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Abstract: In this study, we designed, simulated, and optimized proton exchanged integrated
Mach-Zehnder modulators in a 0.5-µm-thick x-cut lithium niobate thin film. The single-mode
conditions, the mode distributions, and the optical power distribution of the lithium niobate channel
waveguides are discussed and compared in this study. The design parameters of the Y-branch and the
separation distances between the electrodes were optimized. The relationship between the half-wave
voltage length production of the electro-optic modulators and the thickness of the proton exchanged
region was studied.

Keywords: electro-optic modulator; lithium niobate thin film; proton exchange; Mach-Zehnder;
integrated optics devices

1. Introduction

Electro-Optic (E-O) modulators have recently attracted growing attention in ultra-compact
photonic integrated circuits (PICs) [1]. They have extensive applications in optical telecommunication
networks and microwave-photonic systems [2]. The Mach-Zehnder interferometer (M-ZI) is one
of the most important interference structures in modulators because of its simple design and
manufacture, with the existence of a reference arm that compensates for the common-mode effect [3].
Many types of M-ZI-based applications for optical communication have been investigated, such as
switches/modulators [4,5], multi/demultiplexers [6,7], and splitters [8,9].

Lithium niobate (LiNbO3, LN) is one of the most remarkable optical crystal materials due to
its combination of excellent E-O and nonlinear optical characteristics [10]. Due to the high E-O
coefficient (r33 = 31.2 pm/V) in LN, high-quality E-O modulators of this type are very valuable in optical
communication [11–15]. In the last decade, high-refractive-index contrast in the form of lithium niobate
thin film bonded to a SiO2 layer (lithium niobate on insulator, LNOI) has emerged as an ideal platform
for integrated high-performance modulators [16–19]. A basic challenge in the production of M–ZI
modulators in LNOI is the fabrication of high-quality waveguide structures. A few techniques have
been developed for fabricating waveguides in LN, including dry-etching [20–22], proton exchange
(PE) [23], and chemo-mechanical polishing [24]. Compared with other methods, PE is low-cost, has
low propagation loss, and is a mature manufacturing method that is compatible with the LN optical
waveguide industry [25,26]. Compared with rough-etched side walls, PE waveguides have smooth
boundaries. However, to the best of the authors’ knowledge, to date there have been few reports on
proton-exchanged electro-optic modulators in LNOI [23].
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In this research, we simulated and analyzed a proton-exchanged E-O M-ZI modulator in an x-cut
LNOI. Based on the full-vectorial finite-difference method [27], the single-mode conditions of the PE
waveguides were investigated, the bending losses of the Y-branch structures were analyzed, and the
propagation losses of the PE waveguides with different separation distances between electrodes were
simulated. The half-wave voltages of the devices were calculated using the finite difference beam
propagation method (FD-BPM) [28,29]. The optimized half-wave voltage-length product (Vπ·L) was
approximately 10.2 V·cm.

2. Device Design and Methods

The material of the device studied was an x-cut LN thin film bonded to a SiO2 layer deposited on
an LN-substrate [17]. The thicknesses of the LN thin film and the SiO2 layer were 0.5 µm and 2 µm [30],
respectively. The structures were cladded with 2-µm-thick SiO2 layers after the PE waveguides and
electrodes were fabricated. Figure 1a shows a schematic of the M-ZI. The input wave was emitted
into a directional coupler. The input power was divided equally into the two output waveguides
with a first directional coupler. The two waveguides formed the two arms of the M-ZI. On both arms,
opposite electric fields were applied to modify the refractive of the LN and thus change the phase
of the wave propagating through that arm. The two waves were then combined into another 50/50
directional coupler. By varying the applied voltage, the amount of light emitted from the two output
waveguides could be continuously controlled.
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Figure 1. (a) Schematic of the M-ZI. (b) The cross-sectional schematic of the M-ZI and the
channel waveguides.

Figure 1b shows the schematic cross-sections of the M-ZI and the channel waveguide. The lateral
diffusion could be neglected when the thickness of the PE was much lower than the mask width, and
a rectangular step-like refractive index profile could be formed during the PE process, as shown in
the inset of Figure 1b. The PE region formed stripe-loaded channel waveguides, and the LN thin film
on both sides of the PE region formed planar waveguides. The PE only increased the extraordinary
refractive index (ne) of the LN crystal and it therefore supported only one type of mode in the channel
waveguides (the transverse electric (TE) mode in the x-cut LNOI). The ordinary and extraordinary
refractive index changes were −0.05 and 0.08, respectively. Table 1 shows the refractive indices of
the material at the wavelength of 1.55 µm. In previous studies on bulk LN, the PE waveguides
generally suffered from a dramatically reduced E-O coefficient for the electro-optic devices [31]. Since
the E-O coefficient of the unannealed proton exchange region was close to zero, it was set to zero in
the simulation.
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Table 1. Refractive indices of the material in simulation (λ = 1.55 µm).

Material no ne

LN [32] 2.211 2.138
PE [23] 2.161 2.218

SiO2 1.46 1.46

The full-vectorial finite difference method was regarded as a simple and effective method to
solve the bending loss and the mode distribution. The finite difference algorithm was used to mesh
the geometry of the waveguide. This algorithm had the ability to adapt to the arbitrary waveguide
structure. After the structure was meshed, Maxwell’s equations were then transformed into matrix
eigenvalue problems and solved by sparse matrix techniques to obtain the effective indices and the
mode distribution of the waveguide modes [33]. The FD-BPM was employed to simulate the M-ZI.
The method consisted of marching the input optical field over small distances in the dielectric media
with the use of a fast Fourier transform. In each propagational step, the plane spectrum was used
to simulate the optical field in the spectral domain, and due to the medium inhomogeneity, a phase
correction was introduced in the spatial domain [34].

3. Results and Discussion

The single-mode conditions were simulated to prevent the distortion of the signal during
transmission. We calculated the modal curves of the PE waveguides at a wavelength of λ = 1.55 µm.
The effective indices of the TE mode in the PE waveguides as a function of the width for different
thicknesses of the PE region are presented in Figure 2a. As the width and thickness of the PE waveguides
decreased, the effective refractive index decreased, and the more high-order modes disappeared. The
TE0 modes represented the fundamental TE modes. The cutoff dimension of the PE waveguide for the
TE mode between the single- and multi-mode conditions was calculated, as shown in Figure 2b. Any
dimensions beneath the curves fulfilled the single-mode condition. As the cut-off width increased, the
PE thickness decreased.

Crystals 2019, 9, x FOR PEER REVIEW 3 of 8 

 

The full-vectorial finite difference method was regarded as a simple and effective method to 

solve the bending loss and the mode distribution. The finite difference algorithm was used to mesh 

the geometry of the waveguide. This algorithm had the ability to adapt to the arbitrary waveguide 

structure. After the structure was meshed, Maxwell’s equations were then transformed into matrix 

eigenvalue problems and solved by sparse matrix techniques to obtain the effective indices and the 

mode distribution of the waveguide modes [33]. The FD-BPM was employed to simulate the M-ZI. 

The method consisted of marching the input optical field over small distances in the dielectric media 

with the use of a fast Fourier transform. In each propagational step, the plane spectrum was used to 

simulate the optical field in the spectral domain, and due to the medium inhomogeneity, a phase 

correction was introduced in the spatial domain [34]. 

3. Results and Discussion 

The single-mode conditions were simulated to prevent the distortion of the signal during 

transmission. We calculated the modal curves of the PE waveguides at a wavelength of λ = 1.55 μm. 

The effective indices of the TE mode in the PE waveguides as a function of the width for different 

thicknesses of the PE region are presented in Figure 2a. As the width and thickness of the PE 

waveguides decreased, the effective refractive index decreased, and the more high-order modes 

disappeared. The TE0 modes represented the fundamental TE modes. The cutoff dimension of the PE 

waveguide for the TE mode between the single- and multi-mode conditions was calculated, as 

shown in Figure 2b. Any dimensions beneath the curves fulfilled the single-mode condition. As the 

cut-off width increased, the PE thickness decreased. 

 

Figure 2. (a) Effective indices of the transverse electric (TE) modes in the proton exchange (PE) 

waveguides as a function of the width for different thicknesses of the PE waveguides. (b) Cut-off 

dimensions of the PE region for the TE mode. 

A small mode size enabled the development of ultra-compact PICs and strengthened the E-O 

effect. For the channel waveguide in the LNOI, due to the large refractive index contrast between the 

LN layer and the SiO2 cladding, the light was strongly confined, resulting in a smaller mode size. 

Figure 3a shows the simulation results of the relationship between the mode size (the 1/e intensity in 

the vertical and horizontal directions formed the two axes of the ellipse) and the width and thickness 

of the PE waveguides. The mode size decreased with the increasing PE thickness. When the width 

initially increased, the confinement of the light became strong, which also led to a smaller mode size. 

As the waveguide width increased further, the PE region expanded and the mode size became 

larger. The shape of the smallest mode size decreased in width as the thickness increased. For the 

composite strip waveguide, the optical power was mainly divided into three parts. The first part was 

in the PE region, the second part was in the LN layer without PE, and the third part was in the SiO2 

cladding layer. The E-O effect ascended with the increasing optical power in the LN layer without 

PE. This required most of the optical power to be concentrated in the LN layer without PE. Figure 3b 

shows the optical powers in the LN layer without PE and the PE region for the TE modes. The 

Figure 2. (a) Effective indices of the transverse electric (TE) modes in the proton exchange (PE)
waveguides as a function of the width for different thicknesses of the PE waveguides. (b) Cut-off

dimensions of the PE region for the TE mode.

A small mode size enabled the development of ultra-compact PICs and strengthened the E-O
effect. For the channel waveguide in the LNOI, due to the large refractive index contrast between
the LN layer and the SiO2 cladding, the light was strongly confined, resulting in a smaller mode size.
Figure 3a shows the simulation results of the relationship between the mode size (the 1/e intensity in
the vertical and horizontal directions formed the two axes of the ellipse) and the width and thickness
of the PE waveguides. The mode size decreased with the increasing PE thickness. When the width
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initially increased, the confinement of the light became strong, which also led to a smaller mode size.
As the waveguide width increased further, the PE region expanded and the mode size became larger.
The shape of the smallest mode size decreased in width as the thickness increased. For the composite
strip waveguide, the optical power was mainly divided into three parts. The first part was in the PE
region, the second part was in the LN layer without PE, and the third part was in the SiO2 cladding
layer. The E-O effect ascended with the increasing optical power in the LN layer without PE. This
required most of the optical power to be concentrated in the LN layer without PE. Figure 3b shows the
optical powers in the LN layer without PE and the PE region for the TE modes. The optical power in
the LN layer without PE increased slightly with the shrinking of the PE width and thickness. Therefore,
the width and thickness of the PE strip had a certain influence on the optical power distribution.
Considering the single-mode conditions, mode sizes, and optical power distribution, the widths of the
PE waveguides were all selected as 1.2 µm in the following simulations.
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Figure 4a shows the schematic of the Y-branch. It consisted of two symmetrical arms between one
input and two output straight waveguides. Each arm consisted of two identical circular arcs of radius
R which had the same width as the input and output waveguides. Since the structure involved a bend
waveguide (circular arcs on each arm), the relationship between the bending loss and the bending
radius was as shown in Figure 4b. The bending loss increased sharply with the decreasing bending
radius and thickness of the PE region.
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Figure 4. (a) Schematic of the symmetrical Y-Branch. (b) The dependence of the bending loss on the
bending radius of the channel waveguide with a 1.2 µm width, using the thickness of the PE waveguide
as the parameter.



Crystals 2019, 9, 549 5 of 8

To obtain the maximum electric field, an appropriate separation distance between the electrodes
had to be selected. The separation distances were dictated by the propagation losses introduced by the
electrodes near the PE waveguides. The propagation losses with different separation distances between
the electrodes at a wavelength of λ = 1.55 µm are shown in Figure 5. The propagation loss increased
sharply with the diminishing separation distance. In the following simulation, the separation distance
between the electrodes was selected to have a PE waveguide loss of approximately 0.5 dB/cm. For
radio frequency (RF) attenuation, thick metals facilitate low-loss RF waveguides. When the electrode
thickness was larger than 1 µm, the decrease of the RF attenuation was saturated [12]. To achieve the
optimum performance of the electro-optic modulator, the thickness of the electrodes could be selected
as 1 µm.
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As shown in Figure 6a,b, the optical field and the electrostatic field were simulated. Figure 6c
shows the overlap integral of the optical and electrostatic fields. The PE waveguide had a thickness of
0.15 µm and a width of 1.2 µm, allowing confinement for most of the optical power in the LN core
without PE, which was the E-O active material. We could design electrodes to be placed close to the
waveguides without substantially bigger optical transmission losses.

To control the optical properties with an external electric signal, the E-O effect or the Pockels effect
was used, where the birefringence of the crystal changed proportionally to the applied electric field.
A change in the refractive index resulted in a change of the phase of the wave passing through the
crystal. If two waves with different phase change were combined, the amplitude modulation could
be performed by an interferometer. An important quality factor for the M-ZI modulators was the
half-wave voltage (Vπ), defined as the required voltage to induce a π-phase difference between the
two modulator arms, changing the optical transmission from the maximum to minimum. Figure 7a
shows the optical transmission of a device with 1-cm-long microwave strip line electrodes, for which
we calculated a low Vπ of 10.2 V (the thickness and the width of PE waveguide and the separation
distance between electrodes were 0.15, 1.2, and 8.08 µm, respectively). Figure 7b shows that the
half-wave voltage length product varied with the thickness of the PE region. The half-wave voltage
length product ascended with the increasing thickness of the PE waveguide. Considering the bending
loss of the Y branch and the half-wave voltage length product, the most suitable thickness of the PE
waveguide was 0.15 µm.
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Half-wave voltage-length product variation with the thickness of the PE waveguide.

The frequency-dependent refractive index mismatch between the optical and RF signals played a
key role in the final modulation bandwidth of the modulator [1]. Thanks to the LN thin film structure,
the refractive index of the RF and optical modes was well matched in the modulator [12]. This was
different to the ordinary bulk LN modulators [35]. By further adjusting the structural parameters of the
waveguides and electrodes, the mismatch refractive index between the optical and RF signals should
be minimized as much as possible, which should be studied carefully in the future.



Crystals 2019, 9, 549 7 of 8

4. Conclusions

The full-vectorial finite-difference method was used to calculate the single-mode conditions,
mode sizes, and optical power distribution of the PE channel waveguides. The widths of the PE
waveguides were optimized to 1.2 µm. The propagation losses of the guided mode at different
separation distances between the electrodes were analyzed and discussed. As a very important aspect
of the practical application, the half-wave voltages were simulated using FD-BPM. The thickness of the
PE waveguides and the separation distances between the electrodes were optimized to 0.15 µm and
8.08 µm, respectively. The optimized value of Vπ·L was calculated to be 10.2 V·cm.

Author Contributions: B.X. conceived the original idea; H.H. carried out the simulations and wrote the manuscript;
H.H., B.X., T.L., G.C. and S.R. contributed the useful and deep discussions, analyzed the data and modified
the manuscript.
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