼500 GPa.
The undeniable experimental evidence that melting on the Mo Hugoniot occurs at 380–390 GPa is a
serious argument against melting from any solid phase other than bcc.

3. The equation of state (EOS) along the Hugoniot calculated by Lukinov et al., Figure 1 of [16],
agrees with experiment over the entire pressure range considered in [16]. Hence, both experiment
and theory describe the same solid structure of Mo, namely, bcc-Mo. The reason for the theoretical
sound velocity to diverge from experiment may be insufficient accuracy of the calculated elastic
constants. Our own tests reveal that for a 250-atom supercell with a single Γ point, as in [16], energy
is converged to >10 meV/atom (the corresponding 0.01 meV/atom in [16] must be a typo), which is
good enough to produce a reliable EOS but not good enough to generate accurate elastic constants.
Specifically, in our VASP runs with a single Γ point both the cold elastic constants C′ ≡ (C11 − C12)/2
and C44, as functions of P, behave normally up to ∼50 GPa where they start softening, stay below the
corresponding fully converged C′(P) and C44(P) trajectories at ∼100–400 GPa, then start hardening
and going back to the fully converged trajectories into which they finally merge at ∼450 GPa. Here the
fully converged trajectory is the one with a k-point mesh of 3× 3× 3 or any denser. Hence, in the P
interval 100–400 GPa the values of both C′ and C44 obtained with a single Γ point are too low, and so is
G. At the same time, P is fully converged, already with a single Γ point, and so is B ≡ ρ dP/dρ, so that
the EOS is accurate. The softening of both C′ and C44 pertains at finite T, as our own calculations also
demonstrate. Hence, in the pressure interval considered in [16] the elastic constants are such that C′ and
C44 are too small, and therefore both G and CL are too small also. Figures 2 and 3 clearly demonstrate
this point. All the experimental data (except the three lower-P points by Hixson et al.) on Figure 3
are within the 3σ-wide confidence interval around our theoretical model curve, while the results by
Lukinov et al. are outside of this interval. Specifically, with C′ and C44 obtained with a single Γ point,
Equation (45) is replaced with G(P) = 122.0+ 0.94 P− 7.3× 10−4 P2− 3.7× 10−5 P3 + 1.6× 10−7 P4−
2.3× 10−10 P5 + 7.3× 10−14 P6. The corresponding CL =

√
(B + 4/3 G)/ρ is shown in Figure 3 as a

thin black line; this line covers all the data points from Reference [16] except for the last 3 points that are
very close to Tm. One sees clearly that the single-Γ CL stays below the corresponding fully converged
CL at ∼100–400 GPa, consistent with a similar behavior of G. Thus, we believe we have found the
explanation for the numerical results of Reference [16] being in disagreement with experiment.

At the same time, B and the bulk sound velocity CB =
√

B/ρ are quite accurate, as clearly seen in
Figure 3: the results of [16] on CB are in good agreement with experiment (except for the last 3 points).

In summary, the assertion of Lukinov et al. that there is a solid-solid transition on the Mo
Hugoniot is very likely incorrect.

Appendix B. Unified Analytic Melt-Shear Models for Ta and W

Appendix B.1. Tantalum

At ambient conditions Ta is, like Mo, a bcc material. Experiments show that it is structurally
stable to a pressure of a third of a terapascal [51,52]. However, with increasing P, Ta is predicted to
convert into another solid phase. It is argued in References [53,54] that a transition from bcc to one
of the hexagonal structures among those with different stackings of atomic layers (e.g., hexagonal
close-packed (hcp), face-centered cubic (fcc), double-hcp (dhcp), etc.), or even a mixture of those
stackings, is expected to occur at ultrahigh pressures. Since fcc-Ta becomes dynamically stable with
increasing P [55], in addition to being thermodynamically more stable than bcc-Ta, fcc-Ta is a good
candidate for the high-P solid structure of Ta.

The unified analytic melt-shear model for Ta that covers bcc-Ta at lower P and another solid phase
(e.g., fcc-Ta) at higher P can be constructed following the same procedure that we used above for Mo.
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Here we skip the technical details for the sake of brevity. The values of the Ta model parameters are
shown in Table 1 in the main text.

Our QMD simulations of G for Ta as a funtion of T, at three different densities, shown in
Figure A1 demonstrate that, at least for bcc-Ta, β depends on density, and this dependence is given by
(ρ in g/cm3)

β = β(ρ) = 0.23 + 0.021 (ρ− 16.74)1.09, (A1)

which is very similar to the corresponding β(ρ) for Mo.
The longitudinal and bulk sound velocities in bcc-Ta along its principal Hugoniot are shown in

Figure A2 along with the corresponding experimental data from [56–59].
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Appendix B.2. Tungsten

Tungsten is our third example of a transition metal with ambient bcc structure. Experiment shows
that it is structurally stable to 423 GPa [10]. However, with increasing P, W is also predicted to convert
into another solid phase, just like both Mo and Ta. A very recent theoretical study [60] demonstrates
that fcc-W becomes dynamically stable at ∼450 GPa while bcc-W becomes dynamically unstable with
increasing P; since fcc-W also becomes thermodynamically more stable than bcc-W [60], fcc-W is a
good candidate for the high-P solid structure of W.

We have constructed the unified analytic melt-shear model for W for which the numerical values
of the parameters are shown in Table 1 in the main text.

Our QMD simulations of G for W as a function of T, at three different densities, shown in
Figure A3, demonstrate that β for bcc-W depends on density (ρ in g/cm3)

β = β(ρ) = 0.23 + 0.021 (ρ− 19.31)1.07. (A2)

This is very similar to Equations (42) and (46) for Mo and Ta, respectively.
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Figure A3. The shear modulus of bcc-W as a function of T at three different densities.

The longitudinal and bulk sound velocities in bcc-W along its principal Hugoniot are shown in
Figure A4 along with the corresponding experimental data from [61].

As clearly seen in Figures A2 and A4, both bcc-Ta and bcc-W exhibit exactly the same behavior as
bcc-Mo, namely, the softening of the shear modulus along the principal Hugoniot that shows up as the
softening of CL in a shock-wave experiment.
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Figure A4. Longitudinal (upper) and bulk (lower) sound velocities in bcc-W along its principal
Hugoniot: comparison of the unified analytic melt-shear model (curves) to the experimental data of
Reference [61] (diamonds).
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