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Abstract: In this work, SnO2-NiO composite thin film was successfully grown on a ceramic tube
substrate directly by a simple dip-coating method combined with annealing. Characterization
analysis demonstrates that uniform SnO2 film consists of a great number of nanospheres and NiO
grows on SnO2 as an agglomerated block. In comparison to the pure SnO2 sample, the SnO2-NiO
composite thin films gas sensor exhibits superior methanol sensing properties at 225 ◦C. The gas
response to 10 ppm methanol reached 15.12 and the response and recovery times were 8 s and 7 s,
respectively. The excellent selectivity and recovery rate are explained by the unique properties of the
NiO semiconductor and the higher sensor response is attributed to the pivotal heterojunction effect.
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1. Introduction

SnO2 is a typical wide band-gap (Eg = 3.6 eV) n-type semiconductor and has been widely used in
the gas sensor field owing to the advantage of its low cost, stable electrical properties, excellent physical
and chemical stability and unique optical performance [1–3]. However, pure SnO2 gas sensors have
several limitations such as poor selectivity [4], slow recovery [5] and high working temperature [6].
To date, many researchers have taken measures to improve its gas sensing performance, such as doping
various elements and compositing several sensing materials [7,8]. In addition, an effective strategy
which has been effectively demonstrated to control the carrier concentration and enhance the response
is to construct heterojunctions among different semiconductor oxides [9,10]. Additionally, NiO is a
typical p-type semiconductor with a 3.5 eV band gap and has been widely considered as an excellent
additive to improve response/recovery speeds and stability [11]. Therefore, the combination of nickel
oxide and tin dioxide materials has been investigated in several reports [12,13]. However, coating
ceramic tubes with the powders is a necessary step in the fabrication of gas sensors, which leads to
poor repeatability because the thickness cannot be controlled. Therefore, a direct growth process on
ceramic tubes could solve this problem perfectly.

Methanol is one of the toxic gases among volatile organic compounds, and has been widely used
in the production of formaldehyde, colorings and antifreeze [14]. Furthermore, it can be processed
into fuel cells in automobiles as a clean form of energy [15]. However, small amounts of methanol
may cause blindness and fatal diseases [16]. Therefore, a methanol gas sensor with low detection
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limit, high response and fast response and recovery rate is essential in daily life. At present, numerous
research workers are contributing to research on methanol sensing. G. Korotcenkov et al. fabricated
Au-modified SnO2 films through a successive ionic layer deposition method, which exhibits a high
response to 50 ppm methanol [17]. A CdS-doped tin oxide thick film made up by Lallan et al. [18]
employing a screen-printing technology has a 70 response and 100 s recover time to 5000 ppm methanol.
Song et al. [19] reported a hierarchical tin oxide nanoflower structure by hydrothermal synthesis and
showed a high response (58) as well as low operating temperature (200 ◦C) to 100 ppm methanol.
Although they have achieved a high response to methanol associated with a fast response rate and low
working temperature, their detection limit is more than 50 ppm, which motivates us to prepare a new
gas sensor with an outstanding sensing performance combined with a low detection limit.

Herein, we prepared a complete SnO2-NiO composite thin film on a gas sensing ceramic tube
directly through a dip-coating method, which avoided the cumbersome coating process and brought
a repeatable growth technic. A comparative methanol response examination between SnO2 and
SnO2-NiO composite is subsequently performed. The results of gas sensing measurements show
that SnO2-NiO composite thin film (SnO2–NiO TF) possesses a prominent enhancement in selectivity,
recovery rate (7 s) and gas response (15.12). Compared with previous work on methanol sensors,
the SnO2-NiO composite thin film gas sensor exhibited a lower detection limit combined with high
response, fast response (18 s) and recovery rate and excellent selectivity. The improvement mechanism
regarding the decoration of NiO is also discussed.

2. Materials and Methods

All chemicals (analytical grade reagents) were obtained from Beijing Chemical Works (Beijing,
China) without further purification. The preparation process of SnO2-NiO TF on the ceramic substrate
was as follows: Firstly, in order to obtain Sn(OH)4 sol, 130 uL of citric acid (0.1 M) was added to
a 100 mL solution of SnCl4 (0.13 M) and 0.1 M ammonia solution was added dropwise to raise the
solution pH to 2. The resulting product was centrifuged, and the precipitate was added into 50 mL
deionized water. The ammonia solution was added drop by drop to the mixed solution under magnetic
stirring at 50 ◦C until the pH value was adjusted to 9. Secondly, the preparation of Ni(OH)2 sol: 3.7326
g Ni(CH3COO)2·4H2O and 5 g PEG6000 was dissolved in 100 mL ethanol and the mixed solution was
stirred continuously for 1 hour at 60 ◦C. Then, 10 mL of 25% ammonia was added dropwise and the
resulting product was stirred at 70 ◦C for 1 day. Thirdly, ceramic tube substrates were dipped into
the Sn(OH)4 sol for approximately 60 s and then, they were removed at a rate of 50 um/s. To avoid
cracks in the Sn(OH)4 coating, the specimen was first dried at ambient temperature for 60 minutes
and heated at 100 ◦C in a muffle furnace for about 60 minutes. The dip-coating process was repeated
3 times and the specimen was maintained at 500 ◦C for 2 hours to obtain tin dioxide thin film. After
that, the dip-coating process and parameters of NiO were the same as those of SnO2.

The crystal structure information of the SnO2-NiO TF on a ceramic substrate were characterized
through X-ray diffraction (XRD, Rigaku D/Max 2550, Rigaku, Ltd, Tokyo, Japan) with a Cu Kα radiation
line of 0.1506 nm at 40 kV, 200 mA. The Field Emission Electron Microscopy (FESEM, JEOL JSM-7500 F,
JEOL, Ltd, Tokyo, Japan) was used to determine the microstructure and morphology of the specimen.
In addition, the bonding state of SnO2 and NiO was observed by means of the Transmission Electron
Microscope (TEM, JEOL JEM-3010, JEOL, Ltd, Tokyo, Japan). In this paper, the Pt wires on as-prepared
ceramic tubes and heating wires were welded to the bases and aged at 200 ◦C for 2 days to form gas
sensor devices (Figure 1a). Besides, the static working system was used to measure the response of the
gas sensor and is shown in Figure 1b. In detail, the device was placed in a 2.5 L as-prepared air chamber,
and the resistance data was transferred to a Fluke 8846A digital multimeter connected to the computer.
Furthermore, the heating wire inside the ceramic tube was used in conjunction with GPD3303S and
the target gas was injected into the air chamber through a syringe. During the measurement, the
Fluke 8846 Arecorded one resistor per second and displayed the data on the computer for real-time
monitoring. The gas response was defined as S = Ra/Rg, in which Ra was the electrical resistance in
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the air chamber and Rg was that in the target gas environment. The response and recovery time were
defined as the time taken to reach 90% of the final stable resistance change value.
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Figure 1. Schematic drawing of (a) as-prepared sensor device (b) measuring system of gas sensors.

3. Results and Discussion

The crystallographic information of SnO2-NiO TF on a ceramic tube substrate and pure ceramic
substrate has been obtained out by X-ray diffraction analysis. The results are presented in Figure 2.
Obviously, all the diffraction peaks of the ceramic substrate can be easily associated to the standard
peak values of Al2O3 (JCPDS No.10-173) and SiO2 (JCPDS No.1-438), which indicates that these two
oxides are the main component of the substrate. Furthermore, the diffraction peaks appearing at 26.86◦

and 34.08◦ can be indexed to SnO2 (JCPDS No.2-1337), which confirms that SnO2 has successfully
grown on the ceramic tube substrate. However, the peaks of NiO do not appear in the sample, which
is probably due to the low NiO concentration on the surface. For the purpose of confirming the
crystal structure of NiO in the sample, as a comparison, pure NiO powder was obtained by heating
the Ni(OH)2 sol-gel to a temperature of 500 ◦C, and X-ray diffraction analysis was carried out. The
diffraction peaks of this material are in good agreement with NiO (JCPDS No.4-835) and the diffraction
peak at 43.27◦ is also the observed in the diffraction pattern of Al2O3, which is another reason for that
NiO is not detected.
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The morphology and structure of pure SnO2 and SnO2-NiO TF on the ceramic tube substrate are
shown in Figure 3. Compared with the surface of the pure ceramic tube in Figure 3a, a smooth film
structure has appeared on the surface in Figure 3b. Combined with the result of XRD, the thin film
consisted of SnO2, and the further details could be seen in Figure 3c, in which tiny SnO2 nanoparticles
were found to be tightly stacked together. This aggregation mode may prevent the internal tin dioxide
from contacting methanol and only conduct charge transfer, which is not conducive to increasing the
sensitivity. The image in Figure 3d indicated that the thickness of SnO2 is about 301.5 nm. Moreover,
we could see that NiO grows on SnO2 as an agglomerated block in Figure 3e. The high-magnification
picture (Figure 3f) indicates the contact gap of NiO nanoparticles is larger than that of SnO2, which
can provide a more reactive site to methanol. The low magnification of SnO2-NiO TF on the ceramic
tube observed in Figure 3g exhibits a smooth and uniform surface of SnO2-NiO TF. In order to obtain
the particle morphology of tin oxide and nickel oxide, the sample is characterized by using TEM and
Figure 3h reveals that the particle diameter of SnO2 and NiO is about 8–9 nm. Further details of the
lattice structure can be observed in Figure 3i through the high-resolution TEM image (HRTEM). A lattice
spacing of 0.331 nm and 0.264 nm matches the SnO2 planes of (110) and (101), respectively [20,21], and
the lattice spacing of 0.240 nm is the same as the NiO plane of (111) [22].
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The gas sensors performance under different operation temperatures was also tested. Figure 4a
displays the gas response of pure SnO2 and SnO2-NiO TF sensors in 10 ppm methanol at varying
operating temperatures from 100 to 375 ◦C. The two response curves in this chart reveal that the
maximum response of SnO2 and SnO2-NiO TF is observed under the optimal operating temperature of
225 ◦C, with the response values being 4.5 and 15.12, respectively. The two curves also show that the
decoration of NiO evidently improves the response to methanol. The selectivity of sensors to 10 ppm
of various gases was also investigated. Figure 4b indicates that the pure SnO2 sensor has similar
responses to most of the test gases. On the other hand, compared with other gases, the SnO2-NiO
TF gas sensor reveals an outstanding response to methanol, which indicates that SnO2-NiO TF has
a unique selectivity to methanol and the decoration of NiO must play a vital role in this process.
Figure 4c shows the sensor response to 10 ppm methanol at 225 ◦C with seven reversible cycles. This
chart demonstrates both sensors exhibit an outstanding repeatability. Figure 4d indicates that the
response time of both sensors to 10 ppm methanol are 18 s and the recovery times of pure SnO2 and
SnO2-NiO TF sensors are 7 s and 15 s, respectively. The improvement of the recovery time may be
attributed to the heterojunction formed between NiO and SnO2. The dynamic response curves of
both gas sensors exposed to methanol gas in the concentration range from 0.1 to 100 ppm at 205 ◦C is
shown in Figure 4e. According to the curve, the response increases rapidly and with good linearity
to methanol in the range of 1–100 ppm. The minimum concentration that the sensors are capable of
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detecting is around 1 ppm. Figure 4f also indicates the responses of pure and SnO2-NiO TF sensors
to a wide range of 1–1000 ppm vs. a narrow range of 1–100 ppm of methanol. Above 100 ppm, the
response of the sensors increases more slowly, which reveals a saturated trend to methanol. The superb
linear relationship under 100 ppm indicates that this sensor is better at detecting low concentrations of
methanol. Besides, the long-term stability in Figure 4g indicated an excellent performance of both
sensors. In order to offer a contrast with other published results, a comparison of methanol gas-sensing
characteristics using other compounds in previous reports is listed in Table 1. Evidently, the SnO2/NiO
thin film in this work exhibits a remarkable response to 10 ppm methanol, combined with a lower
operating temperature and faster recovery time than the others.
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Figure 4. (a) Responses of pure and SnO2-NiO TF sensors at various working temperatures to 10 ppm
methanol, (b) selectivity to 10 ppm various gases, (c) seven reversible cycles to 10 ppm methanol at
225 ◦C, (d) dynamic response and recover property to 10 ppm methanol, (e) the dynamic response
change toward 1–100 ppm methanol, (f) the response of sensors to 1–1000 ppm methanol and fitting line
of the response in range of 1–100 ppm methanol, (g) long-term stability of sensors to 10 ppm methanol.
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Table 1. Comparison of methanol gas-sensing characteristics using other compounds in previous reports.

Sensing
Material

Concentration
(ppm)

Temperature
(◦C) Response Response/Recovery

Time Reference

Au decorated
ZnO 10 300 2.7 ~20 s/~15 s [23]

ZnO-SnO2
nanostructure
microspheres

10 300 ~2 ~18 s/~35 s [24]

SnO2-ZnO
composites
nanofibers

10 350 8.5 20 s/40 s [25]

α-Fe2O3 hollow
spheres 10 280 25.1 8 s/9 s [26]

SnO2/ZnO
nanofibers 10 350 ~8.9 ~12 s/~31 s [27]

GaN
nanostructures 10 350 ~1.3 ~15 s/~30 s [28]

CuO
nanoparticles 10 220 5.9 13 s/13 s [29]

Zn doping
SnO2 nanorods

clusters
10 270 11.5 ~10 s/~10 s [30]

three-dimensionally
LaFeO3

10 190 ~2 ~12 s/~15 s [31]

honeycomb-like
SnO2

10 320 ~4 ~20 s/~20 s [32]

SnO2/NiO thin
film 10 225 15.12 18 s/7 s This work

Similarly to other semiconductors, the gas-sensing mechanism of the SnO2-NiO composite thin
film to methanol shown in Figure 5a relies on the adsorption and desorption of oxygen, which leads to a
change in the resistance [33–35]. Furthermore, the good selectivity and fast recovery rate are attributed
to the unique properties of p-type semiconductors such as NiO [36]. Specifically, the methanol
decomposition temperature on the surface of the NiO material is 240 ◦C [37], which is slightly higher
than our operating temperature, while leading to the accumulation of methanol and good selectivity.
The improvement of gas sensitivity achieved by SnO2-NiO TF to methanol is probably attributed to a
heterojunction effect and is exhibited in Figure 5b. In detail, the p–n heterojunction is formed between
NiO and SnO2. In general, the Fermi energy of SnO2 is different from that of NiO, which leads to a
temporary relative movement of charge carriers at the interface of both semiconductors until a new
balance is achieved. During this process, the space charge layer is generated and the phenomenon of
energy band bending in the depletion layer increases the barrier height and exhibits a higher resistance.
When exposed to methanol, the adsorbed oxygen will remove electrons from methanol molecules
rapidly and previous electrons will be absorbed back into SnO2 and NiO, which results in an increase
of the area of electric transport channels. As a result, the resistance of the SnO2-NiO TF gas sensor in
methanol decreased and the gas response increased. Furthermore, a great number of cracks on the
surface of nickel oxide also provide more reaction sites for methanol.
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4. Conclusions

In summary, a highly sensitive gas sensor is realized by decorating an agglomerated block of NiO
on an SnO2 thin film, which delivers outstanding performances for the detection of methanol. Herein,
XRD, SEM and TEM patterns indicated that NiO nanoparticles have been successfully attached onto
the SnO2 films. As for the gas-sensitive performance to methanol, the SnO2 gas sensor exhibits a better
selectivity, recovery time and gas response than pure SnO2. The sensing improvement realized by the
NiO composite, in addition to special properties of the NiO semiconductor, can be attributed to the
heterojunction effect between NiO and SnO2, resulting in an increase of the gas response.
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