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Abstract: To the best of our knowledge, this is the first demonstration of a design for a bicycle head
lamp with a high-contrast cutoff line using an atypical white light-emitting diode (LED) with two
separate dies. The precise optical model was created by setting the weighting factor on the emitting
surface. The downward reflector was designed and fabricated to produce a high-contrast cutoff line
in both short- and long-axis orientations, but a yellowish outer pattern was observed. A modified
two-color optical model was created to describe the yellowish patterns in both orientations and
explain the yellowish effect. Such an effect was caused by the larger coverage area of the phosphor
than that by the blue dies. To reduce the yellowish effect near the cutoff line, a specific phosphor area
was blocked in the experiment. The yellowish effect was greatly reduced, and the contrast across
the cutoff line was enhanced. The presented technology is useful for designing a high-contrast light
pattern with such an atypical white LED.

Keywords: white LED; k-mark; bicycle head lamp; cutoff line

1. Introduction

Vehicle head lamps are crucial for traffic lighting to allow high visibility of the driver, pedestrians,
and other people on the road. To prevent glare, a head lamp must have a clear borderline [1,2]. Such a
borderline separates the dark and bright zones with minimum contrast, to provide sufficient illumination
with less glare. These high-contrast cutoff lines are applicable to cars [3–9], motorcycles [10], and even
bicycles [11–14]. In general, most designs apply reflection [3,5,8], projection [6,7,10], and refraction [4,9]
to produce a high-contrast cutoff line. By using a combination of various optical principles to design
a freeform lens, Chen et al. obtained a highly efficient head lamp to project a high-contrast cutoff

line [4]. Wang et al. adopted reflector-lens sets to project a light pattern for a low-beam head lamp [7].
Wu et al. used four reflectors and the parameter-optimization method to obtain a low-beam head
lamp with an optical efficiency of 79% [8]. The contrast requirement for the head lamp cutoff line for
bicycles is not as strict as that for automotive vehicles, but the head lamp must be lightweight, compact,
and inexpensive. Bicycle head lamps have been studied extensively, and most optical designs use a
downward reflector or a total internal reflection (TIR) lens [11–15]. The light source is a solid-state light
source (i.e., a light-emitting diode (LED)) because of its advantages, such as compact size, vivid color,
fast response, environmental benefits, and long life [16–23]. A so-called phosphor-converted white
LED (pcW-LED) produces a white color by using a phosphor to cover a blue die [24]. In a pcW-LED,
the phosphor layer or volume is a heavy scattering medium with Mie scattering. As blue light passes
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through the scattering medium, part of the blue light transforms into yellow light to produce white
light, while mixing the leakage of blue light [25]. Therefore, the ratio of the yellow and blue light is
critical. A pcW-LED used as a light source in a vehicle head lamp should have good heat dissipation,
high color accuracy, and high flux density for illumination [26–28]. In general, the pcW-LED operates
at 3 W or more, with as small a light source as possible to contain the phosphor in a conformal coating,
meaning that the phosphor area is almost equal to the blue die area [13–15]. This causes higher exitance
for sufficient illuminance, and smaller etendue for a high-contrast cutoff line. The light source is
therefore relatively expensive. By contrast, if an LED dies outside of expected specifications, it can
be used for pcW-LEDs in low-cost lighting applications, such as a light bulb. Such a pcW-LED is
not used as a light source in head lamps, and the phosphor area can be larger than that of the blue
dies. This paper presents a design for a K-mark bicycle head lamp by using a low-cost and atypical
pcW-LED. In the measurement of the fabricated design, a high-contrast cutoff line was observed but
with a yellowish blur pattern. An advanced model was used to describe and solve the color problem.

2. Optical Modeling

A commercial low-cost pcW-LED with separate dies was used as our light source. The pcW-LED
was selected on the basis of its price and other properties, including total flux, exitance, and dimensions.
The total flux is a key factor because the illumination distance and visibility of the illuminated target
should be clear to a cyclist. Figure 1 illustrates the temporal evolution for the luminous flux, in which
the luminous flux reached 150 lm at steady-state operation under a current injection of 400 mA.
This light source is more complicated than others used for bicycles, because two separate dies are
bonded under a circular phosphor area. As illustrated in Figure 2, we used a camera to capture
the image of the pcW-LED when turned on. To prevent overexposure of the camera, two polarizers
were used to adjust the incoming light brightness to an appropriate exposure level for the camera.
The images are presented in Figure 3, wherein the axis along the two separate dies is called the long
axis, and the other axis is called the short axis. Figure 3c illustrates the light distribution contour,
which was used to define the weighting factor of each emitting point on the top phosphor surface,
where the pcW-LED was regarded as a Lambertian light source [29].

Crystals 2018, 8, x FOR PEER REVIEW  2 of 11 

 

the blue light transforms into yellow light to produce white light, while mixing the leakage of blue 
light [25]. Therefore, the ratio of the yellow and blue light is critical. A pcW-LED used as a light source 
in a vehicle head lamp should have good heat dissipation, high color accuracy, and high flux density 
for illumination [26–28]. In general, the pcW-LED operates at 3 W or more, with as small a light source 
as possible to contain the phosphor in a conformal coating, meaning that the phosphor area is almost 
equal to the blue die area [13–15]. This causes higher exitance for sufficient illuminance, and smaller 
etendue for a high-contrast cutoff line. The light source is therefore relatively expensive. By contrast, 
if an LED dies outside of expected specifications, it can be used for pcW-LEDs in low-cost lighting 
applications, such as a light bulb. Such a pcW-LED is not used as a light source in head lamps, and 
the phosphor area can be larger than that of the blue dies. This paper presents a design for a K-mark 
bicycle head lamp by using a low-cost and atypical pcW-LED. In the measurement of the fabricated 
design, a high-contrast cutoff line was observed but with a yellowish blur pattern. An advanced 
model was used to describe and solve the color problem.  

2. Optical Modeling 

A commercial low-cost pcW-LED with separate dies was used as our light source. The pcW-LED 
was selected on the basis of its price and other properties, including total flux, exitance, and 
dimensions. The total flux is a key factor because the illumination distance and visibility of the 
illuminated target should be clear to a cyclist. Figure 1 illustrates the temporal evolution for the 
luminous flux, in which the luminous flux reached 150 lm at steady-state operation under a current 
injection of 400 mA. This light source is more complicated than others used for bicycles, because two 
separate dies are bonded under a circular phosphor area. As illustrated in Figure 2, we used a camera 
to capture the image of the pcW-LED when turned on. To prevent overexposure of the camera, two 
polarizers were used to adjust the incoming light brightness to an appropriate exposure level for the 
camera. The images are presented in Figure 3, wherein the axis along the two separate dies is called 
the long axis, and the other axis is called the short axis. Figure 3c illustrates the light distribution 
contour, which was used to define the weighting factor of each emitting point on the top phosphor 
surface, where the pcW-LED was regarded as a Lambertian light source [29]. 

 

Figure 1. Temporal-dependent luminous flux of the phosphor-converted white LED (pcW-LED). Figure 1. Temporal-dependent luminous flux of the phosphor-converted white LED (pcW-LED).

To verify the validity of the pcW-LED optical model, we compared the simulated light patterns
with those measured at different distances in the midfield regime [29–31], where the farthest distance
was 10 times the largest lateral size of the emitting area (30 mm in this case). Figure 4 presents
the comparison between the simulated and measured patterns at three distances for two pcW-LED
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orientations. The normalized cross correlation (NCC) values were consistently >99.5%, which means
that the light source model is sufficiently accurate for precise optical design [32].Crystals 2018, 8, x FOR PEER REVIEW  3 of 11 
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3. Optical Design

The head lamp was designed to pass the K-mark regulation, which is illustrated in Figure 5,
wherein several checkpoints were in the illumination plane 10 m from the head lamp. The first
checkpoint is point A, where the illuminance should be ≥20 lux and 1/1.2 of the maximum illuminance
of the whole field on the plane. Point A should be located at the same horizontal level as the point
of the maximum illuminance. The second checkpoint is located in the dark zone above the cutoff

line, where the maximum illuminance should be ≤2 lux. In general, the challenge in optical design is
ensuring that the illuminance is ≤2 lux in the dark area. In fact, this is related to the vertical location of
the maximum illuminance point. If this location is far lower than the cutoff line, the dark zone would
be too close to the cutoff line, and too bright to pass the regulation.
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An optical design using such a pcW-LED is unusual. The first reason is that the unit has two
separate dies. Secondly, the color distribution is not homogenous across the emitting surface. In the
design procedure, the optics (i.e., a reflector) were designed on the basis of the white light model.
The pcW-LED was attached to the reflector facing downward. The reflector was composed of eight
segments, as illustrated in Figure 6, and the four bottom segments were used to form the sharp
edge of the cutoff line. To form the cutoff line, the light source area should be as small as possible.
However, the dimensions of the pcW-LED along the long axis are not equal to those of the short axis.
Typically, the short axis of the pcW-LED should be aligned with the vertical direction because the
cutoff line spans across the vertical direction. To increase assembly tolerance, the orientation of the
pcW-LED was adjusted to align the long axis of the pcW-LED with the vertical direction. Although
this was an undesirable case, after the design was successful, we could change the orientation of
the pcW-LED to align the short axis with the vertical axis, to increase the contrast of the cutoff line.
Therefore, the orientation of the pcW-LED is not a concern in mass production. Figure 7 illustrates the
simulation results, wherein Figure 7a–d display the results of the long- and short-axis orientations,
respectively. The simulated illuminance on the checkpoints passed the regulation. However, point A,
in the case of the long-axis orientation, was farther below the cutoff line than that of the short-axis
orientation. This result was as expected, because the illuminance at a dark checkpoint was higher in
the long-axis orientation than that in the short-axis orientation. By contrast, the light pattern in the
short-axis orientation was wider than that in the long-axis orientation.
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The blue point represents the maximum illuminance, and the red points represent the checkpoints in
the regulation. (c,d) Simulated values at the checkpoints on a plane at a distance of 10 m ((c) and (d)
correspond to (a) and (b), respectively). Green numbers are simulated values, and blue numbers are
requirements at the checkpoints.

4. Experimental Verification

The fabricated reflector is displayed in Figure 8. The reflector was constructed using computer
numerical control (CNC) machining and was coated with aluminum film. The reflector was mounted on
a table 1 m above the ground and was located 10 m away from the illumination plane. The checkpoint
measurements for each pcW-LED orientation are presented in Figure 9. The case in which the short
axis was aligned with the vertical axis produced a higher-contrast cutoff line and wider horizontal
light pattern, compared to the case of the long-axis alignment. Moreover, the illuminance at point A in
the short-axis case was larger than that in the long-axis case.
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Although the experimental measurement verified the validity of the optical design, and the light
pattern passed K-mark regulation, a new problem occurred. Yellowish light patterns were obvious in
both cases of short-axis and long-axis alignment. The short-axis case had a larger yellowish area above
the cutoff line, and this was a crucial concern. The yellowish pattern was caused by the light emitting
from the LED die area. LED dies can emit light sideward; the down-conversion of yellow light is
emitted isotropically, but the blue light is emitted forward. This was the reason that obvious blue light
was observed on the top of the LED dies, but yellow light was observed across the whole phosphor
area, as illustrated in Figure 10. In the optical design, the reflector was used to reflect incoming light
to the target area. In the design, the light source originated from a point source at the center of the
pcW-LED. A light source far from the center area causes a blurring of the light pattern, which explains
the yellowish light originating from the outer area of the pcW-LED. To describe this phenomenon,
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we attempted to capture the surface light distribution of the pcW-LED in two colors, as illustrated in
Figure 10a,c. The distribution was used to modify the pcW-LED optical model. The simulation results
are presented in Figure 11, wherein the difference in light patterns produced by blue and yellow lights
are obvious. The yellowish light in the outer area is easily observed.
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5. Discussion

To design a head lamp, light source selection is as crucial as the optical design. In general, the light
source should have as small an etendue as possible. Therefore, in a pcW-LED, the LED die should
be aligned as tightly as possible. We used an atypical pcW-LED with two separate dies and notably,
the phosphor layer covered a larger area than the blue dies did. Thus, the pcW-LED was equipped
with a larger etendue, which makes a high-contrast cutoff line difficult to produce. In general, such a
pcW-LED is designed for low-cost applications and is not a candidate for a head lamp. By using a
design with eight segments, we fabricated a reflector to form the cutoff line. The optical design is
typical, but the light source is not. The experimental result demonstrated that the contrast of the cutoff

line can pass the regulation by using an appropriate optical design, but the light pattern is yellowish.
The yellowish pattern is caused by the large phosphor coverage area. Figure 11 illustrated that the
yellow pattern was larger than the blue pattern. Changing this situation is difficult in any optical
design, except by using a light guide to color mix blue and yellow light. However, color mixing causes
more blur in the illumination light pattern. Because the optical power emitted from the area is not
dominant compared with that on top of the blue die, we could block part of the phosphor area to
reduce the yellowish pattern near the cutoff line. In the optical design, the center and upper areas of the
pcW-LED are the most crucial in forming the cutoff line. Thus, we darkened the upper phosphor area
of the light source as illustrated in Figure 12a. In comparison with Figure 9b, the yellowish effect near
the cutoff line was greatly reduced. Moreover, the illuminance in the dark zone decreased to 0.4 lux,
from 0.71 lux in the original case. As a result, reducing a specific phosphor area is useful for forming a
high-contrast cutoff line, as well as reducing the yellowish effect. This technology will be crucial in
similar applications when using an atypical pcW-LED. Besides, in the case of using this technology,
we examined if the experimental results meet the K-mark regulation. Firstly, the illuminance at point
A was measured at larger than 20 lux with a cover. Additionally, the illuminance at points CL and CR
were as large as 60% of the maximum illuminance in the target region. Furthermore, the illuminance
at the point B was around 20 lux, which is two times the 10 lux requested in the K-mark regulation.
Finally, the illuminance at the points GL, FL, M, FR, GR are larger than 2 lux. As a result, all checkpoints
in the measurement pass the K-mark regulation.
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6. Conclusions

We presented a new design for a K-mark head lamp based on a low-cost pcW-LED, wherein two
separate dies were bonded under a wide phosphor layer. Therefore, the head lamp had two feature
axes: a long axis along the die-separation line and a short axis. The study started by measuring the
steady-state luminous flux to confirm the power level. We then developed a precise optical model
for the pcW-LED with a black-and-white image to determine the weighting factor at the emitting
surface. The NCCs were all ≥99.5%, meaning that the optical model was sufficiently accurate for
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head lamp design. The downward-type reflector was divided into eight segments, of which the four
bottom segments were used to form the sharp edge of the cutoff line. After the addition of a housing
structure by using CNC machining and aluminum coating, an experimental setup based on K-mark
regulation was used to measure the light patterns projected on a plane 10 m away from the light source.
Measurements at the checkpoints revealed that the light patterns with long- and short-axis orientations
met the K-mark regulation. A sharper cutoff line was observed when the short axis was aligned with
the vertical direction. However, yellowish patterns on the outer area of the projected patterns were
observed for both orientations. This phenomenon was caused by a much wider spreading area of
the phosphor layer, than the area occupied by the blue die. The side-emitting blue light from the
LED die causes more yellow light to emit in the phosphor layer on the outer part. To understand
this effect, we created an advanced optical model with blue and yellow light. The new model well
described the phenomenon of the yellowish projected light pattern. Finally, we demonstrated an
atypical pcW-LED at low cost for application in a K-mark bicycle head lamp, and the extraordinary
effects were theoretically analyzed. To reduce the yellowish pattern near the cutoff line, we proposed
blocking a specific phosphor area by darkening the upper area of the pcW-LED. The experiment had a
positive result, in which the yellowish effect was greatly decreased, and a high-contrast cutoff line was
observed. The result well satisfies the requirement in the K-mark regulation. Analyzing the yellowish
effect and blocking the phosphor area will be useful and helpful when using a large phosphor coverage
area in an atypical pcW-LED to design a head lamp.
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