Supplementary Information for the publication in *Crystals* **2019**:

Size matters: New Zintl phase hydrides of *RE*Ga (*RE* = Y, La, Tm) and *RE*Si (*RE* = Y, Er, Tm) with large and small cations

Anton Werwein ¹, Thomas Hansen², and Holger Kohlmann ^{1,*}

¹Leipzig University, Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany

² Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France

* Correspondence: <u>holger.kohlmann@uni-leipzig.de</u>; Tel: +49 341 9736201

Content:

Figure S1. Rietveld refinement of the crystal structure of YSiH _x	S2
Figure S2. Rietveld refinement of the crystal structure of ErSiH _x	S3
Figure S3. Rietveld refinement of the crystal structure of TmSiH _x	S4
Figure S4. Thermal analyses (DSC) of TmGa at 1 MPa hydrogen pressure	S5
Figure S5. Rietveld refinement of the crystal structure of α -YGaH _x	S6
Figure S6. Crystal structures of LaGa, LaGaH and LaGaH _{1,66} derived by DFT	S8
Figure S7. Crystal structures of YGa and two YGaH modifications dervied by DFT	S9
Table S1. Crystal structure of YSiHx	S2
Table S2. Crystal structure of ErSiHx	S3
Table S3. Crystal structure of TmSiHx	S4
Table S4: Crystal structure of YGaHx	S6
Table S5. k-point lattice for DFT calculations	S7
Table S6. Structural parameters of LaGa derived by DFT	S8
Table S7. Structural parameters of LaGaH derived by DFT	S8
Table S8. Structural parameters of LaGaH _{1.66} derived by DFT	S8
Table S9. Structural parameters of YGa derived by DFT	S9
Table S10. Structural parameters of YGaH (filled CrB type structure) derived by DFT	S9
Table S11. Structural parameters of YGaH (distorted CrB type structure) derived by DFT	S9

Figure S1. Rietveld refinement of the crystal structure of $YSiH_x$; contribution from the Apiezon grease marked with an asterisk (*); Bragg markers from top to bottom: $YSiH_x$ (84.3(2)%), YSi_2 (13.4(2)%), Y_2O_3 (2.3(1)%); $R_p = 1.80\%$, $R_{wp} = 2.89\%$, GooF = 1.16.

Table S1. Crystal structure of YSiH_x, *Cmcm*, a = 4.00947(7) Å, b = 11.6122(2) Å, c = 3.84639(4) Å. Negative *B*-values are caused by X-ray absorption.

atom	site	x	У	Z	B _{iso} /Å ²
Y	4 <i>c</i>	0	0.14470(8)	1⁄4	-0.26(2)
Si	4 <i>c</i>	0	0.4407(2)	1⁄4	0.92(6)

Figure S2. Rietveld refinement of the crystal structure of $ErSiH_x$; contribution from the Apiezon grease marked with an asterisk (*); Bragg markers from top to bottom: $ErSiH_x$ (94.41(8)%), $ErSi_2$ (4.38(6)%), Er_2O_3 (1.21(6)%); Rp = 1.45%, Rwp = 1.96%, GooF = 0.79.

Table S2. Crystal structure of ErSiH_x, *Cmcm*, a = 3.96646(5) Å, b = 11.3569(2) Å, c = 3.82155(4) Å. Negative *B*-values are caused by X-ray absorption.

atom	site	x	У	Z	$B_{\rm iso}/{\rm \AA}^2$
Er	4 <i>c</i>	0	0.14665(6)	1⁄4	-0.64(2)
Si	4 <i>c</i>	0	0.4454(2)	1⁄4	0.65(7)

Figure S3. Rietveld refinement of the crystal structure of $TmSiH_x$; contribution from the Apiezon grease marked with an asterisk (*); Bragg markers from top to bottom: $TmSiH_x$ (85.3(1)%), $TmSi_2$ (14.7(1)%); Rp = 1.78%, Rwp = 2.78%, GooF = 1.11.

Table S3. Crystal structure of TmSiH_x, *Cmcm*, *a* = 3.95185(5) Å, *b* = 11.27207(18) Å, *c* = 3.80638(4) Å.

atom	site	x	У	Z	$B_{\rm iso}/{\rm \AA}^2$
Tm	4 <i>c</i>	0	0.14629(6)	1⁄4	0.02(3)
Si	4 <i>c</i>	0	0.4438(3)	1⁄4	1.08(8)

Figure S4. Differential scanning calorimetry (DSC) of TmGa at 1 MPa hydrogen pressure; black: first run, red: second run.

Figure S5. Rietveld refinement of the crystal structure of α -YGaH_x after storage in the glove box using a triple *a* CrB superstructure, Bragg markers from top to bottom: YGaH_x (98.6(20)%), Y₂O₃ (1.3(7)%), diamond (optical dilution); *R*p = 11.13%, *R*wp = 13.90%, GooF = 1.53.

Table S4: Crystal structure of YGaH_x, *Cmcm*, a = 11.2506(4) Å, b = 12.6089(5) Å, c = 4.07088(14) Å. Negative *B*-values are caused by X-ray absorption.

atom	site	X	У	Z	B _{iso} /Å ²
Y1	4 <i>c</i>	0	0.3132(3)	1⁄4	-0.03(6)
Y2	8g	0.1774(3)	0.8596(2)	1⁄4	B _{iso} (Y1)
Ga1	4 <i>c</i>	0	0.0553(4)	1⁄4	0.39(9)
Ga2	8g	0.1338(3)	0.5542(3)	1⁄4	B _{iso} (Ga2)

 Table S5. k-point lattice for DFT calculations.

compound	k-point lattice
For structure optimization	220
LaGa, LaGaH, YGa YGa, YGaH (filled CrB	-4 4 0
structure type)	004
For DOS calculation	440
LaGa, LaGaH, YGa YGa, YGaH (filled CrB	-880
structure type)	008
For structure optimization	440
LaGaH _{1.66} ,YGaH (distorted CrB structure type)	-4 4 0
	008
For DOS calculation	880
LaGaH _{1.66} ,YGaH (distorted CrB structure type)	-880
	0016

Figure S6. Crystal structures of LaGa, LaGaH and LaGaH_{1,66} after structure optimization by quantummechanical (DFT) calculations.

Table S6. Structural parameters of LaGa derived by DFT, space group *Cmcm*, a = 4.56633 Å, b = 11.60617 Å, c = 4.23479 Å.

atom	site	x	У	Z
La	4 <i>c</i>	0	0.141242	1⁄4
Ga	4 <i>c</i>	0	0.432520	1⁄4

Table S7. Structural parameters of LaGaH derived by DFT, space group *Cmcm*, a = 4.34922 Å, b = 12.46098 Å, c = 4.27031 Å.

atom	site	x	У	Z
La	4 <i>c</i>	0	0.155103	1⁄4
Ga	4 <i>c</i>	0	0.445060	1⁄4
Н	4 <i>c</i>	0	0.751506	1⁄4

Table S8. Structural parameters of LaGaH_{1.66} derived by DFT, space group *Cmcm*, a = 12.81949 Å, b = 12.60269 Å, c = 4.27632 Å.

atom	site	X	У	Z
La	4 <i>c</i>	0	0.162490	1⁄4
La	8g	0.169767	0.645782	1⁄4
Ga	4 <i>c</i>	0	0.442616	1⁄4
Ga	8g	0.154619	0.941939	1⁄4
Н	4 <i>c</i>	0	0.743123	1⁄4
Н	8 <i>g</i>	0.198669	0.448495	1⁄4

Figure S7. Crystal structures of YGa, YGaH (simple filled CrB type structure) and YGaH (filled triple *a* CrB superstructure) after structure optimization by quantum-mechanical (DFT) calculations.

Table S9. Structural parameters of YGa derived by DFT, space group *Cmcm*, a = 4.33904 Å, b = 10.97076 Å, c = 4.06376 Å.

atom	site	x	У	Z
Y	4 <i>c</i>	0	0.139222	1⁄4
Ga	4 <i>c</i>	0	0.423142	1⁄4

Table S10. Structural parameters of YGaH (filled CrB type structure) derived by DFT, space group *Cmcm*, a = 4.06442 Å, b = 11.51407 Å, c = 4.07609 Å.

atom	site	x	У	Z
Y	4 <i>c</i>	0	0.156134	1⁄4
Ga	4 <i>c</i>	0	0.439259	1⁄4
н	4 <i>c</i>	0	0.753568	1⁄4

Table S11. Structural parameters of YGaH (distorted CrB type structure) derived by DFT, space group *Cmcm*, a = 11.14606 Å, b = 12.70683 Å, c = 4.09353 Å.

atom	site	X	У	Z
Y	4 <i>c</i>	0	0.308628	1⁄4
Y	8g	0.179039	0.859671	1⁄4
Ga	4 <i>c</i>	0	0.055996	1⁄4
Ga	8g	0.129239	0.557599	1⁄4
н	4 <i>c</i>	0	0.753568	1⁄4
н	8g	0.177123	0.235322	1⁄4