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Abstract: We previously reported on a method for X-ray single-crystal structure determination from
a powder sample via a magnetically oriented microcrystal suspension (MOMS). The method was
successfully applied to orthorhombic microcrystals (L-alanine, P212121). In this study, we apply
this method to monoclinic microcrystals. Unlike most of the orthorhombic MOMSs, monoclinic
MOMSs exhibit two or four orientations with the same magnetic energy (we refer to this as twin
orientations), making data processing difficult. In this paper, we perform a MOMS experiment for
a powder sample of monoclinic microcrystal (α-glycine, P21/n) to show that our method can also
be applied to monoclinic crystals. The single-crystal structure determined in this work is in good
agreement with the reported one performed on a real single crystal. Furthermore, the relationship
between the crystallographic and magnetic susceptibility axes is determined.

Keywords: magnetic orientation; three-dimensional orientation; α-glycine; single-crystal X-ray
diffraction measurement; single-crystal structure analysis

1. Introduction

Single-crystal structure determination is a key issue in materials and pharmaceutical sciences,
because the physical, chemical, and biological functions are closely related to the molecular and
crystal structures. The X-ray diffraction method is most suited to crystal structure determination if a
single crystal that is large enough for the measurement is available. However, in many circumstances,
samples are obtained only in the form of microcrystalline powders, which hinders the use of the
single-crystal method [1]. In such circumstances, the powder method is applied, which does not need
a large single crystal [2]. However, this method is not suitable in general for analyzing complicated
organic compounds and large molecules, such as proteins, although there are reports on the crystal
structure determination of proteins using the powder method [3,4].

We proposed a method that combines the magnetic orientation of microcrystals and X-ray
single-crystal analysis. In this method, a microcrystal suspension is biaxially aligned using a magnetic
field to obtain a “magnetically oriented microcrystal suspension” (MOMS) [5,6]. Then, the MOMS
is subjected to in situ single-crystal X-ray analysis [7–9], or its suspending medium is consolidated
to obtain a “magnetically oriented microcrystal array” (MOMA) to perform the single-crystal X-ray
analysis ex situ [10,11]. The biaxial alignment was first reported by Stainer to align superconducting
materials [12,13].
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If the intensity of the magnetic field used is the same, the resolution achieved by MOMA is
lower than that of MOMS, because in MOMA, the achieved orientation of the suspension partially
deteriorates during the consolidation process of the suspending medium. On the other hand, magnets
available for MOMS are limited to permanent magnets because of the limitation of the space required
for the in situ X-ray measurement. Permanent magnets can only supply magnetic fields up to 1 T.
On the other hand, much higher magnetic fields, such as those supplied by superconducting magnets
(~ 10 T) can be used to prepare MOMAs, resulting in higher orientations. Usually, MOMAs prepared
with higher magnetic fields can exhibit equal or higher orientation than MOMSs.

So far, we have performed single-crystal structure determination of inorganic [14], organic [10], and
protein microcrystals [11] by using MOMA. Those crystals belong to the orthorhombic [11,14] and
monoclinic [10] systems. We also performed single-crystal structure determination of orthorhombic
crystals using MOMS [7–9]. Magnetically aligned monoclinic microcrystals exhibit twin orientations [10],
which makes the analysis of MOMA complicated (sucrose [10], cellobiose [15], and zinc citrate
dihydrate [16]). A further complication arises because the MOMS method is performed in situ.
In this study, in situ X-ray measurement was performed on the MOMS of monoclinic microcrystals
of α-glycine, and the crystal structure was determined. In addition, the relationship between the
crystallographic and magnetic axes was determined.

2. Experimental Methods

The as-received glycine (Wako Pure Chemical Industries, Ltd., Tokyo, Japan) was in the
γ-form (hexagonal). Recrystallization was performed to obtain monoclinic α-glycine as follows [17]:
The as-received sample was dissolved in ca. 100 µmol/L MgCl2·6H2O solution until saturation and kept
in a refrigerator until crystallization of the α-form. The α-glycine crystals obtained were pulverized
with a mortar and pestle and passed through 125-, 75-, 45-, and 20-mesh sieves, consecutively. Then,
the powder remaining on the 20-mesh sieve was dispersed in a UV light-curable monomer (XVL-14,
viscosity 12 ± 2 Pa s, Kyoritsu Chemical & Co., Ltd., Tokyo, Japan) to obtain a 20 wt % α-glycine
microcrystalline suspension. The UV light-curable monomer was used only for the purpose of
obtaining a stable and well-dispersed microcrystal suspension. In order to remove the large and
aggregated microcrystals, the suspension was allowed to stand overnight at 40 ◦C. The middle layer of
the suspension was taken with a pipette and poured into a glass capillary with a diameter of 1.5 mm.

The capillary was rotated in a frequency-modulated rotation manner in a magnetic field produced
by a pair of neodymium magnets (~1 T in the center). The rotation speeds were switched every 90◦

between ωs = 1 and ωf = 3 rpm. The rotation/magnetic unit was mounted on a Rigaku R-Axis Rapid II
diffractometer equipped with a rotating beam shutter that rotated synchronously with the rotation of
the capillary. The slit angle of the shutter was 10◦. The frequency-modulated rotation was maintained
during the X-ray measurement. The details of the measurement have been reported elsewhere [7].

The capillary was first set perpendicular to the X-ray incidence direction (defined as α = 90◦

in Figure 1a), and the X-ray diffraction measurements were performed from φ = −45 up to 145◦

(Figure 1b), with a sample oscillation angle of 10◦ (slit angle). Furthermore, the capillary was tilted by
an angle of α = 120◦ in the horizontal plane, and the oscillation measurements were performed in
the same manner as for α = 90◦. The exposure time was 15 s/◦. The X-ray source was MoKα, and the
camera length was 147 mm.

The crystal structure analysis was performed as follows: Indexing of twin orientations was
performed on the obtained diffraction images using processing software RAPID AUTO Ver. 4.3 provided
by Rigaku Corporation. The integration and scaling were performed to obtain reflection profiles from
each of the twin components. One component was used to determine the space group, followed by
determination of the initial structure by a direct method (SHELXT-2014) [18] using CrystalStructure 4.3
software [19]. Then, refinement was performed using SHELX-2017 [20].
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Figure 1. Definition of the angles α and ϕ. (a) α is the angle between the capillary axis and the X-ray 

beam (||x). The magnetic field B is parallel in the y direction. (b) ϕ indicates the direction of the 1 

axis that is rotating with the capillary. 

3. Results and Discussion 

The magnetic susceptibility tensor of the biaxial crystal in orthorhombic, monoclinic, and 

triclinic systems has three different principal values, 𝜒1 , 𝜒2 , and 𝜒3,  and the corresponding 

principal axes. For the orthorhombic system, the crystallographic and magnetic axes coincide. For 

the monoclinic system, the b axis coincides with one of the magnetic axes. For the triclinic system, 

there is no general relationship between the crystallographic and magnetic axes. Owing to their 

biaxial magnetic nature, biaxial crystals can be aligned biaxially (or three-dimensionally) if an 

appropriate dynamic magnetic field (DMF) is applied [21–25]. Among the biaxial crystals, most 

orthorhombic crystals exhibit only one orientation under DMF, because the crystallographic and 

magnetic susceptibility axes coincide. On the other hand, the monoclinic and triclinic crystals exhibit 

two or four orientations (twin orientations) that have the same magnetic energy [26]. 

Figure 2 shows a polarized microphotograph of the suspension of the α-glycine microcrystals. 

The size distribution of the microcrystals was approximately 1–40 m, and each of the microcrystals 

shows almost uniform color, indicating that they are single crystals. Figure 3a–c shows X-ray 

diffraction images recorded at three different oscillation angles: (a) ϕ = 5 to 15° at α = 90°, (b) ϕ = 95 to 

105° at α = 90°, and (c) ϕ = 35 to 45° at α = 120°. These images clearly exhibit different profiles, 

indicating that the suspension is aligned biaxially. 

 

Figure 2. Polarized micrographs of a suspension of α-glycine. 

Figure 1. Definition of the angles α and φ. (a) α is the angle between the capillary axis and the X-ray
beam (||x). The magnetic field B is parallel in the y direction. (b) φ indicates the direction of the χ1 axis
that is rotating with the capillary.

3. Results and Discussion

The magnetic susceptibility tensor of the biaxial crystal in orthorhombic, monoclinic, and triclinic
systems has three different principal values, χ1, χ2, and χ3, and the corresponding principal axes.
For the orthorhombic system, the crystallographic and magnetic axes coincide. For the monoclinic
system, the b axis coincides with one of the magnetic axes. For the triclinic system, there is no general
relationship between the crystallographic and magnetic axes. Owing to their biaxial magnetic nature,
biaxial crystals can be aligned biaxially (or three-dimensionally) if an appropriate dynamic magnetic
field (DMF) is applied [21–25]. Among the biaxial crystals, most orthorhombic crystals exhibit only one
orientation under DMF, because the crystallographic and magnetic susceptibility axes coincide. On the
other hand, the monoclinic and triclinic crystals exhibit two or four orientations (twin orientations)
that have the same magnetic energy [26].

Figure 2 shows a polarized microphotograph of the suspension of the α-glycine microcrystals.
The size distribution of the microcrystals was approximately 1–40 µm, and each of the microcrystals
shows almost uniform color, indicating that they are single crystals. Figure 3a–c shows X-ray diffraction
images recorded at three different oscillation angles: (a) φ = 5 to 15◦ at α = 90◦, (b) φ = 95 to 105◦ at
α = 90◦, and (c) φ = 35 to 45◦ at α = 120◦. These images clearly exhibit different profiles, indicating
that the suspension is aligned biaxially.
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values were 0.0595 and 0.1663. The crystallographic data [27] and the determined structure from the 

MOMS were in good agreement with those determined from the single crystal (Table 1 and Figure 4; 

root-mean-square deviation of 0.0133 Å ). In the present experimental setting, the oscillation was set 

only about the sample rotating axis, resulting in less completeness. In addition, the overlapped 
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Table 1. Crystallographic data obtained from a three-dimensional (3D) MOMS and single crystal of 
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c (Å ) 5.4399(9) 5.4608(3) 
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Reflection 412 1540 
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wR2 [all data] 0.1675 0.0777 
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Figure 3. X-ray diffraction patterns of an α-glycine magnetically oriented microcrystal suspension
(MOMS) taken at oscillation angles of φ, defined in Figure 1c: (a) 5◦ < φ < 15◦ at α = 90◦, (b) 95◦ < φ <

105◦ at α = 90◦, (c) 35◦ < φ < 45◦ at α = 120◦.

The XRD images were indexed, and two components were detected. The crystal system, the
space group, and the lattice parameters of α-glycine determined from the MOMS were monoclinic,
P21/n, and a = 5.0833(10), b = 11.902(3), c = 5.4399(9) Å, and β = 111.67(2)◦, respectively. The R1 and
wR2 values were 0.0595 and 0.1663. The crystallographic data [27] and the determined structure
from the MOMS were in good agreement with those determined from the single crystal (Table 1 and
Figure 4; root-mean-square deviation of 0.0133 Å). In the present experimental setting, the oscillation
was set only about the sample rotating axis, resulting in less completeness. In addition, the overlapped
diffraction peaks due to the twin orientation were removed from the data set. This caused the decrease
in a number of available diffraction peaks.

Table 1. Crystallographic data obtained from a three-dimensional (3D) MOMS and single crystal of
α-glycine.

Sample α-Glycine MOMS α-Glycine SC [25]

Crystal system Monoclinic monoclinic
Space group P21/n P21/n

Temperature (K) 296 288
a (Å) 5.0833(10) 5.0993(3)
b (Å) 11.902(3) 11.9416(6)
c (Å) 5.4399(9) 5.4608(3)

V (Å3) 305.87(12) 308.78(3)
Z 4 4
β (◦) 111.67(2) 111.784(2)

2θmax 50.0 (Mo Kα) 90.0 (neutrons)
Reflection 412 1540

Completeness 0.770
Rint 0.0939 -

R1 [F2> 2σ(F2)] 0.0595 0.0371
wR2 [all data] 0.1675 0.0777

GOF 1.241 1.204
CCDC No. 1957082 849662 Glycin96
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respectively, where the suffices 1 and 2 represent twin 1 and twin 2. The value of 𝑏1𝑏2̂ = 179.21° (≅

180°) suggested that the b axis was shared by the twins (the 𝑏1 axis was antiparallel to the 𝑏2 axis). 

Under this condition, two twin orientations were located, as shown in Figure 6. Furthermore, 𝜒1 

and 𝜒2 were determined with respect to the crystallographic axes. The angle between the c axis and 

the  𝜒1 axis was determined to be 45.18. 

Figure 4. The structures determined by MOMS of α-glycine (blue) compared with the structure (red)
obtained from single crystals. The root-mean-square deviation calculated for all atoms, including H
atoms, was 0.0133 Å.

Figure 5 shows the XRD image of the MOMS of α-glycine taken at α = 90◦ with an oscillation
angle φ of 35◦ to 45◦. All the images taken at α = 90◦ showed evenly separated vertical layered lines.
These lines show a sort of fiber diffraction pattern, because the aligned suspension is rotated about a
horizontal rotation axis. Each space between the nearest layers is ca. 11.5 Å, which is close to b (= 11.9
Å), indicating that the diffraction spots in lines are due to (hkl), Miller index, with k = 0, ±1, ±2, . . .
and with the b axis being horizontal. On the other hand, it is known that the axis of sample rotation
coincides with the χ3 magnetic axis. Therefore, the b axis is assigned to the χ3 axis, which is consistent
with the fact that the b axis is a two-fold axis.
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Figure 5. XRD image of the MOMS of α-glycine taken at α = 90◦ with an oscillation angle φ between
35◦ and 45◦.

The diffraction data indicate that there are two orientational twins, twin 1 and twin 2. The software
analysis showed that the angles ˆa1a2, ˆb1b2, and ˆc1c2, were 46.32◦, 179.21◦, and 89.65◦, respectively,
where the suffices 1 and 2 represent twin 1 and twin 2. The value of ˆb1b2 = 179.21◦ (� 180◦) suggested
that the b axis was shared by the twins (the b1 axis was antiparallel to the b2 axis). Under this condition,
two twin orientations were located, as shown in Figure 6. Furthermore, χ1 and χ2 were determined
with respect to the crystallographic axes. The angle between the c axis and the χ1 axis was determined
to be 45.18◦.
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Figure 6. Twin orientation of the MOMS of α-glycine and the determination of the magnetic axes
with respect to the crystallographic axes. First, twin 1 and twin 2 were placed following the relations

ˆa1a2 = 46.32◦, ˆb1b2 = 179.21◦, and ˆc1c2 = 89.65◦, where the b1 and b2 axes were set perpendicular
to the page. Then, a two-fold rotation axis that related the two twins was drawn. Judging from the
experimental procedure, this axis was assigned to the χ2 axis. Finally, the χ1 axis was determined to lie
in the vertical direction. The angle between the c axis and the χ1 axis was 45.18◦.

In the molecule of α-glycine, O=C–O forms a plane, which might provide a major part of magnetic
anisotropy. The χ3 axis might be directly perpendicular to the plane. Figure 7 shows molecules in the
unit cell viewed from the c* axis. We found that the O=C–O planes were almost perpendicular to the b
axis. This is consistent with the fact that χ3||b .
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4. Conclusions

A suspension of monoclinic microcrystalline powder of α-glycine was magnetically aligned and
subjected to in situ X-ray diffraction measurement. The obtained diffraction data were analyzed using
twin-indexing software to solve the crystal structure. The result obtained was in good agreement
with the structure reported, demonstrating that the MOMS can be applicable to monoclinic crystals
(possibly triclinic crystals), which exhibit twin structures when magnetically aligned. The method
is also useful for the determination of the magnetic axis of monoclinic crystals with respect to the
crystallographic axes.
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