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Abstract: A new coordination polymer, namely, [Cd(L)(frda)(H2O)]·0.5L·H2O (1) was synthesized
by hydrothermal reaction based on mixed multi-N donor 1-(4-(1H-imidazol-5-yl) phenyl)-1H-
1,2,4-triazole (L) and O-donor 2,5-furandicarboxylic acid ligands (H2frda) with CdCl2·2.5H2O.
Compound 1 was characterized by single-crystal x-ray diffraction, elemental analysis, and IR
spectroscopy. In 1, both the multi-N donor and O-donor frda2− ligands act as linear two-connectors
to bridge Cd(II) atoms, forming a two-dimensional (2D) layer. Interestingly, the parallel 2D layers
stack in an AAA···mode, and the infinite one-dimensional (1D) channels formed along the a-axis
direction, where the uncoordinated L molecules were embedded in the void. Furthermore, the weak
interactions including the rich hydrogen bonding and π−π stacking interactions progress the 2D
structure into a three-dimensional (3D) supramolecular polymer. Diffuse reflectance spectra and the
luminescent property were also investigated.

Keywords: coordination polymer; characterization; optical property

1. Introduction

Coordination polymers (CPs) consisting of organic ligands and metal ions have attracted an
upsurge in research during the past decades, due to their charming structures and their possibly
applied domain of luminescence [1–4], gas adsorption/separation [5,6], proton conductivity [7],
chemical separations [8], catalysis [9], and so on. Generally speaking, organic ligands act as linkers
while metal ions act as connectors, and therefore, their orientation of the interacting sites for ligands
and coordination numbers for metal ions, respectively, are the most fundamental two factors to decide
the framework and properties of CPs [10–13]. In addition to these two core factors, other conditions
such as the ligand−metal ratio, reaction solvent, template, pH value, and counteranion also have
effects on the resulting structure [14,15]. Essentially, multidentate organic ligands with definite linking
coordination sites result in the spatial arrangement for metal connectors in the final framework. Several
important factors such as the length of organic ligands, their flexibility/ rigidity, decorated functional
groups, varied coordination modes, or substituent groups of organic ligands have substantial effects on
the resulting frameworks of CPs [16,17]. Therefore, the design and synthesis for organic compounds
are key jobs to construct desirable CPs with specific structures, topologies, and functionalities. In this
context, the effective ‘reticular synthesis’ put forward by Yaghi et al. was confirmed to be the most
effective method to direct the assembly of desired frameworks with rigid organic linkers [18]. However,
the flexible ligands are an important part in the assembly of interpenetrated structure by adopting fickle
conformations and geometries via rotating, bending, or twisting transformation [19,20] because these
flexible backbones often facilitate the stabilization of the framework through interpenetration to avoid
the void within the structure. Generally speaking, the multi-N donor and O-donor carboxylic acids
are two types of extensively used ligands because of their diverse coordination abilities [21,22]. For
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example, N-donor polyazaheteroaromatic organic molecules are often used to form multipodal anions
employed as chelating, bridging, and also acting as charge balance anionic building units for assembling
polynuclear species. In our previous work, we deliberately designed a series of 4-imidazoly-containing
organic molecules such as 1,3,5-tri(1H-imidazol-4-yl)benzene and 1,4-di(1H-imidazol-4-yl)benzene,
which have been successfully employed to build metal-imidazolate CPs with favorable gas adsorption
properties for CO2 gas [23–25]. Apart from the polyazaheteroaromatic linkers, the aromatic
polycarboxylate compounds are another kind of important O-donor ligands due to their diverse
coordination modes for carboxyl groups, which can display chelating, mono/bis-bridging modes. Due
to their good bridging abilities, a high connector of polynuclear metal centers can easily be formed,
which can be employed to build higher node frameworks. Interestingly, we employed the mixed
4-imidazoly-containing ligands and various carboxylic acids to build diverse frameworks including
cage structure, one-dimensional tube chain, two-dimensional layer structures, and three-dimensional
interpenetrating and non-interpenetrating structures with different topologies, because the N-donor
ligands can effectively adjust the coordination modes of polycarboxylate acids [26–28]. By virtue
of their suitable adjustability for the mixed polyazaheteroaromatic and carboxylic ligands, we
synthesized the multi-N donor ligand 1-(4-(1H-imidazol-5-yl)phenyl)-1H-1,2,4-triazole (L) (see
Supplementary Materials), together with O-donor 2,5-furandicarboxylic acid ligand (H2frda) to react
with CdCl2·2.5H2O, and obtained a new Cd(II) coordination polymer [Cd(L)(frda)(H2O)]·0.5L·H2O (1)
as a continual work. The diffuse reflectance spectra and luminescent property of 1 were also investigated.

2. Experimental Section

2.1. Materials and Instrumentation

The chemicals in this experiment were of reagent grade. The 1-(4-(1H-imidazol-5-yl) phenyl)-1H-
1,2,4-triazole organic molecule was synthesized according to the related literature [29]. Infrared spectra
was executed on a FT-IR spectrophotometer (Instrument Inc., Karlsruhe, Germany) using KBr pellets.
Elemental analyses were analyzed on a Perkin-Elmer 240C Elemental Analyzer (PerkinElmer, Waltham,
USA). Photoluminescence spectra were used with a HORIBA FluoroMax-4 (Edinburgh Instruments,
Edinburgh, UK).

2.2. Synthesis of [Cd(L)(frda)(H2O)]·0.5L·H2O (1)

A mixture of L (0.042 g, 0.2 mmol), H2frda (0.032 g, 0.2 mmol), CdCl2·2.5H2O (0.0456 g, 0.2 mmol),
and NaOH (0.016 g, 0.4 mmol) in 8 mL H2O was sealed in a Pyrex bottle (16 mL) and heated at 120 ◦C
for 48 h. Colorless block crystals of 1 were isolated by filtration, with a yield of 68 %. Anal. Calcd.
(%) for C22H16N8O7Cd: C, 47.30; H, 3.26; N, 18.39. Found (%): C, 47.16; H, 3.19; N, 18.48. IR(KBr):
3700−3050(s), 1581(m), 1399(m), 1373(m), 1278(w), 1158(w), 1066(m), 977(w), 837(w), 818(w), 786(w),
669(w), 636(w), 577(w), 487(w) cm−1.

2.3. Crystal Structure Determination

The single crystal data of [Cd(L)(frda)(H2O)]·0.5L·H2O (1) suitable for analysis were selected and
collected on a Rikaku XtaLAB Synergy diffractometer. The structure was solved and refined using
the OLEX2 program suite, equipped with the ShelXT and ShelXL program [30]. The crystallographic
refine data are displayed in Table 1.
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Table 1. Crystallographic data and structure refinement for CP 1.

Empirical Formula C45H39N15O14Cd2

Formula weight 1238.73
Temperature/K 293(2)
Crystal system Triclinic

Space group P-1
a/Å 10.0552(2)
b/Å 10.1437(2)
c/Å 14.1937(2)
α/◦ 75.690(10)
β/◦ 69.664(2)
γ/◦ 62.167(2)

Volume/Å3 1194.13(4)
Z 1

ρcalcmg/mm3 1.723
µ/mm−1 0.976
F(000) 622

Index ranges
−12 ≤ h ≤ 13,
−12 ≤ k ≤ 12,
−13 ≤ l ≤ 18

Reflections collected 14832
Independent reflections 4980

Data/restraints/parameters 5560/0/396
Goodness-of-fit on F2 1.030

Final R indexes [I ≥ 2σ(I)] R1 = 0.0310, wR2 = 0.0709
Final R indexes [all data] R1 = 0.0361, wR2 = 0.0742

Largest diff. peak/hole / e Å−3 0.470/−0.460

The CCDC number is 1957742 for 1, deposited with the Cambridge Crystallographic Data Center. The data can be
obtained on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK.

3. Results and Discussion

3.1. Structural of [Cd(L)(frda)(H2O)]·0.5L·H2O (1)

X-ray crystallographic analysis shows that CP 1 crystallizes in the triclinic P1− space group
(Table 1), and the asymmetric unit of 1 contains one unique Cd(II) atom, one coordinated L organic
ligand, one deprotonated frda2- molecule, one coordinated water molecule, a half of uncoordinated L
ligand, and one lattice water molecule. The unsymmetrical polyazaheteroaromatic ligand of N2 and
C8, N5 and C7, and N4 and C10 atoms can be defined according to their different atomic displacement
parameters. The lattice of L lies an inversion center. The center Cd(II) atom is linked by two nitrogen
atoms (N1 and N3A) from two different L ligands and four oxygen atoms (O1, O2, and O3B, O4B) from
two pairs of carboxyl groups and one oxygen atom (O6) from the coordinated water ligand, thereby
forming a seven-coordinated coordination geometry with a N2O5 donor set (Figure 1). The Cd–O
bond lengths varied from 2.346(2) to 2.5866(18) Å and the Cd–N ones were 2.281(2) and 2.288(2) Å
(Table 2), and the coordination angles were around the Cd1 range from 52.90(6) to 175.41(7)◦. The L
ligands adopt linear bidentate bridging mode to combine Cd(II) ions to form one-dimensional (1D)
chains. The adjacent 1D chains are connected by frda2- ligands to form a two-dimensional (2D) layer
(Figure 2). From a topological perspective, the 2D layers can be simplified to 4-connected sql nets with
point symbol (44

·62). The parallel 2D layers are stacked in an AAA···mode, and the infinite 1D channels
are created along the a-axis, where the uncoordinated L molecules are embedded in the void of 1
(Figure 3). The solvent-accessible volume of these channels without considering guest L molecules was
estimated to be 387.8 A3, approximately 32.5% of the total crystal volume of 1194.1 A3, calculated with
the PLATON program [31]. It is noteworthy that the nitrogen and oxygen atoms from multi-N donor
or carboxyl groups, can easily be employed as acceptors of hydrogen bonding, and as a return, the
weak interaction can easily benefit the formation of a supramolecular polymer. In the packing diagram,
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rich hydrogen bonding interaction are found in CP 1, and the C−H···O, O−H···O hydrogen bonding
including (C(2)···O(2)c 3.142(3) Å, C(2)–H(2)···O(2) 148◦; C(10)···O(2)c 3.101(4) Å, C(10)–H(10)···O(2)
155◦; C(11)···O(6) 3.410(4) Å, C(11)–H(11)···O(6) 151◦; C(6)···O(6) 2.738(3) Å, C(6)–H(6B)···O(6) 169◦;
O(6)···O(5) 2.872(4) Å, O(6)–H(6A)···O(5) 167◦; C(9)···O(4) 3.086(3) Å, C(9)–H(9)···O(4) 118◦) exist among
the adjacent 2D layers (Table 3). In addition to the rich hydrogen bonding, classic weak π−π stacking
interactions could also be found between the neighboring 2D packing layers. The five-membered
furan rings of the frda2- ligands were completely parallel with the centroid−centroid distance of 3.49 Å,
indicating the existence of strong π−π stacking interactions [32,33]. On the whole, the weak interactions
including the hydrogen bonding and π−π stacking interactions progress adjacent 2D layers into a
three-dimensional (3D) supramolecular polymer (Figure 4).
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Table 2. Selected bond lengths (Å) and bond angles (◦) for CP 1.

Bond d Bond d

Cd(1)-N(1) 2.288(2) Cd(1)-N(3) i 2.281(2)
Cd(1)-O(6) 2.346(2) Cd(1)-O(2) 2.3470(16)

Cd(1)-O(4) ii 2.3871(19) Cd(1)-O(3) ii 2.5427(18)
Cd(1)-O(1) 2.5866(18)

Angle ω Angle ω

N(3) i-Cd(1)-N(1) 175.41(7) N(3) i-Cd(1)-O(6) 90.86(8)
N(1)-Cd(1)-O(6) 84.94(8) N(3) i-Cd(1)-O(2) 93.45(6)
N(1)-Cd(1)-O(2) 90.84(7) O(6)-Cd(1)-O(2) 135.86(7)

N(3) i-Cd(1)-O(4) ii 99.08(7) N(1)-Cd(1)-O(4) ii 82.57(7)
O(6)-Cd(1)-O(4) ii 133.33(7) O(2)-Cd(1)-O(4) ii 89.19(6)

N(3) i-Cd(1)-O(3) ii 83.11(7) N(1)-Cd(1)-O(3) ii 94.58(7)
O(6)-Cd(1)-O(3) ii 83.62(7) O(2)-Cd(1)-O(3) ii 140.50(6)

O(4) ii-Cd(1)-O(3) ii 53.03(6) N(3) i-Cd(1)-O(1) 87.07(7)
N(1)-Cd(1)-O(1) 94.26(7) O(6)-Cd(1)-O(1) 83.57(7)
O(2)-Cd(1)-O(1) 52.90(6) O(4) ii-Cd(1)-O(1) 142.01(6)

O(3) ii-Cd(1)-O(1) 163.71(6)

Symmetry codes: (i) x, y, z + 1; (ii) x, y + 1, z.
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L guest molecules.

Table 3. Hydrogen bond lengths (Å) and bond angles (◦) for 1.

D–H···A d(D–H) d(H···A) d(D···A) ∠DHA

O(6)–H(6A)···O(5) a 0.70(4) 2.18(4) 2.872(4) 167(5)
C(6)–H(6B)···O(6) b 0.79(4) 1.96(4) 2.738(3) 169(5)
C(2)–H(2)···O(2) c 0.9300 2.3200 3.142(3) 148.00
C(4) –H(4)···N(4) 0.9300 2.5100 2.826(4) 100.00
C(9)–H(9)···O(4) a 0.9300 2.5400 3.086(3) 118.00

C(10)–H(10)···O(2) c 0.9300 2.2300 3.101(4) 155.00
C(11)–H(11)···O(6) d 0.9300 2.5700 3.410(4) 151.00

Symmetry codes: a x, 1 + y, z; b 1 − x, 1 − y, 2 − z; c 2 − x, 1 − y, 1 − z; d 1 − x, 1 − y, 1 − z.
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3.2. Thermal Analysis and Powder X-Ray Diffraction Analysis

Figure 5 shows that a 6.28% weight loss corresponds to one coordinated and one lattice water
molecule in a temperature range of 185−245 ◦C (calcd: 6.32%), and the framework collapsed at about
350 ◦C. Powder x-ray diffraction (PXRD) data can be used to testify the purity of as-synthesized samples.
Therefore, the PXRD data of CP 1 were directly collected at room temperature. The diffraction peaks of
the as-synthesized 1 were consistent with the simulated PXRD patterns from the single crystal results.
The result confirms that the as-synthesized crystals of 1 were phase purities as shown in Figure 6.
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3.3. Diffuse Reflectance Spectra

The UV–Vis spectra in the solid-state were investigated for the CP 1 together with the organic
compound L (Figure 7). The CP 1 and L molecules showed the same absorption peaks ranging from 275
to 345 nm in the UV region, which belongs to π→ π* and n→ π* transitions of the ligand. Furthermore,
the diffuse reflectance data obtained were transformed into a Kubelka–Munk function to get their
band gaps (Eg), which can be employed to evaluate the semiconductivity of the CPs. The values of Eg
for 1 and L were estimated as 3.55 and 3.35 ev (Figure 8), which can be determined by the theory of
optical absorption for the direct band gap semiconductor: (Ahν)2 = B(hν − Eg) [34], indicating that the
as-synthesized crystalline material is an optical semiconductor [35].
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3.4. Photoluminescent Property

Luminescent coordination polymers containing a d10 metal center and π-conjugated organic
ligands can often exhibit favorable photoluminescent properties because of their tunable factors
between metal and ligands [36,37]. Therefore, we carried out the relevant studies on the Cd(II)
coordination polymer in the solid-state together with the L organic ligand (Figure 9). The L ligand
showed no fluorescence, however, compound 1 appeared as a strong broad emission band at 415 nm
upon excitation at 361 nm on complexation of the ligands with Cd(II) atoms, which may be attributable
to the coordination interactions between the ligand and central metal Cd(II) atom [38].
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The good photoluminescent property of CP 1 provided the impetus to further investigate the
quantum yield (QY) and corresponding decay lifetimes. The QY value of CP 1 was 4.28 % (Figure 10),
similar to some reported CPs [39]. Furthermore, the luminescence decay curve was fitted by exponential
function as I(t) = A exp(−t/τ), and the luminescence lifetime of CP 1 was 48.87 ns. The value of
luminescence lifetime for CP 1 was fairly shorter than a triplet state (>10−3 s), in this context, the
luminescence emission of CP 1 should derive from a singlet state [40].
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4. Conclusions

In summary, a new CP of [Cd(L)(frda)(H2O)]·0.5L·H2O (1) was obtained by the reaction of
CdCl2·2.5H2O salt with mixed multi-N-donor and auxiliary polycarboxylate ligands. The coordination
polymer was a 2D layer structure with a large 1D void filled with uncoordinated L ligands. CP 1
showed absorption peaks at 304 nm in the UV region with the value Eg of 3.55 eV. The crystalline
material exhibited the maximal emission peak at 415 nm, upon excitation at 361 nm. Additionally,
the QY and luminescence lifetime of CP 1 were 4.28 % and 48.87 ns, respectively. The study further
confirmed that the mixed multi-N donor and carboxylate ligands are an effective moiety to generate
desired architectures in self-assembly coordination polymers.
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