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Abstract: Transmembrane proteins (TMPs) play vital and diverse roles in many biological 
processes, such as molecular transportation and immune response. Like other proteins, many major 
interactions with other molecules happen in TMPs’ surface area, which is important for function 
annotation and drug discovery. Under the condition that the structure of TMP is hard to derive from 
experiment and prediction, it is a practical way to predict the TMP residues’ surface area, measured 
by the relative accessible surface area (rASA), based on computational methods. In this study, we 
presented a novel deep learning-based predictor TMP-SSurface for both alpha-helical and beta-
barrel transmembrane proteins (α-TMP and β-TMP), where convolutional neural network (CNN), 
inception blocks, and CapsuleNet were combined to construct a network framework, simply 
accepting one-hot code and position-specific score matrix (PSSM) of protein fragment as inputs. 
TMP-SSurface was tested against an independent dataset achieving appreciable performance with 
0.584 Pearson correlation coefficients (CC) value. As the first TMP’s rASA predictor utilizing the 
deep neural network, our method provided a referenceable sample for the community, as well as a 
practical step to discover the interaction sites of TMPs based on their sequence. 

Keywords: transmembrane protein; surface accessibility; deep learning 
 

1. Introduction 

Transmembrane protein (TMP) is one of the most important types of membrane proteins (MPs) 
that span the entire biological membranes in the whole molecular life cycle as a gateway or receptor. 
They involve in diverse biological processes, such as cell mechanics regulation [1], signal 
transduction [2], molecule transport [3], etc. Special interest in TMPs also arises from the fact that 
they associate with many types of diseases, such as autism [4], dyslipidemia [5], epilepsy [6], and 
various types of cancers [7–9]. Since TMPs play numerous roles in basic physiology and 
pathophysiology, TMPs are major targets for more than one-third of known drugs on the current 
therapeutics market [10]. On one side of the membrane, TMPs INTERACT with ligands, including 
protons, metal ions, enzyme, drug-like compound, etc. On the other side, they interact with proteins, 
RNAs, or other molecules to trigger a series of molecular reactions and eventually control the cell 
functions. The interaction interface is always located on the surface areas of TMPs, according to the 
statistics [11]. The surface accessibility of the residues in the protein can be measured by the relative 
accessible surface area (rASA), which refers to the relative surface area of the residues exposed to the 
environment surrounding the protein [12].  
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As a valuable structural property, predicting rASA based on primary sequence is a rewarding 
task for TMPs in structure prediction, function annotation, and drug discovery [13]. In recent years, 
several sequence-based methods have been developed to predict the surface accessibility of residues 
for TMPs. Thijs B. et al. firstly published a knowledge-based method (ProperTM) to predict and 
analyzed the burial state (burial or exposure) of transmembrane residues within TMPs [14]. After 
that, several machine learning-based methods have been developed. Depending on their 
functionality, these methods can be roughly grouped into two categories: burial state identifier and 
surface area predictor. Identifying the burial state of residues is a binary classification problem; it 
predicts whether residues are exposed to the surface or buried inside of the TMP, such as TMX [15], 
Yao et al. (2011) [16], TMexpoSVC [17]. Predicting the real value of surface area is a regression 
problem; these tools predict the accessible surface area (ASA) value or the relative accessible surface 
area (rASA) value of residues, such as ASAP [18], MPRAP [19], Yao et al. (2012) [20], TMexpoSVR 
[17], and MemBrain-Rasa [21,22]. A summary of these methods is listed in Table 1 in chronological 
order.  

Table 1. The summaries of existing methods for predicting surface accessibility of transmembrane 
protein (TMP) residues. 

Method Year Samples Algorithm TMP Type Seq Region Measure 
ProperTM [14] 2004 59 knowledge α-TMP TM region Burial state 

ASAP [18] 2006 73 SVR all TMP TM region ASA 
TMX [15] 2007 43 SVC α-TMP TM region Burial state 

MPRAP [19] 2010 80 SVR α-TMP full sequence rASA 
Yao et al. (2011) [16] 2011 53 SVM α-TMP TM region Burial state 
Yao et al. (2012) [20] 2012 122 RF all TMP TM region ASA 

TMexpoSVR [17] 2013 110 SVR α-TMP TM region rASA 
TMexpoSVC [17] 2013 110 SVC α-TMP TM region Burial state 

MenBrain-Rasa [21,22] 2015 80 SVR α-TMP full sequence rASA 

Although considerable achievements have been made in the field of TMP surface accessibility 
prediction, there are still several issues that deserved to be further improved. First of all, none of the 
mentioned methods could predict the rASA of the whole sequence of all kinds of TMPs. On the one 
hand, except for MPRAP and MenBrain-Rasa, most predictors can only be applied within 
transmembrane regions of TMPs, which focus only on the lipid-accessible surface while ignoring the 
water-accessible surface. It is worth pointing out that the prediction of rASA on the full sequence is 
more challenging than those that only apply to transmembrane residues. On the other hand, most 
methods only focus on α-helical TMPs while ignoring β-barrel TMPs—including the only two full 
sequence predictors. Although β-barrel TMPs just account for a small proportion of TMPs, it is also 
essential to be studied and should not be ignored. Up to now, ASAP and Yao et al. (2012) are the only 
two predictors that can be applied to both α-helical and β-barrel TMPs, but it is a pity that they can 
only be used to predict transmembrane regions of TMPs. Thus, it is meaningful to design a more 
powerful full sequence predictor to predict rASA for all kinds of TMPs. 

Besides, previous predictors relied heavily on the features derived from third-party tools, such 
as position-specific score matrix (PSSM) [23], Z-coordinate, secondary structure [24], and so on. 
Although these features contribute to the improvement of the predictor performance [25–27], their 
weakness cannot be ignored. On the one hand, using these third-party tool-derived features will 
make the predictor slow and may lead to uncontrollable failure. For example, MemBrain-Rasa uses 
six types of features, four of whom relied on the third-part tools, and seven out of 50 proteins cannot 
get a reliable prediction result from MemBrain-Rasa on the independent test. On the other hand, 
expertise in TMPs is always required to successfully use the previous methods, which may confuse 
the non-professional users and hinder the exploration of the biological significance of the prediction 
process. Since most previous predictors can only be applied in the transmembrane regions of TMPs, 
the topology structure of TMPs must be known before using them. However, it is difficult for non-
professional researchers to determine the topology of TMPs. Based on this consideration, we tried to 
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describe the protein fragment with features as concise as possible to make the predictor simpler and 
more efficient. After a series of experiments, we selected two types of encoding schemes to represent 
the protein fragment: one-hot code [28–30] and a position-specific scoring matrix (PSSM), where the 
former one encodes the residues arrangement and the latter one reflect the evolutionary profile. 
However, reducing the number of features will inevitably result in less information that may get by 
the predictor and cause performance deterioration. As a promising solution, decreasing the 
dependency on sophisticated features, a deep learning-based method was introduced in this study 
for its ability to discover the structural features from the sequence. The proposed method was a deep 
learning network that combines a convolutional neural network (CNN), inception network, and 
CapsuleNet. 

In this study, we proposed a sequence-based rASA predictor (TMP-SSurface) for the full 
sequence of all types of TMPs, that achieved considerable performance while simplifying the input 
features as much as possible. Only one-hot code and PSSM were used as the input features of a new 
proposed deep learning-based regression method, which combined the inception network with 
CapsuleNet. The experimental result showed that the performance of TMP-SSurface achieved a 
Pearson correlation coefficient (CC) of 0.581 on the independent validation, which was slightly better 
than the results of today’s best predictor, but much more simple than it. TMP-SSurface is accessible 
freely in http://icdtools.nenu.edu.cn/tmp_ssurface. The datasets used in the experiment and project 
of the predictor could be downloaded from the web-server. 

2. Results and Discussion 

2.1. Feature Analysis 

We tried several features, such as topology structure, physicochemical properties, and Z-
coordinate. Although these features contributed to the predictor more or less, they were not as 
significant as one-hot code and PSSM. Besides, additional features would make the predictor more 
complex. To make the predictor as simple as possible while ensuring the prediction performance, we 
decided to use a one-hot code and PSSM as the features to describe the basic information of the 
protein fragment.  

In order to investigate the contribution of different features to the predictor, we trained three 
models using one-hot code, PSSM, and both of them, respectively. Since the proposed model was 
parameter sensitive, we carried out the complete process of hyper-parameter tuning for each model 
to make sure the reliable prediction performance. The performance of predictors by using different 
features on the validation samples is illustrated in Table 2. It was evident that the predictors using a 
single feature achieved similar performance and achieved a more considerable performance when 
they were combined. 

Table 2. The performance of features. 

Feature CC MAE 
One-hot 0.417 0.203 

PSSM 0.387 0.206 
One-hot + PSSM 0.577 0.158 

2.2. Effect of Window Size 

Because the length of the sliding window determined the information feeding in the proposed 
predictor, it was an important variable that affected the prediction performance directly. We searched 
for the values of window size from 13 to 23 by the step of 2. As could be seen in Table 3, the predictor 
achieved the best prediction performance (CC value) on the validation samples when the window 
size reached 19.  

Table 3. The CC value of validation samples using different window sizes. 
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Window Size CC 
13 0.534 
15 0.551 
17 0.576 
19 0.581 
21 0.578 
23 0.565 

2.3. Hyper-Parameter Tuning 

We carried out a series of experiments to identify a better configuration of hyper-parameters for 
the proposed predictor. The performance of the network was affected by a large number of 
parameters, among which the inception block’s number and dynamic routing times were two major 
hyper-parameters that greatly influenced it.  

Table 4 illustrates the effect of the inception blocks’ number on the involved parameter’s 
number, training time, and CC performance. It was obvious that as the number of inception blocks 
grew, the number of parameters involved in the network increased exponentially. When the number 
of inception blocks reached three, the best CC value had been achieved. Thus, three inception blocks 
were suitable. 

Table 4. Effect of the number of inception blocks on involved parameters' number and CC 
performance. 

Num of Inception Blocks  No. of Parameters CC MAE 
1 3,790,671 0.506 0.203 
2 6,617,295 0.537 0.170 
3 12,614,607 0.579 0.157 
4 25,798,927 0.568 0.164 
5 58,045,711 0.577 0.158 

Table 5 illustrates the effect of the number of dynamic routings on training time and CC 
performance. As the number of dynamic routing increased, the time required for training the network 
increased rapidly. Previous studies had shown that too much dynamic routing times would lead to 
a decrease in prediction performance [31]. When the number of dynamic routings reached three, the 
CC value started to fluctuate and decrease slowly. Thus, three dynamic routings were suitable. 

Table 5. Effect of the number of dynamic routings on prediction performance. 

Num of Dynamic Routings CC MAE 
1 0.558 0.167 
2 0.568 0.164 
3 0.577 0.158 
4 0.573 0.160 
5 0.575 0.160 
6 0.569 0.164 

2.4. Ablation Study 

We proposed a compound network that combined CNN, inception, and CapsuleNet. In order 
to prove the effectiveness of the proposed model, we carried out an ablation study by removing some 
parts of the network. Each model in the ablation study was performed using the same data, feature, 
and hyper-parameters. Table 6 illustrates the performance of different models. We found that 
CapsuleNet was the most effective component: The CapsuleNet achieved the best performance 
compared with the other two components, and the performance significantly decreased when 
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removing CapsuleNet. Since the performance of the TMP-SSurface model was considerably better 
than others, combining three components made sense. 

Table 6. Comparison of the different models in the ablation study. 

Model CC MAE 
CNN 0.163 0.191 

Inception 0.415 0.167 
CapsuleNet 0.503 0.151 

Without inception 0.504 0.150 
Without CapsuleNet 0.422 0.166 

TMP-SSurface 0.584 0.144 

2.5. Comparison with Previous Predictors 

As described previously, several works have been done to predict the rASA of membrane 
proteins. However, most of the methods predict the rASA of the transmembrane region in the TMPs, 
instead of the whole sequence. Since MPRAP and MemBrain-Rasa are the only two predictors that 
can be used to predict the entire sequence of TMPs, we compared TMP-SSurface with them. For the 
result presented in Table 7, we found that TMP-SSurface significantly outperformed MPRAP and 
was similar to MemBrain-Rasa. MemBrain-Rasa was the most effective predictor in this field. On the 
contrary, TMP-SSurface was much more simple: first, MemBrain-Rasa contained a template-based 
pre-processing before using the traditional machine learning method, while TMP-SSurface used a 
deep learning method. Second, MemBrain-Rasa used six types of features that were calculated by 
several third-party tools, such as R4S, Zpred, PSIPRED, etc. These third-party tools might cause the 
failure: seven out of 50 proteins could not get a reliable prediction result from MemBrain-Rasa. TMP-
SSurface used only one-hot code and PSSM as features—it was stable to get reliable prediction results. 
It is worth to note that the web-server of MPRAP and MemBrain-Rasa accepted only one protein 
sequence as the input, while TMP-SSurface accepted multiple sequences as input. We tested the time 
cost of three web-servers: TMP-SSurface was significantly faster than others. The details of the 
comparison are shown in Table 7. 

Table 7. Comparison of TMP-SSurface with the previous predictors on the independent dataset. 

Predictor CC MAE Failure Time Cost (min) 
MPRAP 0.397 0.176 9 6.5 

MemBrain-Rasa 0.545 0.153 7 23.7 
TMP-Ssurface 0.584 0.144 0 4.7 

2.6. Short Sequence Test 

Both MPRAP and MemBrain-Rasa limited the length of the input sequence: The limitation of 
MPRAP was 20–10,000, and MemBrain-Rasa was 30–5,000. This limitation might sometimes be 
frustrating for users. Although we removed the short proteins with residues less than 30 when 
building the benchmark datasets, the predictor TMP-SSurface and the corresponding web-server had 
no restriction on the length of the input sequence. Since there are no proteins longer than 5000 in the 
Protein Data Bank of Transmembrane Proteins (PDBTM, version: 2019-01-04) [32], we could only 
carry out an additional experiment on short sequences to prove that the predictor performs well on 
them. A total of 122 short sequences with residues less than 30 were collected from PDBTM. After 
removing the high homology sequences by using CD-HIT [33] with a 30% sequence identity cut-off, 
89 non-redundant sequences were left. The performance of TMP-SSurface on the short sequence 
dataset was compared with that on the independent test dataset (50 proteins with 30–5000 residues). 
The data of the short sequences can be found in the Supplementary Materials: Data sets used in the 
experiments. From the result presented in Table 8, we found that TMP-SSurface performed well on 
short sequences.  
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Table 8. Performance of TMP-SSurface on different lengths of sequences. 

Sequenc Length Sequence Number CC MAE 
Less than 30 89 0.533 0.224 

Testing dataset (30–5000) 50 0.584 0.144 

2.7. TMP Type Test 

Both MPRAP and MemBrain-Rasa only focused on α-helical TMPs while ignoring β-barrel 
TMPs. Although β-barrel TMPs just account for a small proportion of TMPs, it is also essential to be 
studied and should not be ignored. The independent testing dataset contained 45 α-helical TMPs and 
five β-barrel TMPs. Table 9 illustrates the prediction performance of the different types of TMPs on 
the independent testing dataset. It could be seen that the prediction performance of β-barrel TMPs 
was a little bit lower than that of α-helical TMPs’, but was also considerable. 

Table 9. Performance of TMP-SSurface on the different types of TMPs. 

TMP Types Protein Number CC MAE 
α-helical TMPs 45 0.597 0.139 
β-barrel TMPs 5 0.511 0.151 

all-TMP 50 0.584 0.144 

2.8. Case Study 

To further demonstrate the effectiveness of TMP-SSurface, we took 4n6h_A and 1a0s_P as 
examples of case studies. 4n6h_A is a Escherichia coli α-helical transmembrane protein (subgroup: G 
protein-coupled receptor), which is the receptor of various ligands, such as heme, sodium ion, and δ-
opioid [34]. Opioids represent widely prescribed and abused medications, although their signal 
transduction mechanisms are not well understood. When visualizing the PDB file of 4n6h_A, we 
found that the δ-opioid was located on a pit on the surface of the protein. 1a0s_P is a Salmonella 
typhimurium β-barrel transmembrane protein (subgroup: porin), which is the transporter of calcium 
ion and sucrose and involves in many signal pathways. When visualizing the pdb file of 1a0s_P, we 
found that the ligand-binding sites were located on the extracellular solvent surface and the water-
filled transmembrane channel (the solvent surface of the pore). Hence, accurately predicting the rASA 
of these proteins would help to study the characteristics of their functional or structural regions.  

Figure 1 is the visualization of the predicted result of 4n6h_A and 1a0s_P. (a) and (c) are 
illustrations of TMP-SSurface-predicted rASA on the 3D version of 4n6h_A and 1a0s_P, respectively. 
It could be seen that TMP-SSurface did a good job, especially for residues located on the non-
transmembrane regions—surface residues exposed to water in these regions. In the transmembrane 
regions, the TMP-SSurface-predicted rASA was always lower than DSSP [35] calculated rASA. This 
might be explained by the amino acid composition of surface residues, located on transmembrane 
regions, which was significantly different from that of non-transmembrane regions. Since the surface 
residues located on the transmembrane regions were exposed to lipid, most of them were 
hydrophobic residues. Still, TMP-SSurface did a good job on TM regions as well. (d) and (b) are 
comparisons between the TMP-SSurface-predicted rASA and the DSSP-calculated rASA of 4n6h_A 
and 1a0s_P by line chart. The prediction accuracy of TMP-SSurface on the exposed residues (0.2 ≤rASA) was better than that on the burial residues (rASA < 0.2). The surface residues located on the 
transmembrane regions were exposed to the lipid—the hydrophobic environment, which is similar 
to the environment inside the protein. TMP-SSurface might confuse the burial residues with surface 
residues located on the transmembrane regions, resulting in low prediction accuracy of these 
residues. 



Crystals 2019, 9, 640 7 of 13 

 

 
Figure 1. Case study of TMP-SSurface: take 4n6h_A and 1a0s_P as examples. (a) Visualization of the 
predicted result of 4n6h_A on the 3D version of the protein (cartoon and surface versions). (b) 
Comparison of DSSP rASA and TMP-SSurface-predicted rASA of 4n6h_A. (c) Visualization of the 
predicted result of 1a0s_P on the 3D version of the protein (cartoon and surface versions). (d) 
Comparison of DSSP rASA and TMP-SSurface-predicted rASA of 1a0s_P. TMP: transmembrane 
protein, rASA: relative accessible surface area. 

3. Materials and Methods 

3.1. Benchmark Datasets 

As illustrated in Table 1, the number of samples used by previous methods is small. Since the 
number of TMP structures has increased rapidly in the past few years, a more comprehensive data 
set is required. Protein Data Bank of Transmembrane Proteins (PDBTM)[32] is the first 
comprehensive and up-to-date transmembrane protein selection of the Protein Data Bank (PDB) [36]. 
We downloaded 4007 transmembrane proteins from PDBTM (version: 2019-01-04), which contained 
3559 alpha proteins and 426 beta proteins. We first removed the proteins, which contained unknown 
residues (such as “X”), as well as those less than 30 residues in length. In order to reduce the influence 
of data redundancy and homology bias, these proteins were clustered by CD-HIT with a 30% 
sequence identity cut-off, and the representative sequences in each cluster were picked. After that, 
we had 704 protein chains (618 alpha protein chains and 86 beta protein chains) left. After that, these 
proteins were divided randomly into a training set with 604 proteins, a validation set with 50 
proteins, and a test set with 50 proteins. The data can be found in the Supplementary Materials: Data 
sets used in the experiments. 

3.2. Calculation of rASA 
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Accessible surface area (ASA) refers to the surface accessibility of a residue when it exposes to 
the water or lipid. It can be calculated from its structural information by several tools, such as DSSP 
[35], PSAIA [37], and Naccess [38]. In this work, the ASA of each residue was calculated by DSSP, 
with a probe of the radius of 1.4 Å. A residue’s relative accessible surface area (rASA) is calculated 
by dividing its ASA by the maximum accessible surface area (MaxASA), which is the rASA of the 
extended tri-peptides (Gly-X-Gly) [39]. Several MaxASA scales have been published [40,41], and we 
used the empirical values for MaxASA defined by Tien et al. in 2013 [39]. rASA can be calculated by 
the formula: 

rASA = 𝐴𝑆𝐴𝑀𝑎𝑥𝐴𝑆𝐴 (1) 

3.3. Encoding of Protein Fragments 

For a given protein sequence, a sliding window scheme was used to slice the protein into 
fragments. The reason for using the sliding window is that the rASA of the residue is greatly 
influenced by its sequential neighbors [42]. Here, we set the window size to 19: target residue with 9 
residues from upstream and 9 residues from downstream.  

To accurately predict a TMP’s rASA, it is crucial to extract useful information from the primary 
sequence as the input of prediction models. Besides, we tried to describe the protein fragments with 
features as concise as possible to make the predictor simpler and more efficient. After a series of 
experiments, we selected two types of encoding schemes to represent the protein fragment: one-hot 
code and PSSM.  

One-hot code is a 20-dimension vector whose elements represent the type of residues. For a 
given residue, the position of the corresponding residue is 1, and all the others are 0. It is simple to 
design and have been proved to be a powerful feature for protein function prediction associated 
problems [43–45]. To improve the prediction performance of the residues located on the ends of the 
protein sequence, we added one dimension after the one-hot code vector to encode the sequence’s 
terminal flag. As shown in Figure 2, if the “residue” was beyond the range of the protein sequence, 
we encoded the flag bit as 1 with all one-hot code bits as 0. In contrast, we encoded the flag bit as 0 
while the one-hot code was legal. For the given residue in the protein sequence, the one-hot code 
features of the corresponding fragment were encoded by a 21 × 19 matrix. For a protein with L 
residues, we obtained L matrices. 

 

Figure 2. Schematic of one-hot code and terminal flag code. 
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The position-specific scoring matrix (PSSM) represents the evolutionary profile of the protein 
sequence. It has been proved that highly conserved regions are always correlated within the 
functional regions [46–48]. PSSM has been widely used in many bioinformatics problems, such as 
membrane-ligand binding sites prediction [11] and protein secondary structure prediction [49]. The 
PSSM of TMPs was obtained by using the PSI-BLAST [50] tool to search the uniref50 (version: 2019-
01-16) database through 3 iterations with a 0.01 E-value cutoff. For the given residue in the protein 
sequence, the PSSM feature of the corresponding fragment was encoded by a 20 × 19 matrix. 

In conclusion, we described the given residue by a 41 × 19 matrix, which contained a one-hot 
code and PSSM. 

3.4. Model Design 

We presented a deep learning network called TMP-SSurface, whose design is shown in Figure 
3a. For a given residue in the TMP, the input features were one-hot code (19 × 21 array) and PSSM 
(19 × 20 array). First of all, one CNN layer (256 3 × 3 kernels and a stride of 1) was applied to 
generate the convolved features to extract local low-level features. After that, the abstracted features 
were fed into the inception layers: Three Inception blocks were applied side by side to extract low-
to-intermediate features. Inception V1 was used as one inception block (See Figure 3b for details). A 
capsule layer was placed after the inception layers to extract high-level features or explore the spatial 
relationship among the local features that were extracted in the layers mentioned above. The primary 
capsule layer was a convolutional capsule layer, as described in the work of Sabour’s team [51]. It 
contained 32 channels of convolutional 8D capsules, with a 9 × 9 kernel and a stride of 2. The final 
layer (regression capsule) had one 16D capsule to represent the probability of residues being exposed 
to the surface. The weights between primary capsules and regression capsules were determined by 
the iterative dynamic routing algorithm. The squashing activation function was applied in the 
computation between the primary capsule layer and the regression capsule layer. 

𝑣 = 𝑠1 + 𝑠 𝑠𝑠  (2) 

where 𝑣  is the vector output of capsule j, and 𝑠  is the total output. 

 

Figure 3. (a). TMP-SSurface design. (b). An inception block in TMP-SSurface. 

3.5. From Capsule Length to rASA 
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According to Sabour et al., the length of the output vector of a capsule indicates the probability 
that the current input belongs to the entity represented by the capsule [51]. The length of the capsule 
can be used to assess the prediction confidence: The longer the capsule, the more confident the 
predicted result will be [31]. In this study, the length of the vector of the positive capsule in the last 
layer could be used to describe the probability of the input residue exposed to the environment. 
According to the statistics, we found that the rASA was correlated with but could not be expressed 
directly by the capsule length. An exponential function was used to fit the capsule length and rASA: rASA = 𝐿𝑒𝑛 .  (3) 

where rASA  is the predicted rASA of the current input residue, and 𝐿𝑒𝑛 represents the 
corresponding capsule length. The value of the exponent was obtained by experiments.  

3.6. Performance Evaluation 

To quantitatively evaluate the proposed predictor TMP-SSurface, two measurements that are 
widely used for the rASA prediction method were adopted in this study: mean absolute error (MAE) 
and Pearson correlation coefficients (CC). MAE was used to measure the average deviation between 
the predicted and observed rASA values of all residues. MAE value ranged in [0,1], the smaller the 
MAE value, the better the prediction performance. CC was used to measure the linear correlation 
between predicted and observed rASA value. CC value ranged in [−1,1], where –1 represents a totally 
negative correlation, 1 totally positive correlation, and 0 totally no correlation. MAE and CC could be 
calculated by formulas: 

MAE = 1𝐿 |𝑦 − 𝑥 | (4) 

CC = ∑ 𝑥 − �̅� 𝑦 − 𝑦∑ 𝑥 − �̅� ∑ 𝑦 − 𝑦  (5) 

where 𝐿 represents the number of residues. 𝑥  and 𝑦  represent the observed and predicted 
rASA value of the ith residue, and �̅� and 𝑦 represent the corresponding mean value. 

4. Conclusion 

In this study, we proposed a sequence-based rASA predictor for the full sequence of all type of 
TMPs, called TMP-SSurface. To make the predictor as simple as possible while ensuring the 
prediction performance, only one-hot code and PSSM were used as the input features of a deep 
learning-based predictor. The experimental result proved the usefulness of these features, suggesting 
that sequence encode and evolution information could illuminate the characteristics of a surface 
structure. Besides, a deep learning-based method had verified the ability to mining the information 
of protein structure from the most simple and basic sequence information. TMP-SSurface did not 
have any restriction: it could predict the whole sequence of any kind of TMP with any length. The 
predicted rASA could be used for further researches of TMPs, such as structure analysis, TMP-ligand 
binding prediction, and TMP function identification.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Data sets used in the 
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