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Abstract: The crystal structures of three new hybrid organic-inorganic lead halide compounds
[IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3 ([IqH+] = isoquinolinium, [4MiH+] = 4-methylimidazolium,
[BzH+] = benzotriazolium) have been determined by single crystal x-ray diffraction. All three
compounds have the same generic formula as perovskite, ABX3, but adopt a rare non-perovskite
structure built from one dimensional (1D) edge-sharing octahedral chains. The bandgap of each
compound was investigated by solid UV-Vis spectra. In comparison with previously reported hybrid
compounds containing the same type of octahedral chains, [C10H7CH2NH3]Pbl3 and (C7H7N2)PbI3,
all three new compounds have lower bandgaps (<2.4 ev), indicating that they may be promising for
photovoltaic application.
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1. Introduction

The study of perovskite-related materials has grown tremendously in recent years [1] due to
their enormous chemical and structural diversity and excellent physical properties, for example,
ferroelectricity, luminescence, or magnetism [2–4]. In particular, lead(II) halide perovskites show
impressive performances in their electronic and photophysical properties [5], making them promising
candidates for practical applications such as solar cells [6,7] and light-emitting devices (LEDs) [8,9].
α-CsPbI3, for instance, exhibits a suitable bandgap (Eg = ~1.7 eV), and is an excellent candidate
for photovoltaic applications [10–12]. The general formula for perovskites is ABX3, where A
is a large cation, B is a smaller cation, and X is an anion. However, there are many families
of “perovskite-related” materials, which contain, for example, layered structural units derived
from the archetypal “cubic” perovskite structure [5]. Conversely, not all ABX3 compositions
form perovskites, and several other structural architectures based on linked octahedral BX6 units
are available for such a stoichiometry, incorporating either face-sharing or edge-sharing rather
than perovskite-like corner-sharing octahedra [13]. The simple composition CsPbI3 adopts four
different polymorphic forms: α-CsPbI3 (cubic), β-CsPbI3 (tetragonal), γ-CsPbI3 (orthorhombic), and
δ-CsPbI3 (orthorhombic) [10,11,14]. The first three structures are ABX3 “cubic” type perovskites
(α is aristotype cubic, β, and γ can be treated as lower symmetry, distorted structures due to
“tilting” of the constituent octahedral PbI6 units). Interestingly, the most stable ambient phase,
δ-CsPbI3, is a non-perovskite, which adopts a one dimensional (1D) edge-sharing octahedral chain
structure type [15], similar to the known compounds NH4CdCl3 [16] and RbPbI3 [17,18] (Figure 1).
Both the perovskite-structure polymorphs and non-perovskite phase play a significant role in better
understanding the structure-property relationships amongst these different polymorphs. In contrast
to the large variety of lead halide materials reported based on the cubic perovskite structure and
its layered derivatives, here, we focused on developing the much less common 1D edge-sharing
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octahedral chain structure type, particularly in hybrid organic–inorganic lead halide materials. The only
previous examples, to the best of our knowledge, are [C10H7CH2NH3]PbI3 [19], (C7H7N2)PbI3 [20],
“(ABT)2[PbBr3]” [21], and (ABT)[PbCl3] [22].
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Figure 1. (a) Crystal structure of δ-CsPbI3 viewed along the b axis. (b) 1D infinite double chain [PbI3]∞
formed by edge-linked PbI6 octahedra. Note that there are three types of iodine coordination: terminal
(µ1), doubly bridging (µ2), and triply bridging (µ3).

Here, we represent three further examples of this rare structure type amongst
hybrid organic–inorganic lead halide materials: [IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3,
([IqH+] = isoquinolinium, [4MiH+] = 4-methylimidazolium, and [BzH+] = benzotriazolium).
Single crystal x-ray diffraction experiments were performed to understand the structural variations
of these three materials including structural distortions of the inorganic components and the nature
of hydrogen bonding in directing the overall crystal packing. Furthermore, UV-Vis absorbance
spectroscopy was carried out on powder samples of all three samples, and bandgaps were derived
from Tauc-Plots [23].

2. Experimental Section

2.1. Chemicals

Lead (II) iodide (PbI2, ≥98%), hydroiodic acid (HI, 57%, w/w aqueous solution, stabilized with
1.5% hypophosphorous acid), isoquinoline (C9H7N, 97%), and 4-methylimidazole (C4H6N2, 98%) were
purchased from Alfa Aesar, Lancashire, UK. Benzotriazole (C6H5N3, 99%) was purchased from Sigma
Aldrich, Dorset, UK. All chemicals were directly used without further purification.

2.2. Synthesis

For [IqH]PbI3, (C9H8NPbI3), isoquinoline (0.18 mL, 1.5 mmol), and PbI2 (0.922 g, 1 mmol) were
dissolved in conc. HI (12 mL) with moderate heating. By cooling for a few hours, yellow, needle-shaped
crystals were obtained. These were filtered and washed with diethyl ether (yield 72.0% based on PbI2).
The powder x-ray diffraction and Rietveld refinement are given in Figure S1. Elemental analysis: (anal.
calc. (%) for [IqH]PbI3: C, 15.05; H, 1.12; N, 1.95. Found: C, 15.20; H, 1.08; N, 2.04).

For [4MiH]PbI3 (C4H7N2PbI3), 4-methylimidazole (0.329 g, 4 mmol) and PbI2 (0.922 g,
2 mmol) were dissolved in conc. HI (8 mL) with moderate heating. By cooling for a few hours,
yellow, needle-shaped crystals were obtained. These were filtered and washed with diethyl ether
(yield 22.5% based on PbI2). The powder x-ray diffraction and Rietveld refinement are given in
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Figure S2. Elemental analysis: (anal. calc. (%) for [4MiH]PbI3: C, 7.16; H, 1.05; N, 4.17. Found: C, 7.17;
H, 0.98; N, 4.12).

For [BzH]PbI3 (C6H6N3PbI3), benzotriazole (0.476 g, 4 mmol) and PbI2 (0.922 g, 2 mmol) were
dissolved in conc. HI (12 mL) with moderate heating. By cooling for a few hours, yellow, needle-shaped
crystals were obtained. These were filtered and washed with diethyl ether (yield 47.2% based on PbI2).
The powder x-ray diffraction and Rietveld refinement are given in Figure S3. Elemental analysis: (anal.
calc. (%) for [BzH]PbI3: C, 10.18; H, 0.85; N, 5.93. Found: C, 10.22; H, 0.80; N, 5.97).

2.3. Characterization

Single crystal X-ray diffraction data were collected at 173 K and 298 K on a Rigaku XtaLAB
P200 diffractometer and a Rigaku SCX Mini diffractometer using Mo-Kα radiation (Rigaku, Houston,
TX, USA). Data were collected using CrystalClear (Rigaku) software [24]. Structures were solved by
direct methods using SHELXT [25], and full-matrix least-squares refinements on F2 were carried out
using SHELXL-2018/3 [26] incorporated in the WINGX program [27]. Absorption corrections were
performed empirically from equivalent reflections on the basis of multi-scans by using CrystalClear [24].
Non-H atoms were refined anisotropically and hydrogen atoms were treated as riding atoms.
CrystalMaker [28] was used in preparing Figures 1–5. A Flack parameter of 0.357(5) for [IqH]PbI3

suggests an inversion twin component, but refinement of this did not significantly improve the fit.
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Figure 2. The nature of the distortion within the PbI6 octahedra in (a) [IqH]PbI3, (b) [4MiH]PbI3, and (c)
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Powder X-ray diffraction data were collected on a PANalytical EMPYREAN diffractometer using
Cu Kα1 (λ = 1.5406 Å) radiation in the range of 3 to 70◦ to confirm the purity of each sample (Malvern
Panalytical, Ltd, Malvern, UK). Rietveld refinements were carried out using the GSAS package [29]
with the EXPGUI interface [30].

Solid UV-Vis absorbance spectra were collected on a JASCO-V550 ultraviolet–visible
spectrophotometer with the wavelength range at 200 nm to 900 nm (JASCO Corporation, Essex, UK).

3. Results and Discussion

Crystallographic details for the three new compounds are given in Table 1. Although single
crystal X-ray data were collected at both 173 K and 298 K, there were only slight changes in molecular



Crystals 2019, 9, 616 5 of 9

geometry between the two temperatures, with no phase changes detected in this temperature
regime. The following discussion therefore refers to the structures at 173 K only, (details at 298
K are given in the Supplementary Materials). Each crystal structure exhibits the type of [PbI3]∞
chain found in δ-CsPbI3 (Figure 1). This chain may be regarded as derived from the hexagonal,
layered PbI2 structure by “stripping out” a double strand of condensed PbI6 octahedra from the PbI2

layer. This leads to one short unit cell axis of around 4.6 Å for each of the crystal structures, which
represents the Pb–Pb distance between two adjacent edge-shared octahedra. Within each [PbI3]∞
chain, there are three distinct types of iodide environment, designated as µ1 (terminal), µ2 (bridging
two Pb centers), or µ3 (bridging three Pb centers); these were designated as I1, I2, and I3, respectively,
in each of the three new structures. This intrinsic asymmetry of the environment of both the I− and
Pb2+ environments leads to considerable distortions of the PbI6 octahedra, as detailed in Figure 2.
For [IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3, respectively, the Pb–I bond lengths were in the ranges
of 3.0063(6)–3.5061(6), 3.0329(5)–3.4849(5), and 3.1197(7)–3.3709(7) Å, the I–Pb–I bond angles in the
ranges of 85.582(14)–95.198(16), 82.133(13)–95.401(14), and 84.807(17)–99.555(18)◦, and the Pb–I–Pb
bond angles in the ranges of 91.303(15)–92.714(15), 87.357(14)–92.440(13), and 87.953(17)–94.323(16)◦ at
173 K. The distortions were further quantified using conventional polyhedral distortion indices and
compared to those of the previously known examples of hybrid compounds displaying the same type
of [PbI3]∞ chain in Table 2. It is apparent that there is a considerable range of ∆d and σ2 distortions
amongst this family. For comparison, the two known inorganic analogues, δ-CsPbI3 and RbPbI3,
have ∆d values of 10.61 and 8.81 and σ2 values of 19.0 and 20.6, respectively (Table S6). It is generally
the case in these structures that a larger ∆d corresponds to a smaller σ2, but the detailed systematics
and origins of the distortion behavior are not clear. There is, however, a clear trend in the amount
of “underbonding” seen for the iodine sites in the [PbI3]∞ chain, which follows the order I1 > I2 > I3
(see bond valence sums, Table 2). This lack of sufficient bonding for I1 in particular, despite the Pb-I1
bond being the shortest in each case, is compensated by I1 being a strong H-bond acceptor, a feature
which presumably dictates the orientation of the organic cation relative to the inorganic chain in each
case. This is especially seen in the case of [BzH]PbI3, where I1 accepts two strong H-bonds (Table 3).
Similar arguments and correlations can be seen in the behavior of the I2 and I3 sites by comparing
the number and strength of H-bonds (Table 3) versus the corresponding iodine bond valence sums
(Table 2).

Table 1. Crystal and structure refinement data for [IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3 at 173 K.

Compound [IqH]PbI3 [4MiH]PbI3 [BzH]PbI3

Formula C9NH8PbI3 C4N2H7PbI3 C6N3H6PbI3
Formula Weight 718.05 671.01 708.03
Crystal System Orthorhombic Monoclinic Orthorhombic
Space Group P212121 P21/c P212121

a/Å 4.6946(2) 4.6110(2) 4.6102(2)
b/Å 12.8898(9) 22.2560(16) 12.4712(9)
c/Å 23.2093(16) 11.7926(8) 22.2047(16)
β/o - 98.801(9) -

V/Å3 1404.45(15) 1195.94(13) 1276.65(14)
Z 4 4 4

MEASURED Ref 11890 12122 13081

Independent Ref 2473 2717 2893
[R(int) = 0.0399] [R(int) = 0.0631] [R(int) = 0.0556]

GOOF 1.067 0.952 0.749
Final R Indices (I >

2σ(I))
R1 = 0.0187 R1 = 0.0272 R1 = 0.0207

wR2 = 0.0399 wR2 = 0.0544 wR2 = 0.0373
Flack Parameter 0.357(5) 0.006(5)
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Table 2. Calculated bond length distortions $ and bond angle variance $ and bond valence sums £ for
[IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3 at 173 K, and previously reported [C10H7CH2NH3]Pbl3 (298 K)
and (C7H7N2)PbI3 (173 K).

Compound [IqH]PbI3 [4MiH]PbI3 [BzH]PbI3
[C10H7CH2NH3]Pbl3

[19]
(C7H7N2)PbI3

[20]

∆d (× 10−4) 21.30 17.32 9.34 18.68 8.34
σ2 10.70 13.88 16.66 9.92 12.38

Σν (Pb) 1.82 1.86 1.79 1.80 1.78
Σν (I1) 0.54 0.50 0.40 0.54 0.42
Σν (I2) 0.56 0.66 0.70 0.48 0.64
Σν (I3) 0.71 0.70 0.68 0.78 0.72

∆d =
(

1
6

)∑ [
dn−d

d

]2 Equation (1)

σ2 =
12∑

i=1

(θi−90)2

11 Equation (2)

νi j = exp
(

R0−d
b

)
Equation (3)

$ The bond length distortion of the octahedra in each composition at both 173 and 298 K was calculated using
Equation (1) [31], where d is the average Pb–I bond distance and dn are the six individual bond distances. The bond
angle variance of each octahedron from the ideal 90◦ of an undistorted structure was calculated using Equation (2)
[32], where θi is the individual I–Pb–I angle. £ The bond valence was calculated using Equation (3) [33], where d
is the individual bond length, R0 is a constant for a particular bond type, here R0 = 2.78 Å for the Pb–I bond,
and b = 0.37 Å, a universal constant. The bond valence sum, Σνi , is the summation of the individual bond valences.

Table 3. Hydrogen bonds for [IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3 at 173 K (Å and ◦).

Compound D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

[IqH]PbI3
N(1)-H(1)...I(1) 0.86 3.24 3.852(7) 130.0
N(1)-H(1)...I(2) 0.86 2.94 3.626(7) 138.3

[4MiH]PbI3

N(1)-H(1)...I(2) 0.86 3.04 3.612(7) 126.3
N(1)-H(1)...I(1)#4 0.86 3.07 3.812(6) 145.2
N(2)-H(2)...I(1)#5 0.86 2.96 3.700(7) 145.2

[BzH]PbI3
N(1)-H(1)...I(1)#5 0.86 2.90 3.598(7) 139.1
N(3)-H(2)...I(1) 0.86 2.79 3.490(7) 139.2

Symmetry transformations used to generate equivalent atoms: #4 x, −y + 1/2, z − 1/2; #5 x + 1, y, z − 1 ([4MiH]PbI3).
#5 −x + 1, y + 1/2, −z + 3/2 ([BzH]PbI3).

#1 x − 1, y, z; #2 x − 1/2, −y + 1/2, −z + 1 ([IqH]PbI3)
#1 x − 1, y, z; #2 x + 1, y, z ([4MiH]PbI3)

#1 x − 1, y, z; #2 x − 1/2, −y + 3/2, −z + 1 ([BzH]PbI3).

Hence, the overall crystal packing is dictated by the nature of the inter-chain interactions,
mediated by hydrogen bonds from the molecular cations. Details of H-bonding are shown
in Table 3. However, despite the quite distinct nature of the molecular cations, in terms of size,
shape, and H-bonding options, each of the structures adopts a similar relative packing of the inorganic
chains, which results in quite similar unit cell metrics (Table 1) and is shown in more detail in Figures 3–5.
Moreover, the space group symmetries for [IqH]PbI3 and [BzH]PbI3 are the same, and, in this sense,
these two may be regarded as isostructural, although in the former case each organic moiety has only
one H-bond donor atom and hydrogen-bonds to only one adjacent inorganic chain, whereas in the
latter, the corresponding moiety bridges two adjacent chains via two distinct H-bond donor atoms.
The symmetry of [4MiH]PbI3 differs, exhibiting more subtle distortions due to the enhanced effects of
the inter-chain interactions, whereby each organic moiety bridges three adjacent inorganic chains via the
two H-bond donors. This leads to a slightly different displacement of adjacent [PbI3]∞ chains, such that
the shortest inter-chain I–I distance in [4MiH]PbI3 is 4.23 Å, compared to 4.31 Å in δ-CsPbI3[11] 4.72 Å
in [IqH]PbI3 and 4.39 Å in [BzH]PbI3.
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It is of interest to compare the crystal packing within these three new examples to those of the
two previously known examples. (C7H7N2)PbI3 [20] is essentially isostructural with [IqH]PbI3 and
[BzH]PbI3, with the same space group and similar unit cell metrics. Indeed, the H-bonding scheme
also very closely mimics that in [BzH]PbI3. The organic moiety in (C7H7N2)PbI3 is benzimidazolium,
which differs from benzotriazolium only in the substitution of the ‘central’ N atom by C–H. This minor
change to a ‘hydrogen-bond-inactive’ part of the molecule clearly does not influence the crystal packing.
In contrast, [C10H7CH2NH3]Pbl3 [19] contains 1-naphthylmethylamine, which has more limited
H-bonding opportunities, leading to a quite different style of crystal packing to those observed here.

UV–Vis absorbance spectra were carried out for all three powder samples: [IqH]PbI3, [4MiH]PbI3,
and [BzH]PbI3 at wavelengths between 200 nm to 900 nm (Figure 6). The absorption spectra
revealed that all three compounds featured similar peaks at ~385 nm (3.2 eV) and ~415 nm (3.0 eV).
Interestingly, [BzH]PbI3 has an extra absorption peak at ~493 nm (2.5 eV), leading to a band gap
significantly lower than the other two, as derived from the Tauc-Plot (inset Figure 6). The derived band
gaps were 2.36 eV, 2.28 eV, and 2.16 eV for [IqH]PbI3, [4MiH]PbI3, and [BzH]PbI3, respectively. It can
be noted that the band gaps of all three new compounds we report here are lower than the two
known examples of the same structure type: [C10H7CH2NH3]Pbl3 (absorption peak is at ~401 nm) [19],
and (C7H7N2)PbI3 (band gap is Eg = 2.44 eV) [20].
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4. Conclusions

In conclusion, we have prepared three new examples of an unusual [PbI3]∞ chain consisting of
edge-shared PbI6 octahedra. This type of chain has been previously seen only rarely in both inorganic
and hybrid lead halides. Structural distortions within the [PbI3]∞ chains, and the crystal packing of the
chains themselves, can be rationalized to some extent, based on the hydrogen-bonding requirements
of the organic moieties. However, the contrasting nature of the three amines used here suggests that
structural and compositional features of molecular ‘templates’ that might direct the crystallization
of this type of [PbI3]∞ chain, and thus favor the crystallization of these structure types rather than
competing APbI3 (or other) polymorphs, may be difficult to predict. Further work is merited in
exploring related examples of organic amines.
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