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Abstract: To elucidate the relative nucleation rates of different polymorphs, a competitive kinetic
model is developed based on classical nucleation theory to describe the time evolution of two different
polymorphic cluster size distributions controlled by the association and dissociation of the solute
molecules during polymorph nucleation. Although there is only one type of the solute molecules,
the agglomerated solute clusters are divided into two types–A form and B form, which resemble
the structures and morphologies of the different mature polymorphs and eventually lead to the
formation of two polymorphic crystals. A dissociation kernel is incorporated into the proposed
model to account for gradual dissolution of the solute clusters smaller than a critical nucleus size
due to the thermodynamic instability. By fitting the experimental induction period data and the final
measured weight fractions of eflucimibe polymorphs with the proposed model, the association and
dissociation rate constants for two polymorphs are determined. The developed model is satisfactory
to explain the competitive mechanism of polymorph nucleation for eflucimibe that B form dominates
at higher supersaturation while A form dominates at lower supersaturation. The results also indicate
that A form is more stable than B form with a transition energy of 3.1 kJ/mole at 35 ◦C.
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1. Introduction

A substance capable of crystallizing into different crystalline forms is said to exhibit
polymorphism. Polymorphism plays an important role for pharmaceutical products. Different
polymorphs of the same substance might lead to different biological activity due to the possibility of
conversion among polymorphic forms affecting the dissolution rate [1,2].

Solute molecules in the supersaturated solution can aggregate and form clusters. Clusters can
further aggregate to a bigger size or break into some smaller particles due to the thermodynamic
instability. When the size of a cluster exceeds a critical size, it becomes stable and the subsequent
growth leads to a new crystal [3–5]. The existence of solute clusters in the supersaturated solution
for the single polymorphic system has been reported by many researchers [6–10]. For the multiple
polymorphic system, a general hypothesis is accepted in the literature that the solute molecules in
the supersaturated solution assemble to form different polymorphic clusters, which resemble the
structures and morphologies of the various mature polymorphs and eventually lead to the formation
of multiple polymorphic crystals [11,12]. Recently, Van Driessche et al. [13] observed polymorph
nucleation events that are driven by oriented attachments between subcritical clusters of the protein
glucose isomerase that already exhibit a degree of crystallinity. Consequently, the relative nucleation
rates of different polymorphs should be closely related to the time evolution of multiple polymorphic
clusters in nucleation.
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Understanding the nucleation and growth mechanisms of polymorphism is crucial to better
control of the desired forms during polymorph crystallization [14–27]. Although various nucleation
theories for the single polymorphic system have been developed based on either the thermodynamics
of the process [4,5] or the kinetics of the process [28–30], nucleation theory for the multiple polymorphic
system is comparatively less studied in the literature. Hammond et al. [31] used a molecular
modeling approach to study the stability of different polymorphic forms of L-glutamic acid through
building and optimizing molecular clusters of different sizes and shapes. ter Horst et al. [32] adopted
a combination method of molecular simulations and process modeling to predict the polymorphic
fraction and crystal size distribution during polymorph crystallization. Deij et al. [33] applied the
growth probability method combined with a Monte Carlo routine to simulate polymorph formation
for some dimorphic systems.

When multiple polymorphs of the same substance crystallize together out of a solution, the relative
productivity of different polymorphs depends on supersaturation, temperature, cooling rate, solvent,
agitation, PH, additive, impurity, seeding, etc. Among these factors, supersaturation is of utmost
significance [34]. For example, Ni and Liao [35] and Qu et al. [36] indicated for L-glutamic acid
that the metastable α crystals are favored at lower supersaturations while the stable β crystals are
favored at higher supersaturations. Sun et al. [37] reported that either spontaneously nucleating
quiescent aqueous L-glycine solution or nonphotochemical laser-induced nucleation tends to produce
the intermediate stable α glycine at lower supersaturations and the most stable γ glycine at higher
supersaturations. Gracin and Rasmuson [38] observed for the polymorph nucleation of p-aminobenzoic
acid that cooling crystallization can be performed to produce the most stable pure β form in water
and in ethyl acetate by careful control of supersaturation and temperature. Teychene and Biscans [39]
investigated the nucleation kinetics of two eflucimibe polymorphs by induction time measurements
and found that the stable A-form crystals are favored at lower supersaturations while the metastable
stable B-form crystals are favored at higher supersaturations. Zhu et al. [40] indicated that the
polymorph nucleation of gestodene in ethanol depends on both the supersaturation and crystallization
temperature. Roelands et al. [41] and Wantha et al. [42] reported that the metastable polymorph
increases with increasing supersaturation for the crystallization of L-histidine from aqueous solution
with the antisolvent ethanol.

Stranki and Totomanov [43] attempted an explanation of the Ostwald rule of stages from the
corresponding rates of crystal nucleation and argued that the first nucleated phase is the phase that has
the lowest free-energy barrier of formation, i.e., the one which has the fastest nucleation rate, rather
than the most stable phase; afterwards, the system may undergo a polymorphic form transition toward
another metastable phase, or directly to the stable phase. Tahri et al. [44] evaluated the competition
between the nucleation, the growth, and the Ostwald ripening of the different phases by means of
the kinetic equation model and concluded that Ostwald ripening can induce the total dissolution of
the slow growing stable polymorph nuclei, leading to a result in agreement with the Ostwald rule
of stages.

As supersaturation plays an important role during polymorph crystallization, understanding the
competition between nucleation rates of different polymorphs is crucial for polymorphism control in
a supersaturated solution. In the current paper a competitive kinetic model for polymorph nucleation
is proposed to elucidate the effects of supersaturation on polymorph selection.

2. Theory

A competitive kinetic model is developed to describe the time evolution of two different
polymorphic cluster size distributions in a supersaturated solution, where the simultaneous nucleation
of the two polymorphs is controlled by the association and dissociation mechanisms during the
induction time period. Although the Ostwald rule of stages postulates that a crystallization system
progresses from the supersaturated state to equilibrium in stages, each stage representing the smallest
possible change in free energy [4]. In the dimorphic system this means the initial appearance of
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the metastable crystals, followed by their transformation to the stable crystals. However, in the
actual crystallization system kinetics are often more important than thermodynamics. It is in fact,
if more than one phase is thermodynamically possible, the resulting phase is not just the one that is
thermodynamically most likely. Instead, the resulting crystals are determined by the relative rates
of crystal nucleation and growth of the metastable and stable forms, which usually depends on the
process conditions, e.g., supersaturation, crystallization temperature, and the solvent type [4,45–47].

In derivation of the competitive kinetic model for polymorph nucleation, it is assumed that: (1)
Although there is only one type of the solute molecules (n1), the solute clusters are divided into two
types—A form (ni,A, i ≥ 2) and B form (ni,B, i ≥ 2); (2) Depending on the steric colliding direction
between two solute molecules, two solute molecules can collide to form either an A-type or B-type
cluster; (3) Depending on the steric colliding direction, a solute molecule can collide with an A-type
cluster to form a larger A-type cluster or collide with a B-type cluster to form a larger B-type cluster;
(4) Only two solute clusters of the same type can collide to form a larger solute cluster of the same
type, i.e., the collision between A-type clusters and B-type clusters results in no formation of a larger
solute cluster due to the structure difference; (5) A solute cluster smaller than the critical nucleus size
for ni,A (2 ≤ i ≤ gA − 1) or ni,B (2 ≤ i ≤ gB − 1) might dissociate to form one primary particle and
one smaller solute cluster of the same type due to the thermodynamic instability; (6) As the size of
a cluster exceeds the critical nucleus size for ni,A (i ≥ gA) or ni,B (i ≥ gB), it becomes stable and no
dissociation occurs. The subsequent growth leads to a new crystal of the same type.

Various association and dissociation processes are depicted in simplified form in Table 1. The time
evolution of n1, ni,A (i ≥ 2) and ni,B (i ≥ 2) for polymorph nucleation in a super saturation solution
can be derived as follows. Note that n1,A = n1,B = n1 due to only one type of the solute molecules.
Based on Smoluchowski’s agglomeration theory [48,49], the net formation rate of n1, ni,A (i ≥ 2),
and ni,B (i ≥ 2), by association can be described respectively as:

RA1 = −kAn1(n1 + nt,A)− kBn1(n1 + nt,B) (1)

RAi,A = −kAni,A(n1 + nt,A) +
1
2

kA

i−1

∑
j=1

nj,Ani−j,A(i ≥ 2) (2)

RAi,B = −kBni,B(n1 + nt,B) +
1
2

kB

i−1

∑
j=1

nj,Bni−j,B(i ≥ 2) (3)

where kA and kB represents the association rate constant of A-type clusters and B-type clusters,
respectively. Note that nt,A = ∑∞

i=2 ni,A and nt,B = ∑∞
i=2 ni,B.

Table 1. Various association and dissociation processes for polymorph nucleation.

Association and Dissociation Processes

n1 + n1
kA→ n2,A or n1 + n1

kB→ n2,B

n1 + ni,A
kA→ ni+1,A (i ≥ 2)

n1 + ni,B
kB→ ni+1,B (i ≥ 2)

ni,A + nj,A
kA→ ni+j,A (i ≥ 2, j ≥ 2)

ni,B + nj,B
kB→ ni+j,B (i ≥ 2, j ≥ 2)

ni,A + nj,B → no association (i ≥ 2, j ≥ 2)

n2,A
kdA,2→ n1 + n1

n2,B
kdB,2→ n1 + n1

ni,A
kdAi→ ni−1,A + n1 (3 ≤ i ≤ gA − 1)

ni,B
kdBi→ ni−1,B + n1 (3 ≤ i ≤ gB − 1)
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According to classical nucleation theory (CNT) [4,5], a cluster becomes stable when its size
reaches the critical nucleus size. Thus, dissociation only occurs for ni,A (2 ≤ i ≤ gA − 1) or ni,B

(2 ≤ i ≤ gB − 1). As similar to the solute clustering process in a supersaturation solution [50], gradual
dissociation kernel is proposed in this work. For gradual dissociation kernel, one large aggregate,
ni,A (2 ≤ i ≤ gA − 1), dissociates into one primary particle, n1, and one smaller aggregate, ni−1,A.
Similar dissociation process is applied for ni,B (2 ≤ i ≤ gB − 1). Thus, gradual dissociation kernel
corresponds to gradual dissolution of the solute clusters smaller than a critical nucleus size due to the
thermodynamic instability.

The net formation rate of n1 by dissociation for gradual disruption kernel is given by

RD1 = 2kdA,2n2,A + 2kdB,2n2,B +
gA−1

∑
j=3

kdA,jnj,A +
gB−1

∑
j=3

kdB,jnj,B (4)

where the first and second terms on the right-hand side of Equation (4) represent the birth term
due to dissociation of n2,A and n2,B while the third and fourth terms represent the birth term due to
dissociation of nj,A (3 ≤ j ≤ gA − 1) and nj,B (3 ≤ j ≤ gB − 1). In this work, kdA,j = kdA0(j− 1) and
kdB,j = kdB0(j− 1) are assumed due to more molecules available for dissociation for larger clusters.

As dissociation occurs for ni,A (2 ≤ i ≤ gA − 1), the net formation rate of ni,A (i ≥ 2) by
dissociation can be described as

RDi,A = −kdA,ini,A + kdA,i+1ni+1,A(2 ≤ i ≤ gA − 2) (5)

RDi,A = −kdA,ini,A(i = gA − 1) (6)

RDi,A = 0(i ≥ gA) (7)

Note that no dissociation occurs for ni,A (i ≥ gA). Similarly, as dissociation occurs for ni,B

(2 ≤ i ≤ gB − 1), RDi,B (2 ≤ i ≤ gB − 1) can be derived. Note that no dissociation occurs for ni,B

(i ≥ gB).
To determine the time evolution of n1, ni,A(i ≥ 2), and ni,A(i ≥ 2), the net formation rate by both

association and dissociation should be considered. Thus, one obtains

dn1

dt
= RA1 + RD1 (8)

dni,A

dt
= RAi,A + RDi,A(i ≥ 2) (9)

dni,B

dt
= RAi,B + RDi,B(i ≥ 2) (10)

Substituting Equations (1,4) into Equation (8) yields

dn1
dt

= −kAn1(n1 + nt,A)− kBn1(n1 + nt,B) + 2kdA,2n2,A + 2kdB,2n2,B +
gA−1

∑
j=3

kdA,jnj,A +
gB−1

∑
j=3

kdB,jnj,B (11)

Substituting Equations (2,5–7) into Equation (9) yields

dni,A

dt
= −kAni,A(n1 + nt,A) +

1
2

kA

i−1

∑
j=1

nj,Ani−j,A − kdA,ini,A + kdA,i+1ni+1,A(2 ≤ i ≤ gA − 2) (12)

dni,A

dt
= −kAni,A(n1 + nt,A) +

1
2

kA

i−1

∑
j=1

nj,Ani−j,A − kdA,ini,A(i = gA − 1) (13)
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dni,A

dt
= −kAni,A(n1 + nt,A) +

1
2

kA

i−1

∑
j=1

nj,Ani−j,A(i ≥ gA) (14)

Summing Equations (12–14) from i = 2 to ∞ yields

dnt,A
dt

= −kA ∑∞
i=2 ni,A(n1 + nt,A) +

1
2 kA ∑∞

i=2 ∑i−1
j=1 nj,Ani−j,A − kdA,2n2,A = −kAnt,A(n1 + nt,A)+

1
2 kA(n1 + nt,A)

2 − kdA,2n2,A=
1
2 kA

(
n1

2 − nt,A
2)− kdA,2n2,A

(15)

where ∑∞
i=2 ∑i−1

j=1 nj,Ani−j,A = (n1 + nt,A)
2 (see Equation (A1) in Appendix A). Multiplying Equations

(14) by i and summing the resulting equation from i = gA to ∞ yields (see Equation (A2) in Appendix A)

dMC,A
dt = −kA(

∞
∑

i=gA

ini,A)(n1 + nt,A) +
1
2 kA

∞
∑

i=gA

i
i−1
∑

j=1
nj,Ani−j,A

= −kAMC,A(n1 + nt,A)

+ 1
2 kA

[
2(n1 + nt,A)

(
n1 +

gA−1
∑

i=2
ini,A + MC,A

)
−

gA−1
∑

i=2
i

i−1
∑

j=1
nj,Ani−j,A

]

= kA(n1 + nt,A)

(
n1 +

gA−1
∑

i=2
ini,A

)
− 1

2 kA

gA−1
∑

i=2
i

i−1
∑

j=1
nj,Ani−j,A

(16)

where MC,A = ∑∞
i=gA

ini,A.
Similarly, one can derive

dni,B

dt
= −kBni,B(n1 + nt,B) +

1
2

kB

i−1

∑
j=1

nj,Bni−j,B − kdB,ini,B + kdB,i+1ni+1,B(2 ≤ i ≤ gB − 2) (17)

dni,B

dt
= −kBni,B(n1 + nt,B) +

1
2

kB

i−1

∑
j=1

nj,Bni−j,B − kdB,ini,B(i = gB − 1) (18)

dni,B

dt
= −kBni,B(n1 + nt,B) +

1
2

kB

i−1

∑
j=1

nj,Bni−j,B(i ≥ gB) (19)

Summing Equations (17–19) from i = 2 to ∞ yields

dnt,B

dt
=

1
2

kB

(
n1

2 − nt,B
2
)
− kdB,2n2,B (20)

Multiplying Equations (19) by i and summing the resulting equation from i = gB to ∞ yields

dMC,B

dt
= kB(n1 + nt,B)

(
n1 +

gB−1

∑
i=2

ini,B

)
− 1

2
kB

gB−1

∑
i=2

i
i−1

∑
j=1

nj,Bni−j,B (21)

where MC,B = ∑∞
i=gB

ini,B.
When solutes exist as free molecules initially, n1(0) = C0, ni,A(0) = ni,B(0) = 0 (i ≥ 2), nt,A(0) =

nt,B(0) = 0, and MC,A(0) = MC,B(0) = 0. Thus, Equations (11–13, 15–18, 20, 21) constitute of a set
of gA + gB + 1 differential equations that can be simultaneously solved for the time evolution of
gA + gB + 1 unknowns—n1, ni,A (2 ≤ i ≤ gA − 1), nt,A, ni,B (2 ≤ i ≤ gB − 1), nt,B, MC,A and MC,B.

The induction time is defined as the time at which the volume fraction of the newly formed solid
phase in solutions becomes detectable [4]. For simplicity, the minimum detectable volume fraction of
the newly formed solid phase, fV, at the induction time is assumed corresponding to the total volume
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fraction of stable A-type and B-type clusters. As ni,A (i ≥ gA) and ni,B (i ≥ gB) represents the number
concentration of stable A-type and B-type clusters, respectively, one obtains

At
t = tind, Vm(MC,A + MC,B) = fV (22)

where Vm denotes the volume of a solute molecule. As VmMC,A and VmMC,B represents the volume
fraction of stable A-type and B-type clusters in solutions, respectively, the weight fraction of the stable
A-type crystals at the induction time is defined as

At
t = tind, wA =

MC,A

MC,A + MC,B
(23)

Note that fV depends on the measurement device and on the substance. Based on the study of
28 inorganic systems, Mersmann and Bartosch [51] estimated fV = 10−4 − 10−3. As the intermediate
value, fV = 4× 10−4, was adopted at the detection of the nucleation point for the Lasentec focus
beam reflectance measurements reported by Lindenberg and Mazzotti [52] and for the turbidity
measurements reported by Shiau and his coworkers [53–55], this value is also adopted in this study.

The proposed model is applied to the polymorph nucleation based on CNT. However, for the
two-step mechanism of nucleation, nucleation is thought to consist of two steps in series, i.e.,
the formation of the dense liquid clusters in solutions followed by the formation of the crystalline
nucleus inside the dense liquid clusters [56]. Thus, the derivation above is not applicable to the
two-step mechanism of nucleation.

3. Results and Discussion

The experimental results for eflucimibe polymorph nucleation reported by Teychene and
Biscans [39] are illustrated to verify the developed model. Eflucimibe is a new drug inhibiting
acyl-coenzyme A: cholesterol acyltransferase (ACAT), an enzyme which inhibition may lead to lower
serum cholesterol concentration. Eflucimibe crystallizes from a mixture of ethanol and n-heptane
into two polymorphic forms—A form and B form. A form is the stable form while B form is the
metastable form. These two forms have different solubilities and interfacial energies. The experimental
induction time data and the final measured weight fractions of eflucimibe polymorphs for various
supersaturation at 35

◦
C are listed in Table 2.

Table 2. The experimental induction time data and the final measured weight fractions of eflucimibe
polymorphs for various supersaturation at 35

◦
C reported by Teychene and Biscans [39].

SA (-) SB (-) C0 (no./cm3) tind,exp (s) gA (-) gB (-) wA,exp (-) Polymorphic Form

1.86 1.66 3.94 × 1019 28000 91 92 0.96 A
1.97 1.76 4.18 × 1019 12456 70 67 0.97 A
2.3 2.05 4.88 × 1019 2954 38 32 0.54 A+B
2.5 2.23 5.30 × 1019 1614 28 23 0.64 A+B
2.7 2.41 5.72 × 1019 971 22 18 0.33 A+B
2.8 2.50 5.94 × 1019 693 20 16 0.07 ~B
3.4 3.03 7.21 × 1019 80 12 9 0 B

Based on CNT, critical nucleus sizes for A-type and B-type clusters can be respectively estimated
as [4,5,57,58]

gA =
32πVm

2γA
3

3(kBT lnSA)
3 (24)

gB =
32πVm

2γB
3

3(kBT lnSB)
3 (25)
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In Table 2, gA and gB are the closest integers calculated for each SA based on γA = 5.17erg/cm2

and γB = 4.23erg/cm2, respectively. Note that both gA and gB decrease with increasing SA.
The following values at 35

◦
C are used in the calculations: ρc = 1.3g/cm3, Ceq,A = 2.12 ×

1019molecule/cm3, Ceq,B = 2.38 × 1019molecule/cm3, SB = SA/1.123, Mw = 469.73 and Vm =

1.59× 10−22cm3/molecule. In Table 2 C0 represent the initial concentration of solutes for each SA

calculated from SA = C0/Ceq,A.
By fitting the experimental induction time data and measured weight fractions of eflucimibe

polymorphs with the proposed model, the following regression procedure is adopted to determine
four parameters—kA, kB, kdA0 and kdB0: (1) guess a set of kA, kB, kdA0 and kdB0; (2) determine the
time evolution of n1, ni,A (2 ≤ i ≤ gA − 1), nt,A, ni,B (2 ≤ i ≤ gB − 1), nt,B, MC,A and MC,B for each SA

by solving Equations (11–13, 15–18, 20, 21) simultaneously; (3) calculate tind,the, at which it leads to
Vm(MC,A + MC,B) = fV, based on Equations (22) for each SA; (4) calculate WA,the at tind,exp based on
Equation (23) for each SA; (5) calculate εt from Equation (26); (6) calculate εw from Equation (27).

The average relative deviation between the experimental and theoretical induction time is
defined as

εt =
1
H

H

∑
j=1

∣∣∣tind,the,j − tind,exp,j

∣∣∣
tind,exp,j

(26)

where H is the number of the experimental runs, tind,exp is the induction time measured during the
experiments, and tind,the is the induction time calculated from Equation (22).

As shown in Table 2, pure A form is crystallized at low supersaturation and pure B form is
crystallized at high supersaturation while a mixture of A form and B form is crystallized at intermediate
supersaturation. For simplicity, the weight fractions of A-form eflucimibe measured at the end of the
experiments are assumed close to the weight fractions of A-form eflucimibe nucleated at the induction
time. The average relative deviation between the experimental and theoretical weight fraction of
A-type crystals at the induction time is defined as

εw =
1
H

H

∑
j=1

∣∣∣WA,the,j − WA,exp,j
∣∣

WA,exp,j
(27)

where wA,exp is the weight fractions of A-form eflucimibe measured at the end of the experiments, and
wA,the is the weight fractions of A-form eflucimibe calculated from Equation (23).

It should be noted in the regression procedure that, for any guessed values of kA, kB, kdA0 and
kdB0, a set of 184 differential equations for SA = 1.86 (gA = 91, gB = 92) need to be simultaneously
solved for the time evolution of n1, ni,A (2 ≤ i ≤ 90), nt,A, ni,B (2 ≤ i ≤ 91), nt,B, MC,A and MC,B.
However, as supersaturation is increased to SA = 3.4 (gA = 12, gB = 9), only a set of 22 differential
equations need to be simultaneously solved for the time evolution of n1, ni,A (2 ≤ i ≤ 11), nt,A, ni,B

(2 ≤ i ≤ 8), nt,B, MC,A and MC,B.
By repeating the regression procedure from (1) to (6), the optimal values of kA, kB, kdA0 and kdB0

with the smallest sum of εt and εw are determined based on fV = 4× 10−4 in Table 3, which indicates
kA = 7.7× 10−22cm3/s, kB = 1.4× 10−21cm3/s, kdA0 = 5.3× 10−4s−1 and kdB0 = 3.2× 10−3s−1,
leading to kB

kA
= 2 and kdB0

kdA0
= 6. Thus, one obtains kB > kA and kdB0 > kdA0.

Table 3. The optimal values of kA, kB, kdA0 and kdB0 with the smallest sum of εt and εw for 1.86 ≤
SA ≤ 3.4 at 35 ◦C.

kA (cm3/s) kB (cm3/s) kdA0 (1/s) kdB0 (1/s) εt (-) εw (-)

7.7 × 10−22 1.4 × 10−21 5.3 × 10−4 3.2 × 10−3 0.22 0.14
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Due to the different activation energy for bonding between solute molecules, the association rate
constants for A-type and B-type clusters can be expressed respectively as

kA = k0 exp
[
− (E∗A − E0)

RT

]
(28)

kB = k0 exp
[
− (E∗B − E0)

RT

]
(29)

where exp
[
− (E∗A−E0)

RT

]
and exp

[
− (E∗B−E0)

RT

]
represents the fraction of the successful collisions which

overcomes the activation energy of association for A-type and B-type clusters, respectively.
The collision rate constant, k0, is proportional to the diffusivity for solute clusters in a supersaturated
solution [4]. Combining Equations (28–29) yields

kB

kA
= exp

[
(E∗A − E∗B)

RT

]
(30)

Substituting the optimal values of kA and kB at 35
◦
C into Equation (30) yields E∗A − E∗B =

1.5kJ/mole. Thus, we conclude E∗A > E∗B for association.
The dissociation rate constants for A-type and B-type clusters can be expressed respectively as

kdA0 = kd0 exp
[
− (E∗A − EA)

RT

]
(31)

kdB0 = kd0 exp
[
− (E∗B − EB)

RT

]
(32)

where the dissociation frequency factor, kd0, mainly depends on the solution property. Combining
Equations (32–33) yields

kdB0
kdA0

= exp
[
(E∗A − E∗B) + (EB − EA)

RT

]
(33)

As E∗A− E∗B = 1.5kJ/mole, substituting the optimal values of kdA0 and kdB0 at 35
◦
C into Equation

(33) yields EB − EA = 3.1kJ/mole. Thus, it yields EB > EA, which is consistent with the literature that
form A is more stable than form B [39]. Based on the results using Equations (30,33), the change in
potential energy during polymorph crystallization is plotted in Figure 1.

Figure 1. Schematic diagram for the change in potential energy during polymorph crystallization from
the initial state to two different polymorphs.
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Based on the optimal values of kA, kB, kdA0 and kdB0 in Table 3, Figure 2 shows comparison
of tind,the and tind,exp for various SA, where tind,the is calculated from Equation (22) using the time
evolution MC,A and MC,B. The dashed line represents the calculated tind,the while the solid circle
represents the experimental tind,exp. It is found that tind,the and tind,exp decreases with increasing SA as
both gA and gB decrease with increasing SA.

Figure 2. Comparison of tind,the and tind,exp for various SA, where tind,the is calculated from Equation
(22) using the optimal values of kA, kB, kdA0 and kdB0. The dashed line represents the calculated tind,the

while the solid circle represents the experimental tind,exp.

Figure 3 shows comparison of WA,exp and WA,the at the end of the experiments for various SA,
where WA,the is calculated from Equation (23) using the time evolution MC,A and MC,B. The dashed
line represents the calculated WA,the while the solid circle represents the experimental WA,exp. It is
found that WA,exp and WA,the decreases with increasing SA. These results can be attributed to kB > kA

and kdB0 > kdA0. At higher SA due to smaller critical nucleus size and shorter induction time,
association rate among n1, ni,A (2 ≤ i ≤ gA − 1), and ni,B (2 ≤ i ≤ gB − 1) plays a more important role
than dissociation rate for ni,A (2 ≤ i ≤ gA − 1) and ni,B (2 ≤ i ≤ gB − 1) in nucleation. As kB > kA,
it is easier for the metastable B-form to grow to smaller critical nucleus size at higher SA. Thus,
nucleation of the metastable B-form dominates at higher SA, leading to MC,B > MC,A and wB > wA

at the end of the experiments. However, at lower SA due to greater critical nucleus size and longer
induction time, dissociation rate becomes important for ni,A (2 ≤ i ≤ gA − 1) and ni,B (2 ≤ i ≤ gB − 1)
in nucleation. As kdB0 > kdA0, it becomes more difficult for the metastable B-form to grow to larger
critical nucleus size at lower SA. Subsequently, nucleation of the stable A-form dominates at lower SA,
leading to MC,A > MC,B and wA > wB at the end of the experiments. As displayed in Figures 2 and 3,
the fourteen experimental data points are fitted well to the corresponding calculated results by the
developed model using the optimal values of kA, kB, kdA0 and kdB0.
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Figure 3. Comparison of wA,exp and wA,the at the end of the experiment for various SA, where wA,the

is calculated from Equation (23) using the optimal values of kA, kB, kdA0 and kdB0. The dashed line
represents the calculated wA,the while the solid circle represents the experimental wA,exp.

The following time evolution of n1, ni,A (2 ≤ i ≤ gA − 1), nt,A, ni,B (2 ≤ i ≤ gB − 1), nt,B, MC,A

and MC,B are calculated based on the optimal values of kA, kB, kdA0 and kdB0 in Table 3. For example,
a set of 184 differential equations for SA = 1.86 (gA = 91, gB = 92) are simultaneously solved for the
time evolution of n1, ni,A (2 ≤ i ≤ 90), nt,A, ni,B (2 ≤ i ≤ 91), nt,B, MC,A and MC,B. Similarly, a set of 22
differential equations for SA = 3.4 (gA = 12, gB = 9) are simultaneously solved for the time evolution
of n1, ni,A (2 ≤ i ≤ 11), nt,A, ni,B (2 ≤ i ≤ 8), nt,B, MC,A and MC,B.

The variations of n1, n2,A, n2,B, n3,A, n3,B, nt,A and nt,B with increasing time are displayed for
various SA in Figure 4, where n1 decreases monotonically with increasing time; however, n2,A, n2,B,
n3,A, n3,B, nt,A and nt,B passes through a maximum at certain time and then declines slowly for each
SA. A general trend is observed for various SA that, although n1 is significantly greater than n2,A, n2,B,
n3,A and n3,B for 0 < t < 0.1 tind, n2,A, n2,B, n3,A and n3,B become not negligible compared to n1 for
t > 0.1 tind. Thus, as n1 dominates in the earlier stage of nucleation, association between two solute
clusters of the same type, nj,A (j ≥ 2) or nj,B (j ≥ 2), is nearly negligible for 0 < t < 0.1 tind. However,
such association between two solute clusters of the same type becomes significant in the later stage of
nucleation for t > 0.1 tind. In Figure 4, n1/C0 is decreased to 0.04 at tind = 80 s for SA = 3.4; n1/C0

is decreased to 0.02 at tind = 1614s for SA = 2.5; n1/C0 is decreased to 0.01 at tind = 28000 s for
SA = 1.86. Thus, n1/C0 at tind becomes smaller for a lower SA due to longer induction time available
for association.
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Figure 4. Variation of n1, n2,A, n2,B, n3,A, n3,B, nt,A and nt,B with increasing time for various SA in the
range t = 0− tind.

The variations of MC,A and MC,B with increasing time are displayed for various SA in Figure 5,
where MC,A and MC,B increases monotonically with increasing time for each SA. For SA = 1.86− 1.97,
MC,A is significantly greater than MC,B at tind, leading to wA,the = 1 at tind based on Equation (23),
which is consistent with wA,exp = 0.96− 0.97 in Table 2. Note that MC,B/C0 remains nearly zero in
the range 0− tind. Thus, nearly only form A is obtained at the end of experiments. For SA ≥ 2.3, MC,B

becomes significant compared to MC,A at tind. For example, MC,A is only slightly than MC,B at tind
for SA = 2.5, leading to wA,the = 0.55 at tind based on Equation (23), which is close to wA,exp = 0.64
in Table 2. Thus, form A is slightly more than form B at the end of experiments. For SA = 2.7, MC,B

becomes greater than MC,A at tind, leading to wA,the = 0.33 at tind based on Equation (23), which is
consistent with wA,exp = 0.33 in Table 2. Thus, form B is more than form A at the end of experiments.
For SA = 3.4, MC,B is significantly greater than MC,A at tind, leading to wA,the = 0 at tind based on
Equation (23), which is consistent with wA,exp = 0 in Table 2. Note that MC,A/C0 remains nearly zero
in the range 0− tind. Thus, nearly only form B is obtained at the end of experiments.
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Figure 5. Variation of MC,A and MC,B with increasing time for various SA in the range t = 0− tind.

4. Conclusions

A competitive kinetic model for polymorph nucleation is developed in this work to describe
the time evolution of two different polymorphic cluster size distributions in a supersaturated
solution. By fitting the experimental induction time data and measured weight fractions of
eflucimibe polymorphs with the proposed model, the association and dissociation rate constants
for two polymorphs are determined, leading to kA = 7.7× 10−22cm3/s, kB = 1.4× 10−21cm3/s,
kdA0 = 5.3× 10−4s−1 and kdB0 = 3.2× 10−3s−1. Thus, one obtains kB

kA
= 2 and kdB0

kdA0
= 6, leading to

E∗A − E∗B = 1.5kJ/mole and EB − EA = 3.1kJ/mole. This is consistent with Ostwald’s rule of stages
that the metastable B-form tends to crystallize out more easily than the stable A-form due to E∗A > E∗B
while the stable A-form has a lower potential energy than the metastable B-form due to EB > EA.

Supersaturation is crucial in the polymorph selection for nucleation of eflucimibe. Association
rate plays a more important role than dissociation rate at higher supersaturation due to smaller critical
nucleus size and shorter induction period. As kB > kA, it is easier for the metastable B-form to grow
to smaller critical nucleus size at higher supersaturation. Thus, nucleation of the metastable B-form
dominates at higher supersaturation, leading to wB > wA at the end of the experiments. However,
dissociation rate becomes important at lower supersaturation due to larger critical nucleus size and
longer induction period. As kdB0 > kdA0, it becomes more difficult for the metastable B-form to grow
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to larger critical nucleus size at lower supersaturation. Subsequently, nucleation of the stable A-form
dominates at lower supersaturation, leading to wA > wB at the end of the experiments. These findings
are consistent with the experimental results obtained by Teychene and Biscans [39], indicating that
the metastable B-form dominates at higher supersaturation while the stable A-form dominates at
lower supersaturation.
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Notation

C0 = initial concentration of solutes (molecules/cm3)
Ceq = saturated concentration of solutes (molecules/cm3)
E0 = potential energy of the solute molecules (kJ/mole)
EA = potential energy of A-type crystals (kJ/mole)
EB = potential energy of B-type crystals (kJ/mole)
E∗A = activation energy for the association between A-type solute clusters (kJ/mole)
E∗B = activation energy for the association between B-type solute clusters (kJ/mole)
gA = critical nucleus size of A-type crystals (dimensionless)
gB = critical nucleus size of B-type crystals (dimensionless)
kA = association rate constant of A-type clusters (cm3/s)
kB = association rate constant of B-type clusters (cm3/s)
k0 = collision rate constant (cm3/s)
kd0 = dissociation frequency factor (cm3/s)
kdA,j = dissociation rate constant of nj,A (1/s)
kdA0 = dissociation rate coefficient of A-type clusters (1/s)
kdB,j = dissociation rate constant of nj,B (1/s)
kdB0 = dissociation rate coefficient of B-type clusters (1/s)
MC,A = total number of molecules for ni,A (i ≥ gA) per unit volume, (#/cm3)
MC,B = total number of molecules for ni,B (i ≥ gB) per unit volume, (#/cm3)
MW = molecular weight (g/mol)
NA = Avogadro number (1/mol)
ni,A = number concentration of A-type clusters with i solute molecules (#/cm3)
ni,B = number concentration of B-type clusters with i solute molecules (#/cm3)
nt,A = total number concentration of A-type clusters (#/cm3)
nt,B = total number concentration of B-type clusters (#/cm3)
RAi,A = net formation rate of ni,A due to association (#/cm3-s)
RDi,A = net formation rate of ni,A due to dissociation (#/cm3-s)
RAi,B = net formation rate of ni,B due to association (#/cm3-s)
RDi,B = net formation rate of ni,B due to dissociation (#/cm3-s)
SA = supersaturation based on A-type crystals,
SA = C0/Ceq,A (dimensionless)
SB = supersaturation based on B-type crystals,
SB = C0/Ceq,B (dimensionless)
T = temperature (K)
t = time (s)
tind,exp = experimental induction time (s)
tind,the = theoretical induction time (s)
Vm = volume of a solute molecule (cm3)
wA,exp = experimental weight fraction of A-type crystals (dimensionless)
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wA,the = theoretical weight fraction of A-type crystals (dimensionless)
Greek letters
γA = interfacial energy for form A (erg/cm2)
γB = interfacial energy for form B (erg/cm2)
ρC = crystal density (g/cm3)
εt = average relative deviation between the experimental and theoretical induction time (dimensionless)
εw = average relative deviation between the experimental and theoretical weight fraction of A-type or B-type
crystals (dimensionless).

Appendix A

By expanding and rearranging each term in the summations, the following equations for ni,A can be derived.

∞
∑

i=2

i−1
∑

j=1
nj,Ani−j,A = n1n1 + n1n2,A + n2,An1 + n1n3,A + n2,An2,A + n3,An1+

= (n1 + n2,A + n3,A + · · ·)(n1 + n2,A + n3,A + · · ·) = (n1 + nt,A)
2

(A1)

∞
∑

i=gA

i
i−1
∑

j=1
nj,Ani−j,A =

∞
∑

i=2
i

i−1
∑

j=1
nj,Ani−j,A −

gA−1
∑

i=2
i

i−1
∑

j=1
nj,Ani−j,A

= 2n1n1 + 3n1n2,A + 3n2,An1 + 4n1n3,A + 4n2,An2,A + 4n3,An1 + · · ·

−
gA−1

∑
i=2

i
i−1
∑

j=1
nj,Ani−j,A

= 2(n1 + n2,A + n3,A + · · ·)(n1 + 2n2,A + 3n3,A + · · ·)−
gA−1

∑
i=2

i
i−1
∑

j=1
nj,Ani−j,A

= 2(n1 + nt,A)(n1 +
gA−1

∑
i=2

ini,A +
∞
∑

i=gA

ini,A

gA−1
∑

i=2
i

i−1
∑

j=1
nj,Ani−j,A

= 2(n1nt,A)(n1 +
gA−1

∑
i=2

ini,A + MC,A)−
gA−1

∑
i=2

i
i−1
∑

j=1
nj,Ani−j,A

(A2)

Similar equations can be derived for ni,B.
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