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Abstract: Zinc oxide (ZnO) is a fascinating wide band gap semiconductor material with many
properties that make it widely studied in the material science, physics, chemistry, biochemistry,
and solid-state electronics communities. Its transparency, possibility of bandgap engineering, the
possibility to dope it into high electron concentrations, or with many transition or rare earth metals,
as well as the many structures it can form, all explain the intensive interest and broad applications.
This review aims to showcase ZnO as a very versatile material lending itself both to bottom-up and
top-down fabrication, with a focus on the many devices it enables, based on epitaxial structures,
thin films, thick films, and nanostructures, but also with a significant number of unresolved issues,
such as the challenge of efficient p-type doping. The aim of this article is to provide a wide-ranging
cross-section of the current state of ZnO structures and technologies, with the main development
directions underlined, serving as an introduction, a reference, and an inspiration for future research.
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1. Introduction

Although the scientific community mostly regards zinc oxide (ZnO) as a semiconductor relevant
for potential opto/electronic/bio/chemical applications, it is insightful to note that, in the history of
human civilization, such applications are marginal when compared to the other widespread uses of
ZnO. Since at least two millennia B.C., in ancient Egypt and later in Rome, ZnO has been used in
ointments for the treatment of adverse skin conditions [1]. ZnO ore was used in brass production in
Europe and more importantly in central and eastern Asia since the middle ages [2,3]. The widespread
use of ZnO as a pigment started in the 18th century for applications in watercolors with 19th century,
seeing the development of the ZnO pigment for oil painting using the so-called French process [4].
With further developments in ZnO production, its application in the rubber industry gained relevance as
a vulcanization accelerator activator during tire production [4]. Today, between 50% and 60% of ZnO is
used in the rubber industry [5], followed by uses in the ceramic industry [5], concrete manufacturing [6],
skin ointments and sunblock creams, food (as a source of zinc), and pigments with only a small portion
of the use related to the study of its functional properties. Outside of the large-scale industry, zinc
oxide has been seen as a promising material for thin film optoelectronic [7–9], piezoelectronic [10–12],
transparent electronic [13], spintronic [14,15], sensing [16–18], and photovoltaic [19–21] devices, just to
name a few, due to its inherent properties and a wide array of morphologies achievable with different
technologies used for fabrication. Initially hailed as the ‘newer version’ of the commercially successful
gallium nitride (GaN) that enabled white solid-state lighting and efficient high frequency electronics,
as it has a similar band gap and band gap engineering possibilities, a similar crystalline structure, along
with greater exciton binding energy, greater piezoelectric constants, as well as less demanding growth
conditions, easier wet chemical processing, larger native substrates available, and easier electrical
contact fabrication, ZnO has not yet given up its full potential as some challenges remain unsolved.
The major one lies in the inability to fabricate a stable, efficient and reproducible p-type doped material,
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as well as in unlocking the full performance of the grown unipolar structures. Unlike GaN, however,
the focus of ZnO research has now mostly shifted into the realm of nanostructures, where the easily
fabricated unipolar n-type ZnO with highly developed surfaces and nanoscale morphologies can be an
excellent material for many applications, raising a significant research interest from groups outside
the solid-state physics and electronics community. This is evident in the publication statistics for
2019 where 18,000 papers are reported on ZnO in general, including less than 1000 on p-type ZnO.
For comparison, in the same year around 11,000 papers can be found on GaN, the majority concerning
epitaxial and thin film structures. Such a vast number is impossible to be studied thoroughly by a
single person, which makes following new developments in the field extremely difficult. This review
therefore does not aim to achieve the impossible feat of revising every published paper, instead the
goal is to provide a wide cross-section through the current state of the ZnO material performances and
structures with a focus on the final applications. The following sections of this paper describe in more
detail the following. First, the general properties of ZnO followed by the array of methods of ZnO
structure fabrication, with the examples of ZnO-based devices for each of the structure types: epitaxial,
thin films, thick films, nanostructures and nanoparticles given next and, subsequently, the outlines of
the main standing problems in ZnO technology are presented, finishing with a future outlook.

2. General Properties of ZnO

ZnO is a direct wide band gap semiconductor (EG = 3.37 eV [22]) transparent in the visible
wavelength range and suitable for UV and blue wavelength optoelectronic applications with a large
exciton binding energy of 60 meV [23] enabling efficient excitonic emission at room temperature. A low
refractive index of 2.05 enables easier light extraction from an optical device. Its wurtzite crystalline
structure with the lattice parameters a and c equal to 3.2495 Å and 5.2062 Å [24], respectively and
the large piezoelectric constants enable strong piezoelectric polarization in the material, resulting not
only in the possibility of piezoelectronic device fabrication but also the fabrication of high quality 2D
electron gas structures [25,26] with the recent observation of fractional quantum Hall effect [27]. From a
more chemical point of view, the lattice can be described as two intertwined hexagonal close packed Zn
and O lattices, arranged in such a way that each Zn2+ ion is coordinated by four O2- ions in a tetrahedral
arrangement and likewise, each O2− ion is coordinated by four Zn2+ ions in the same way (see Figure 1).
The bonds are sp3 hybridized bonds of almost equally ionic and covalent character. It has to be said
here that, under special growth conditions, or using cubic lattice substrates, ZnO can form zinc blende
lattice films with the same ionic coordination types, however since these are fringe studies in the field
they will not be discussed here. Additionally, ZnO forms ternary wurtzite alloys with CdO and MgO
making possible band gap engineering of the material [28] with the band gap widths from 2.3 eV [29]
to 4.0 eV [30] enabling the growth of high-quality quantum well structures [31,32] (see Figure 2).
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Figure 1. ZnO wurtzite cell, Zn in yellow, O in grey, the tetrahedral coordination is shown for both 
types of atoms. Source: [33], public domain. 

 
Figure 2. The variation (a) BPR—beam-equivalent-pressure ratio of Mg to Zn beams during MBE 
growth, (b) c-lattice constant, and (c) room temperature band gap versus Mg content. In 700 nm thick 
ZnMgO MBE-grown epilayers. Inset: optical transmission spectra for x = 0.10 (right), 0.40 (left). 
Reprinted from Sadofev, S., Blumstengel, S., Cui, J., Puls, J., Rogaschewski, S., Schäfer, P., Sadofyev, 
Yu. G., and Henneberger, F., Growth of high-quality ZnMgO epilayers and ZnO∕ZnMgO quantum 
well structures by radical-source molecular-beam epitaxy on sapphire, Appl. Phys. Lett., 2005, 87, 
091903; DOI: 10.1063/1.2034113, with the permission of AIP Publishing. 

The unique optical and piezoelectric properties of ZnO are paired with its nontrivial electrical 
characteristics. A II-IV semiconductor, ZnO is usually reported to exhibit n-type conductivity with 
high carrier mobilities in the range of 100 cm2V−1s−1, even when not intentionally doped. Although 
the first reports explained that defects, such as Zn interstitials (Zni) or O vacancies (Ov), were 
responsible for the intrinsic n-type of the material [34,35], more contemporary works [36,37] argue 
that Ov are deep donors which cannot be responsible for the n-type conductivity and that Zni 
although being shallow donors, have large formation energies and diffuse fast, thus being unstable. 

Figure 1. ZnO wurtzite cell, Zn in yellow, O in grey, the tetrahedral coordination is shown for both
types of atoms. Source: [33], public domain.
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Figure 2. The variation (a) BPR—beam-equivalent-pressure ratio of Mg to Zn beams during MBE
growth, (b) c-lattice constant, and (c) room temperature band gap versus Mg content. In 700 nm
thick ZnMgO MBE-grown epilayers. Inset: optical transmission spectra for x = 0.10 (right), 0.40 (left).
Reprinted from Sadofev, S., Blumstengel, S., Cui, J., Puls, J., Rogaschewski, S., Schäfer, P., Sadofyev, Yu.
G., and Henneberger, F., Growth of high-quality ZnMgO epilayers and ZnO/ZnMgO quantum well
structures by radical-source molecular-beam epitaxy on sapphire, Appl. Phys. Lett., 2005, 87, 091903;
doi:10.1063/1.2034113, with the permission of AIP Publishing.

The unique optical and piezoelectric properties of ZnO are paired with its nontrivial electrical
characteristics. A II-IV semiconductor, ZnO is usually reported to exhibit n-type conductivity with high
carrier mobilities in the range of 100 cm2V−1s−1, even when not intentionally doped. Although the first
reports explained that defects, such as Zn interstitials (Zni) or O vacancies (Ov), were responsible for the
intrinsic n-type of the material [34,35], more contemporary works [36,37] argue that Ov are deep donors
which cannot be responsible for the n-type conductivity and that Zni although being shallow donors,
have large formation energies and diffuse fast, thus being unstable. Znv are deep acceptors with low
formation energies under the conditions leading to n-type ZnO growth and can therefore compensate
the n-type charges [38–40]. Finally, Oi and oxygen and zinc antisites are regarded as having too large
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formation energies to exist in significant concentrations in the material [41]. There has been a consensus
therefore, that the intrinsic n-type conductivity of ZnO films is due to impurities present during the
growth process. Depending on the growth process, hydrogen, fluorine or group III impurities (In, Ga,
B, Al) have been taken into account. As far as these group III impurities are concerned, all of them
have been found to intentionally dope ZnO into n-type [42–45] by Zn substitution. Al-doped ZnO is
commercially successful as a transparent conducting film for transparent electronic applications [46].
Fluorine substituting oxygen in the lattice acts as a shallow donor with an ionization energy of 80 meV
and low formation energy [47]. Finally, hydrogen was found to be acting as a shallow donor with
35 meV ionization energy [48] at the interstitial position. Unlike as in other semiconductors, where the
hydrogen interstitial is an amphoteric dopant [49], incorporating into n-type material as an acceptor and
into p-type as a donor, in ZnO it always incorporates as a shallow donor [50]. Hydrogen substituting
oxygen is also a shallow donor with a slightly lower formation energy than Hi [38–44]. It has to be
underlined here, that while Al and In impurities may mostly incorporate during chemical crystal
growth, hydrogen impurity may be relevant for vacuum-based techniques, as most vacuum chambers
are machined out of stainless steel, which is known to outgas hydrogen [51,52]. However, it has to be
noted that the community dealing with ZnO materials still seems to not put enough attention to the
recent developments of the defect level identification. This is especially common when describing
the green luminescence band, visible in most ZnO materials. Some authors focused most on the
fabrication and application of the given sample, claim it to be related to Znv and some to Ov based
solely on literature references, not on experimental considerations. However, the bulk of the literature
finds works contradicting themselves, when applied to ZnO as a whole, not to the particular case
of ZnO structure using a particular technique under the particular conditions. Recent experimental
investigations show that in fact the green luminescence can originate from various sources, even in the
same sample – e.g., for hydrothermal ZnO single crystals both Znv coupled with H+ and Ov have been
reported to give rise to the green luminescence with small offsets [53].

ZnO is composed of very chemically active ions, resulting in a material being itself far from inert.
Firstly, it lends itself easily to wet chemical etching, which simplifies epitaxial device processing down
to micron scale. But this reactivity is also beneficial from the material fabrication point of view, as
ZnO easily forms precipitates in solutions, and based on the conditions of the reaction a plethora of
morphologies is attainable, including nanocolumns [54], nanowires [55], nanosheets [56], nanofibers [57],
nanoflowers [58], nanoparticles [59], and quantum dots [60], as well as 3D hierarchical architectures [61],
which is one of the reasons for the incredible popularity of ZnO nanostructures in research. As an
example, Ko et al. reported on the fabrication of a hierarchical ZnO nanoforest using hydrothermal
growth [62] and Wang described the growth of nanowires, nanotubes, nanobelts, nanohelixes,
nanocombs, nanorings, nanopropellers, nanosprings, and nanoshells using ZnO powder sublimation
and deposition [63]. Additionally, porous ZnO was developed using nanotube membranes [64] and
dynamic template assisted electrodeposition [65]. Due to their high surface-to-volume ratio and surface
reactivity, these structures are regarded as potential candidates for particle absorption applications, be
it photons in dye-sensitized solar cells [61] or bio-chemical molecules in biomedical sensors [66] or gas
molecules in gas sensors. Additionally, its low toxicity, biocompatibility and biodegradability make
ZnO nanostructures and nanoparticles a material of interest in biomedical and environmental systems.
However, care has to be taken when using ZnO nanostructures in aqueous environments, since at
low concentrations ZnO dissolves in water and the dissolution concentration threshold increases
rapidly with decreasing pH, potentially forming many problems for real life, stable applications in
areas such as biomedicine or photocatalysis. In such cases, the appropriate structure and morphology
design, sometimes additionally employing ultrathin surface passivation layers, can be viable solutions.
Noteworthy is the fact that, contrary to high quality ZnO epitaxial and thin film growth where
vacuum-based techniques are most often employed, nanostructured ZnO is in most cases grown using
chemical methods, with only a few developments based on vacuum techniques such as magnetron
sputtering (MS) [67] or pulsed laser deposition (PLD) [53]. The chemical methods, although relatively
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economical and easy to implement, may meet with challenges in the areas of large-scale production,
uniformity, and replicability when deployed, not as kg and larger-scale powders, but in the forms of
mg and lower-scale doses or thick films.

Other, less known properties of ZnO include high radiation hardness, high thermal conductivity,
and strong non-linear optical behavior, which makes the material interesting, respectively, for space
applications, thermoelectric generators, and nonlinear optical elements.

One of the biggest unsolved challenges in the technology of ZnO is the fabrication of stable
p-type ZnO material, e.g,. for homojunction applications in LEDs or laser diodes (LDs) but also
for a variety of bipolar electronic devices. Such materials not only have to exhibit stable transport
properties, but also be preferentially of high crystalline quality, devoid of grain boundary acceptor
aggregation/segregation as well as with low density of non-radiative recombination centers. There have
been many potential candidates for acceptors in ZnO, including elements from group IA, IB and V but
so far, no commercially adopted breakthrough has been reported.

3. Methods of Fabrication

ZnO can be grown as large-scale single crystals, epitaxial structures, thin and thick film structures
as well as nanostructures and nanoparticles. The methods of fabrication are as widespread as the
reported structures and their applications. The methods are usually chosen based on their typical
intrinsic possibilities and limitations to grow a given type of a structure, with some reports pushing
the conventional capabilities of growth to obtain atypical structures.

3.1. Bulk Crystals

The dominant method of fabrication for bulk single crystal ZnO is hydrothermal growth [68],
but the feat is also realized using vapor growth [69] and solution growth techniques. Crystal growth
in the hydrothermal method occurs in a water-based solution, under a temperature gradient and
high pressure. The high pressure (15–150 MPa) is needed for the dissolution of the crystal starting
materials in a lower temperature (<500 ◦C) than in the case of ambient pressure. Due to the harsh
conditions the process is performed in an autoclave. The starting materials are a nutrient (here ZnO
powder) and water with additions of alkaline mineralizers for raising the nutrient concentration
in the solution to a preferred range, usually around 5 wt.%. In the higher temperature part of the
autoclave, the nutrient dissolves in the now supercritical water under the elevated pressure and the
constituents are transported to the lower temperature part where growth occurs on a starting seed
crystal. The method is well developed commercially, and the available single crystals have diameters
as high as 75 mm (see Figure 3), with very low dislocation densities (<100 cm−2), good flatness, and
low impurity concentrations. The crystals have electron conductivity and can be made semi-insulating
by doping with Li or N acceptors from the mineralizers during growth [70]. Such crystals form a
good substrate not only for the homoepitaxy of ZnO-based structures, but also due to a low lattice
mismatch with GaN (1.8%), they could well accommodate GaN-based structures. The current trends
in research on the hydrothermal growth of ZnO bulk crystals are the identification of the defect-related
luminescence, surface properties and studies on dopant indiffusion.
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Figure 3. Two-inch size ZnO crystals produced during one hydrothermal growth run. Reprinted
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growth of ZnO, Progress in Crystal Growth and Characterization of Materials 2006, 52, 280–335;
doi:10.1016/j.pcrysgrow.2006.09.002, Copyright (2006), with permission from Elsevier.

3.2. Epitaxial Films

Moving on to the fabrication of structures typical for the physical and electronic engineering
worlds, epitaxial structures of ZnO and related materials have been grown using molecular beam
epitaxy (MBE) [71], in particular the plasma-assisted version (PA-MBE) [72,73] due to the need for active
oxygen during growth, as well as metalorganic chemical vapor deposition (MOCVD). The PA-MBE
method utilizes an ultra-high vacuum (10−8 to 10−12 Torr) reaction chamber and ultrapure elements
(99.999% to 99.99999% pure), which are both needed to maintain the low background impurity
concentration at the low physical deposition rate allowing epitaxial growth. In the case of ZnO, the Zn
sits in a crucible which is heated to produce an outward flux of Zn atoms, while the O is generated
from a form a remote oxygen plasma. By controlling the partial pressures of both species at the
substrate, as well as the temperature of the substrate itself, a variety of epitaxial growth modes can be
achieved, from step-flow epitaxial growth to Stransky-Krastanov quantum dot/nanoparticle growth
mode (see Figure 4). The growth can be monitored by a set of tools, the most common of which is the
RHEED (reflection high-energy electron diffraction) monitoring the surface of the growing materials,
enabling the control of the growth mode. The MOCVD technique [74] on the other hand is performed
in an ultrapure gas flow at moderate pressures of the order 10 to 1000 Torr and uses surface chemical
reactions between the elemental precursors to control the monolayer growth. The precursors used
for the growth of ZnO are organometallic Zn compounds such as dimethylzinc (DMZ) or diethylzinc
(DEZ) and pure oxygen or water for the O and their partial pressures and the substrate temperature
again play a decisive role in the properties of the resulting structures. These methods utilize costly and
complicated equipment, very high purity elemental sources and high growth temperatures, typically
around 550 ◦C for pure ZnO, to provide the highest quality epitaxial structures with well controlled
thickness, composition, as well as impurity and dopant levels. Band-engineered films and quantum
structures can also be developed using these techniques. Some reports were provided on PLD [75] and
MS [76] growth of epitaxial ZnO structures, however these techniques are not common for the task
due to the difficulty in controlling the epitaxial growth conditions and impurity levels in such reactors.
Recently, the epitaxial ZnO structure growing community has been focused on achieving the highest
crystalline quality of the films, obtaining stable and repeatable p-type doping, as well as studies of
physical optical phenomena in quantum structures of ZnO, ZnMgO, and ZnCoO.
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3.3. Thin Films

Thin ZnO films (several nm to a couple micron) are mostly developed using pulsed laser deposition
(PLD), magnetron sputtering (MS), or atomic layer deposition (ALD) and their morphologies are
usually polycrystalline and follow those described by the Thornton zone model (see Figure 5). Pulsed
laser deposition [77] is a vacuum technique, in which a pulsed high-power laser beam is focused on
the target material leading to its instantaneous local heating and ablation/evaporation resulting in its
deposition on the substrate. For ZnO, the target is either Zn or ZnO and oxygen can be added into the
chamber to oxidize the growing film. The density of the nucleation sites during evaporation is very
high, much higher than in the case of MBE or MS causing a smoother film growth. With substrate
heating (usually around 350 ◦C), PLD enables step flow and epitaxial growth, however since the
majority of work on epitaxial ZnO is currently done by PA-MBE and MOCVD, PLD has seen interest in
non-epitaxial, thin film growth of ZnO. An advantage of this technique is the relatively short process
time, the downturn would be in the throughput with limited target and substrate areas feasible. MS [78]
on the other hand is a technique known for it’s ease of upscaling from lab to production scales by
increasing the dimensions of the chamber and the used targets. The targets are the source material
to be deposited, usually with a purity of 99.99% and for ZnO the material used is either Zn or ZnO.
The sputtering process takes place in an initially evacuated vacuum chamber (10−6–10−8 Torr) where
Ar gas is introduced with O2 gas as the reactive gas, if needed. A voltage around 100V is put between
the target and the substrate creating cascade gas ionization (plasma) leading to bombardment of the
target surface and ejecting or sputtering away the target material onto all surfaces in the chamber,
including the substrate. Usually, thin ZnO films are deposited on unheated substrates, but for higher
quality films, substrate heating can be applied around 300–550 ◦C [79]. The advantage of sputtering
lies in the large-scale uniformity, good microstructure, as well as thickness control and repeatability of
the deposited films. Additionally, this technique can be directly used with lift-off photolithography
patterning, when the deposition is done at RT, significantly simplifying device processing using the
deposited films. The ALD technique is the third commonly used one for depositing ZnO thin films and
unlike the two previous ones, it is a chemical deposition technique similar to MOCVD. Like the latter,
it also uses molecular precursors of zinc (DMZ or DEZ) and water or ozone for the oxygen, however
the process conditions and especially the substrate temperature are chosen so that the chemisorption
of the molecules is promoted while physisorption is much less probable. When performed with strict
precision, this technique can result in layer by layer growth of Zn and O monolayers [80]. However,
practice shows that most works focus on polycrystalline thin film growth of ZnO [81]. The advantages
of the ALD technique are the following: a deposition temperature as low as 100 ◦C, possibility of
large-area deposition, and a conformal coverage of all shapes and protrusions on all exposed surfaces
of the substrate making it useful for encapsulation-like applications. A significant amount of work on
the doping of ZnO has been done by means of MS and ALD due to the relative ease of dopant addition



Crystals 2019, 9, 505 8 of 29

to the deposition process. In MS it can be either by sputtering from a pre-doped target, co-sputtering
the dopant alongside ZnO or doping from the gas phase, e.g., with nitrogen [82]. For ALD, the dopant
would be added from another precursor in its own monolayer deposition cycle, reaching the desired
concentration [83].Crystals 2019, 9, x FOR PEER REVIEW 8 of 30 
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The techniques described up to now are well-established high maintenance and relatively high
complexity techniques, requiring dedicated and usually costly equipment. Their advantage is in the
multifunctional control of the growth process as well as in the available high purity materials for the
growth which is of high importance for any electronic applications.

The following typically chemical thin film growth techniques, although significantly easier to
prepare and much less cost-intensive, can be a priori used with any grade of starting material or solvent,
which puts an even larger burden on the experimentalist to execute the experiment with the required
level of control of the purity and non-intentional doping, which is especially important in the case
of such a material as ZnO. One of the more straightforward techniques is sol-gel deposition [84,85].
A colloidal particle suspension is prepared by means of mixing selected precursors in a solvent with a
stabilizer and is subsequently spin coated on the selected substrate. For ZnO, usual Zn precursors are
acetate, nitrate or perchlorate. The solvent is usually an alcohol with a low C-number. The stabilizer
added to the mixture is most usually an amine such as monoethanolamine (MEA). The whole solution
is stirred in a bath at a temperature usually within the range RT−80 ◦C until a homogeneous sol forms.
After ageing and spin-coating, the films undergo several drying and annealing steps at temperatures
from 100 ◦C to around 500 ◦C, forming the final film. The spinning and drying steps can be repeated.
Dopants can be added as other metallic precursors. Another relatively popular thin ZnO film deposition
technique is spray pyrolysis [86]. In this technique a spray of a precursor solution, similar to that of the
sol-gel is jetted using a carrier gas in the direction of a heated substrate. For ZnO, Zn acetate or nitrate
is used with water or an alcoholic solvent and the substrate temperature around 400 ◦C. A technique
utilizing the same precursors, stabilizers and solvents that has recently seen a rise in interest is inkjet
printing [87]. Here, an ink is formulated using the three materials and is then jetted in the previously
designed shapes onto a substrate. Subsequent annealing similar as the one applied before, leads to
solvent evaporation and film formation. A variation of the ink-jet technique utilizes nanoparticle
dispersions as the ink that coalesce in the printed pattern after annealing. One advantage of the printed
approach is the direct writing capability, simplifying device processing. Care has to be taken however
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when formulating inks to allow for good wetting and coalescence at the same time retaining high
jetting resolution and appropriate flow characteristics on the substrate during drying. The final thin
film deposition technique described is electrodeposition [88]. It can only be used to coat substrates that
are conducting or covered with a conducting film. A common research substrate is glass pre-coated
with an indium tin oxide (ITO) conducting thin film. The substrate being the working electrode is
immersed in a solution of a zinc salt in a solvent heated above 50 ◦C, usually zinc acetate or nitrate in
water. A counter electrode is also immersed in the solution to close the circuit, a reference electrode is
added for potential reference and an electric current is fed between the anode and the cathode through
the solution resulting in a mass transfer of the Zn2+ ions to the working electrode and an evolution of
hydroxide ions from the solution at that electrode as well leading to the formation of zinc hydroxide
at its surface. The elevated temperature of the solution is needed for the final dehydration of zinc
hydroxide into ZnO and water. The process is fast and allows the coating of complex geometries on
large-scale substrates beneficial in applications like photocatalysis.

ZnO thin film growth is a branch of ZnO research that has been recently most focused on the
band gap and electronic states’ engineering, the use of ZnO as transparent conducting oxides, their
use as optical coatings, e.g., in solar cells as well as to a lesser extent transistor-based devices and the
problems of p-type doping.

3.4. Thick Films

Thick films are usually considered as films of a thickness greater than 10 micrometers. Screen
printing is the dominant technique for thick film fabrication, with electrodeposition, sol-gel deposition
and nanoparticle aggregation methods also used.

Screen printing of thick ZnO films [89] uses the starting material in the form of a paste made
up of ZnO powder with a solvent and a polymeric binder (e.g., polyvinyl alcohol or ethyl cellulose).
The paste is put on a mesh with a pre-patterned stencil, both lying on the substrate. The paste is
then moved along the mesh using a doctor blade and contacts the substrate in the openings of the
stencil. After the mesh and stencil are separated from the substrate, the fabricated thick film patterns
are dried around 100 ◦C and subsequently sintered (‘fired’) at around 500 ◦C to remove the organic
components and fabricate continuous films, often called ‘ceramics’. These materials are characterized
by a not-dense, porous morphology irrelevant of the obtained thickness (see Figure 6). The sol-gel thick
films are fabricated either by multiple spin-coating steps as described above or by dip-coating [90].
For electrodeposition, a longer deposition time is applied to obtain thick films. ZnO thick films
deposition is an established technology with few new developments reported recently, and its main
focus is on varistors and gas sensors using screen printing.
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3.5. Nanostructures and Nanoparticles

Nanostructures form the bulk of modern ZnO research trends due to their ease of fabrication
using a wide array of methods enabling the fabrication of nanostructures with many shapes and sizes.
Nanospheres [91], nanoplates [92], nanorods [93], nanotubes [94], nanoneedles [95], nanoribbons [96],
nanobelts [97], nanosheets [98], nanotrees [99], nanodendrites [100], nanoflowers [101], nanoshells [102],
nanocorals [103], nanovolcanoes [104], nanopyramids [105], nanocolumns [106], nanotowers [107],
nanocombs [108], nanorings [109], nanosprings [110], nanowires [111], nanocages [112], nanopencils,
nano-pin-cushion cactus [113], and more are all achievable, and the names describe their morphology
as a nanoscale version of human-perceivable shapes (see Figure 7). Most of the reports on ZnO
nanostructure formation in the literature are based on the chemical synthesis approach where Zn
salts (acetate, nitrate, etc.) are combined with bases to initiate a reaction leading to zinc hydroxide
formation. Said hydroxide is then oxidized thermally to create ZnO. The reaction usually occurs in a
solvent and the products can be collected as a powder or adsorbed onto a substrate. The previously
described sol-gel and spray pyrolysis methods are particular examples of this approach that can
be adopted to growing nanostructures by appropriately controlling the parameters of the solution
and drying. Solvent precipitation or solvothermal methods are very common to grow nanostructure
powders. Here, the metal salt is put in a solvent, usually with the addition of a compound with the OH
group (base, alcohol etc.) or with water [114] as the other reactant leading to zinc-hydroxide complex
formation (precipitation). The whole reaction can be heated in an external bath (solvothermal) and
sometimes under reflux to tune the reaction conditions. By controlling the type of reactants [115],
temperature [116], alkalinity [117] and type of solvent and its water content [118], different morphologies
can be obtained of the nanostructures. A variation of the solvothermal technique when the solvent is
water is commonly called hydrothermal technique, which should not be confused with the embodiment
of the hydrothermal technique described in the section on bulk ZnO growth due to the absence of
high pressures and autoclaves as well as the precursors being zinc salts, not ZnO. Depending on the
embodiment of the applied technique, the nanoparticles may need to undergo a final calcination step
to fully turn to ZnO [119]. Further changes can be done by exchanging thermal heating to microwave
heating in an embodiment called microwave solvothermal (hydrothermal) synthesis. The main
advantage of this technique is in the higher efficiency of heating using microwaves than in the case
of conventional heat transfer through conduction and convection while keeping higher uniformity
and shorter reaction times [120]. Sonochemical synthesis is another variation of the solvothermal
method of ZnO nanostructure formation that utilizes ultrasound mixing of the constituents of a typical
solvothermal solution through bubble formation and cavitation [121]. It should be noted here that the
ultrasonic deposition of nanostructures from a nanoparticle sediment is also used, where the ultrasound
electrode is shaped and placed in a manner allowing the cavitation of bubbles to be used as a jetting
medium for ZnO nanoparticles suspended in the working liquid. The jet drives the nanoparticles to a
substrate placed at the bottom thus forming a nanostructured film [122]. Electrospinning has been
shown as an effective technique for the fabrication of ZnO nanofibers. The starting material is a solution
of the ZnO precursor and a polymer in a solvent. Said solution is fed through a needle and a charged
thread is drawn from the meniscus in the needle upon applying an electric field. The material has a
very high aspect ratio and requires calcination to form polycrystalline ZnO fibers at 300–600 ◦C [123].
A similar technique, extrusion dripping is a new approach to form spherical monodisperse ZnO
nanoparticles, where the working precursor solution is controllable dripped from a needle into a
stabilizing polymer solution. After washing, the powders are calcinated at around 500 ◦C [124].
Another known technique for the preparation of nanopowders of ZnO is mechanochemical synthesis.
It is characterized by solid-state reaction of precursors during long-term mechanical grinding in a
ball mill. The advantage of this technique is the low temperature of reaction and almost no chemical
equipment needed, but the scale of the fabrication is rather low. Here, Zn salts and hydroxyl or carboxyl
group containing compounds are usually chosen as the precursors. The powders can be additionally
calcinated if the constituents require so and the impurities are removed by washing [125]. Pure and
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doped ZnO powders have also been prepared by means of combustion synthesis. Here the cation
precursors are metal salts (e.g., nitrates) and fuel (e.g., urea). After ignition at around 500 ◦C the salts are
oxidized and a very fine nanopowder is created [126]. A significant aspect of nanoparticle/nanopowder
synthesis has to be in their stability [127] and agglomeration management. Since for most applications,
the nanoparticles should be not agglomerated, the stabilization of ZnO nanoparticle suspensions is key,
either by capping ligands or polymer shells [128]. To avoid agglomeration, complex nanostructures
can also be formed by grafting the ZnO nanoparticles on polymers [129–131] either through surface
modifications and cross-linking of modified nanoparticles or by methods binding the nanoparticles
onto a polymeric template. Another route of high surface area ZnO nanostructure formation is the
pyrolysis of Zn-containing metal-organic frameworks (MOFs), where highly porous MOF templates
are synthesized solvothermally as described above and subsequently slowly pyrolyzed at 450 ◦C to
form ZnO nanocages [112].
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In addition to the chemical synthesis routes, physical methods are used successfully for
nanostructure fabrication. The most straightforward way to make zinc nanostructures is to oxidize
zinc metal. Even a controlled oxidation of appropriately deposited zinc templates can yield high aspect
ratio crystalline ZnO whiskers or nanowires [132]. Another simple technique with significant success in
fabricating ZnO nanostructures, especially nanowires, is the vapor transport technique, where the zinc
powder is vaporized in an evacuated quartz tube around 500 ◦C and the Zn vapor is transported by
carrier gas to a lower temperature region where the growth occurs on substrates through condensation
in the presence of oxygen [133]. The growth is controlled by the flow rate, pressure in the tube and the
temperature of the condensation region. A simple and relatively fast technique, the scale up of which
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is however limited by the internal diameter of the quartz tube and the radial temperature gradients
within. The substrate size problem can be however circumvented when flexible substrates are used
for the condensation. ZnO nanostructures can also be grown using thermal evaporation of solid ZnO
powders [134,135]. This technique is similar to the vapor transport approach and utilizes a quartz
tube reactor. However, the starting material is ZnO and due to this, the temperature in the tube has
to be much higher, around 1100 ◦C. There is however no base vacuum nor carrier gas needed. The
source material is deposited on the walls of the reactor or on the inserted substrates and therefore the
approach faces similar scale-up problems as the vapor transport technique with additional concerns
of the thermal stability of the used substrates. Although PLD and magnetron sputtering have been
used mostly for thin film and epitaxial ZnO growth, there are reports on nanostructure formation
using these approaches. It was shown that, using low pulse energies in PLD with a ZnO target,
nanorods can be grown on sapphire substrates [54]. MS has shown to be useful for the growth of
developed nanocoral hierarchical morphologies where the initial deposited structures are Zn and
have to be thermally oxidized at 400 ◦C to form ZnO. The deposition was done using a metallic zinc
target in a low pressure [67]. Additional report shows that by tuning the gas flow parameters, ZnO
nanocolumns can be grown at room temperature using MS [136]. Other reports on MS growth of
ZnO nanostructures utilize either pre-patterned templates that are overcoated by ZnO films [137], a
thermally-induced formation of the nanocolumns due to lower adatom coalescence during film growth
at certain temperatures [138] or they use catalyst beads to induce the vapor-liquid solid approach
(VLS) [139]. The VLS approach has been commonly used to obtain semiconductor nanowires with
MBE and MOCVD. It is a catalyst-based approach where a gold coated substrate is first pretreated
so that nm-scale gold beads form on it. During growth, these beads transform into droplets of an
Au/Zn eutectic. The material growth is facilitated directly under the droplet leading to formation of
nanowires with the eutectic caps. ZnO nanowires and nanobelts have been shown to be grown this way
using MBE [140,141] and MOCVD [142]. Catalyst-free nanowire growth has also been shown using
very thin ZnO buffer layers, which removes gold contamination from the nanowires [143]. ALD has
been also used to grown ZnO nanowires using gold catalyst [144]. An interesting technique for ZnO
nanostructure deposition is the low-energy cluster beam deposition technique (LECBD). The technique
uses a gas-aggregation source to form clusters of the material that will be deposited on the substrate, in
this case ZnO nanoparticles. The material source is either a sputtered target or a target hit by an impulse
laser, akin to the PLD approach, and the cluster size is determined by the pressure of the buffer gas in
the formation chamber. On the way to the substrate the particles are formed by the interaction with
one another in the presence of the buffer gas and the beam is conditioned by appropriate nozzles [145].
ZnO nanoparticles with several nm diameter can be deposited this way using a ZnO target, either as a
continuous thin film or as for decoration of other materials [146]. With so many different techniques,
and a material very sensitive to the fabrication conditions, the array of reported nanostructures is
massive, and their properties differ significantly from report to report. Even with the same morphology
class (e.g., nanoflowers) but different approaches to fabrication, the nanostructure properties can differ
due to different levels of background impurities. This, on one hand, showcases the wide possibilities
of ZnO applications and, on the other, limits the reproducibility and development of the knowledge on
ZnO and requires the researchers to have a significant understanding of their experiments, the purity
of their experimental environment as well as the field in general.

The current topics in the area of ZnO nanostructures are related mostly to their applications
in photocatalysis and gas sensing with additional focus on biochemical sensing application with
less emphasis on new fabrication approaches themselves. Additionally, magnetic doping in ZnO
nanostructures is still explored.

To summarize, based on the review of the fabrication techniques it can be seen that a general
division into more physical and more chemical methods is present. The former ones are mostly used
for epitaxial structure and thin film growth and are characterized by higher complexity, high purity
and dopant control and are mostly related to basic research on the properties of ZnO and its structures
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and on overcoming the p-type doping challenge. The starting materials for the synthesis include
elemental Zn and ZnO as well as oxygen. Some of the chemical methods are also used for the epitaxial
structure synthesis (MOCVD) and thin film deposition (ALD) and utilize the reactions between Zn
metalorganic precursors and water or ozone, but the vast majority of the chemical methods is applied
for the fabrication of nanoparticles/nanostructures and is based on Zn salts (acetate, nitrate, chloride
etc.) reacting with OH groups from appropriate bases in the presence of various solvents to form
nanostructures in solution or in suspension. The final product is obtained either by washing and
drying, or by coating on a substrate and annealing. Especially due to the difficulty in obtaining stable
p-type behavior in ZnO, the research in the physical groups has slowly been dying down with several
highly focused groups still pursuing the ultimate goal of truly p-type ZnO and the rest working to
utilize the n-type ZnO of high quality. In the realm of nanostructures however, the chemical synthesis
of ZnO is constantly gaining momentum due to the wide possibilities of synthesis and the very exciting
applications close to the chemical and biochemical device industries.

4. Review of Applications

Having presented a review of the fabrication techniques for different ZnO structures, this part
of the paper will go through the different existing and perceived applications of the material to give
a complete overview of the material’s potential. The division will be again based on the type of the
structure: epitaxial, thin film, thick film or nanostructure.

4.1. Epitaxial Structures

The effort into obtaining stable p-type material is intensive but still inconclusive, as discussed
further in the manuscript, therefore the epitaxial ZnO devices studied are either unipolar od grown
on p-GaN templates. However, the performance of the latter is not better than in the case of fully
GaN structures. Therefore, this text will focus only on purely ZnO devices. The substrates of choice
for epitaxial growth are either the popular but lattice mismatched sapphire or the lattice matched
ScAlMgO4 with less works on ZnO bulk substrates. The bandgap engineering of ZnO enables quantum
structures to be formed making use either of the built-in piezoelectronic polarization creating a
two-dimensional electron gas (2DEG) at the interface between ZnO and ZnMgO or the common
quantum well structures towards optically pumped light emitters. The structural quality of the
structures is very high, evidencing good maturity of epitaxial ZnO growth with an observation of both
integer [25] and fractional [147] quantum Hall effects in ZnO/ZnMgO structures with low temperature
electron mobility exceeding 180 000 cm2V−1s−1. ZnO/ZnMgO field effect transistors (FET) with the
2DEG channel have been reported with a 1.75 GHz cutoff frequency with a room temperature mobility
of 165 cm2V-1s-1, about an order of magnitude lower than for their AlGaN/GaN counterparts [148,149].
Optically pumped UV lasers have been demonstrated using ZnMgO/ZnO heterostructures [150] (see
Figure 8). and calculations show that, if realized, ZnMgO/ZnO room temperature quantum cascade
lasers would have double the efficiency of AlGaN/GaN devices with the same architecture [151]. At the
time however, these devices are more used for fundamental studies and cannot achieve maturity and
compete with the AlGaN/GaN technology.
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Figure 8. (a) Photoluminescence (1) and photoluminescence emission (PLE) (2) spectra measured in
a 3nm ZnO/ZnMgO SQW separate confinement double heterostructure. The room temperature PLE
spectrum is monitored from the “green” PL peak (2.393eV) for the sake of better resolution. (b) RT
spectra of stimulated emission measured at the excitation power density (from bottom to top): 436,
674, 872, and 1079 kW/cm2. The inset presents the PL intensity dependence on the excitation power.
Reprinted from [140], with the permission of AIP Publishing.

4.2. Thin Films

The applications of thin film ZnO are related to the large-scale deposition required and the basic
electrical and optical properties—therefore, the biggest areas of industrial interest lie in the n-type
ZnO:Al (AZO) for transparent electrodes as well as in optical antireflective coatings. While p-type
doping is a big hurdle for ZnO, n-type high efficiency doping is one of its strengths. With the rapid
development of solid-state lighting, photovoltaics, touch-screens and all technologies requiring one or
more parts of the active device part to be transparent, the market for transparent electrodes has been
steadily growing and offers an opportunity for ZnO:Al breakthrough. AZO has specific benefits over
the commonly used transparent electrode of indium tin oxide (ITO), such as a composition made of
abundant materials, controllable doping level and bandgap engineering possibilities that make it, in
principle more flexible in device applications. AZO has been shown as efficient transparent electrodes
in Si [152], perovskite [153] and polymer [154] solar cells, as well as organic [155] and inorganic [156]
LEDs, and as an antireflection coating for photovoltaic cells [157], also when not doped with Al [158]
(see Figure 9).

A topic broadly researched for undoped ZnO thin films is their application in FETs either in the
conventional top-gate and bottom-gate approaches [159], or with junction interface engineering for
increased mobility [160]. The piezoelectric properties of ZnO make it interesting for piezoelectric
nanogenerators [161] for energy harvesting as well as surface acoustic wave generators and filters that
are applied in a variety of sensors [162] and as microfluidic micropumps [163]. Memristors utilizing
ZnO films are also researched, where the ferromagnetic metallic film is often sandwiched between
two ZnO films and the magnetic switching occurs through interface oxidation of the Fe by creation
of oxygen vacancies in ZnO [164]. Finally, ZnO thin films are utilized in fundamental studies on
p-type [165–167] and magnetic doping [168–170] of the material due to the relative ease of introducing
the various dopant ions in the methods used for thin film deposition. However, care has to be taken
to obtain uniform doping without dopant segregation or other gran boundary issues. In all of the
above applications, the control of deposition process conditions may lead to an optimization of the
parameters of the fabricated films for a particular application, device topology, and deposition chamber
through changes in morphology, grain size, density, and chemical composition etc.
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Figure 9. (a) UV AlGaN/GaN LED structure used in the experiment; (b) irradiated power as a function
of diode current for the LED with Ni/Au, ZnO:Al and ZnMgO:Al contact electrodes; photographs
and plan-view schematics of the LEDs with a Ni/Au electrode (c) and a ZnMgO:Al transparent
electrode (d) showing increased output for the bandgap-engineered AZO electrode. Reprinted from
Borysiewicz, M. A., Wzorek, M., Gołaszewska, K., Kruszka, R., Pągowska, K. D., Kamińska, E.,
Nanocrystalline sputter-deposited ZnMgO:Al transparent p-type electrode in GaN-based 385 nm
UV LED for significant emission enhancement, Materials Science and Engineering: B 2015, 200, 93–98;
doi:10.1016/j.mseb.2015.06.013, Copyright (2015) with permission from Elsevier.

4.3. Thick Films

Thick films have often a different microstructure than thin films. The former are fully dense
and the grain boundary shape defines the morphology that is described. In the case of thick films,
which are usually fabricated with a nanoparticle starting material, depending on the deposition and
post-processing the film may be a dense one or a collection of nanoparticles with some degree of
inter-particle porosity. Thick dense ZnO films have been long commercially applied in varistors.
These electronic elements serve for the protection of electronic circuits from surge transient voltages
as the resistivity of the element decreases when the voltage rises. This nonohmic behavior yields
from interfacial grain-boundary states in the ZnO thick films [171]. Another interesting application
is in UV-blocking coatings, where the thick ZnO film is coated on a UV damage-prone substrate,
mostly a polymeric one [172]. Here, due to the desired optical transparency, the film should be also
dense, and the UV blocking is due to the absorption above the band gap of the semiconductor. FETs
from thick ZnO films have been made also by means of printing [173] and handwriting [174] on
flexible polymeric and paper substrates (see Figure 10). Thick films of ZnO particles have also been
applied in dye-sensitized solar cells (DSSCs) as a replacement to the TiO2 anode [175] which was
hoped to be beneficial due to 10 times higher electron mobility in ZnO as compared to TiO2. However,
the ZnO-based cells do not outperform TiO2 ones, which remain the standard for DSSCs. Another
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interesting application, similar to the one for nanostructures is in the screen printing of ZnO thick films
for gas sensors. The thick films are usually not fully dense and take advantage of any inter-particle
porosity for increased surface area and thus sensitivity, as the chemical reactions governing gas sensing
take part on the surface of each ZnO crystallite [176]. The gas sensors are usually resistance-based, in
the sense that the changes in the resistance of the ZnO electrode are measured under a set voltage.
The presence of oxygen in the atmosphere leads to the extraction of free electrons from the subsurface
region leading to the formation of a surface depletion region increasing the resistivity of the films
constituting of the surface-depleted particles. The presence of reducing gases leads to a decrease in the
surface-bound oxygen concentration, and therefore in a decrease in the measured resistivity. There are
also interesting solutions using ZnO-enhanced polymeric coatings, e.g., for protection from both water
and oil-like liquids [177]. Finally, bridging to the nanostructure world, ZnO nanoparticles are made
into coatings for bone implants to protect them from infection due to their antibacterial activity and
biocompatibility [178].Crystals 2019, 9, x FOR PEER REVIEW 16 of 30 
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Figure 10. (a) Schematic representation of the fabrication steps for the fully printed ZnO electrolyte-gated
transistors (EGTs). (b,c) and (d,e) Topographical views of the screen-printed layers using two different
ZnO inks. Reprinted from [173] under the CC BY 4.0 license.

4.4. Nanostructures

The wide array of achievable ZnO nanostructures has led to many groups with different
backgrounds working on them yielding a massive range of reported applications. The listing
of all of them lies beyond the scope and ability of this paper, however one of the most commercially
successful are the low-voltage phosphors [179] and some of the most currently researched ones include
gas sensors, photocatalytic degradation and biological-oriented applications. Gas sensors that use ZnO
nanostructures make use of the above described mechanism and try to find the optimal morphologies
or crystallite shapes for specific and fast responses [180–182] (see Figure 11). Likewise, in photocatalytic
applications, ZnO nanostructures are researched for breakdown of waterborne pollutants, in particular
persistent organic pollutants, that are not removable by traditional treatment processes [183]. It has
to be noted that, as usual for catalysts, the ZnO can be immobilized or grafted onto porous media to
achieve a larger effective surface available.
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Figure 11. The current response cycles of ZnO nanoplates (a), nanoflowers (b) and nanofibers (c) to
different concentrations of formaldehyde and the gas-sensing responses (d) with a bias voltage of 10 V
under 365 nm light irradiation at room temperature. Reprinted from Cui, J., Shi, L., Xie, T., Wang, D.,
Lin, Y., UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different
nanostructures, Sensors and Actuators B: Chemical, 2016, 227, 220–226; doi:10.1016/j.snb.2015.12.010,
Copyright (2016) with permission from Elsevier.

The biocompatibility of ZnO has generated interest in its applications in several areas related
to medicine. Nanoparticles form the basis of ZnO implant coatings as described above, but also
are investigated as biomarkers when doped with appropriate ions for selective luminescence [184].
Their cell-specific antibacterial activity (see Figure 12), very high for rapidly multiplying cells and
much lower for quiescent ones has led to them been explored as anti-cancer agents [185]. Targeted
drug delivery using ZnO nanoparticles is heavily explored [186] and, along with the anti-cancer
activity, has been showing promising results in oncological in-vitro trials [187]. A new direction of ZnO
nanoparticle study for biomedicine is its function as Zn source regulating insulin integrity in diabetic
patients, promising results have been seen in vivo in animals with lowering of blood glucose and
increase in insulin levels after administering of the ZnO nanoparticles [188]. The antimicrobial activity
of ZnO is also explored in the nanoparticle functionalization of textiles and other materials [189].

A whole area of piezotronics was conceived using ZnO nanostructures in the form of springs,
rods etc. on woven cloths. Here, the piezo-nanogenerators are used to harvest mechanical energy from
the environment, that is often wasted or not harnessed, such as human steps in corridors, automobile
traffic on the streets or even waves in the sea [190]. The same materials were shown to be promising
for energy storage by example of wearable woven high capacitance supercapacitors [191] and the
nanostructured ZnO was also reported as the basis of fully transparent stiff supercapacitors [192].
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5. Unresolved Problems

Two of the biggest problems in the technology of ZnO related mostly to the physical and chemical
worlds can be identified as: (1) the inability to obtain p-type conducting material that is highly
conducting, reproducible, stable in time and with a well identifiable origin and (2) a wide range of
synthesis conditions resulting in a larger-than-comprehensible zoo of various nanostructures with
differing properties. The first problem is the reason why, widely regarded as the material to make
GaN obsolete due to it’s much easier deposition and larger scale available, ZnO has since failed to
deliver on that promise, despite many years of intensive research from the scientific community using
a wide variety of state-of-the-art experimental growth and characterization techniques, supplemented
by computation studies identifying appropriate dopants and complex doping strategies. The second
one leads to a supersaturation of the literature with many similar reports on ZnO nanostructures,
yielding the field very difficult to follow thoroughly, lowering the reproducibility and impact of the
results, and also reducing the chances for new, valuable reports to be published. However, since the
ZnO nanostructure synthesis community can be regarded as the developing one, while the p-type
community as the diminishing one, the p-type doping problem will be discussed here in more detail
due to its gravity.

P-Type Doping Issue in ZnO

The p-type conductivity in zinc oxide has long been a subject of extensive research and debate,
however without significant consensus. Firstly, the potential acceptors are readily compensated by
intrinsic impurity donors and intrinsic stable deep donor states. Secondly, the candidate acceptors
have their ionization energies rather large in comparison to the ionization energies of shallow donors
in ZnO. An additional difficulty lies in the observed formation of a surface electron accumulation layer
in ZnO [193,194] which may render the conductivity measurements in the films if not performed with
high rigor. Among the potential acceptors are column IA (Li, Na, K) and IB (Cu, Ag, Au) elements
substituting Zn with ionization energies relative to the conduction band maximum calculated at
0.09 eV for LiZn, 0.17 eV for NaZn and 0.32 eV for KZn [195] and 0.25 eV–0.4 for AgZn [196–198], 0.35
for CuZn and 0.45 eV for AuZn [199]. Group IA elements have however small ionic radii and are more
prone to go into interstitial positions not substitution and such interstitial dopants have first to be
passivated before the ones occupying substitutional sites can be seen as acceptors. Group V elements
substituting O have also been considered as potential acceptors with ionization energies calculated at
0.40 eV for NO, 0.93 eV for PO, and 1.15 eV for AsO with nitrogen being later reported to be deeper
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at 1.3 eV [200] using a modified theoretical approach. These levels may be regarded as too deep to
provide efficient p-type conductivity in the material, however there have been reports on p-type ZnO
films achieved experimentally using group IA [201], Ag [202,203] and group V acceptors [204–208].
It remains still to be shown that these results are stable and reproducible with p-type conductivity in
ZnO being known to degrade over time [209,210]. Furthermore, no reliable results concerning ZnO
p-n homojunctions were reported. If, however, there are stable p-type ZnO films achieved using the
above described acceptors the effect may still be achieved by intentional and unintentional codoping
or dopant complex formation. Donor-acceptor codoping may enhance acceptor solubility at the same
time suppress the formation of compensating defects changing the growth conditions such as is the
case of hydrogen doping during p-GaN:Mg growth [211]. It is relevant to notice, that this codoping
may be intentional, e.g., using In [212], as well as unintentional due to the presence of impurities in the
film such as H. Dual acceptor doping was reported to yield p-type ZnO thin films with As-N [213] and
Li-N [214] dopants with acceptor activation energies in the latter at 95 meV. Generally dual acceptors
complex may lead to formation of hybrid bonding states closer to the valence band maximum than the
respective isolated acceptor states. Furthermore, although Ag-N pairs are expected to have deeper
states than the isolated elements, Ag-N-H triangles may yield lower energy levels at 0.14 eV [215],
showing that intrinsic impurities may have yet another way of influencing the conductivity of the
films. Recent reports suggest that a new route towards obtaining shallower acceptor energies in ZnO
is to use the traditional acceptors in ZnO alloyed by iso-valent elements such as Mg, Be, S, Se, or Te
due to their possibility to push up the conduction band minimum or valence band maximum energies
as well as the suppression of compensating intrinsic defects [216]. However, although there is much
research effort along the new pathways, still no breakthrough is visible. A final comment here should
be added here, that due to the problems with the electron accumulation layer, as well as grain boundary
defect and dopant segregation, the Hall effect measurements performed using van der Pauw Hall
configuration can lead to misleading effects. Therefore, it is highly desirable to perform experiments
using high quality ZnO single crystal structures with the Hall effect measurements supplemented by
Seebeck effect measurements, photoluminescence, and chemical characterization such as secondary
ion mass spectrometry with a final verification in device operation such as a p-field effect transistor or
a p-n/p-i-n diode.

6. Summary and Outlook

Zinc oxide has firmly marked its presence in the scientific community. It has not seen the
spectacular success as it was expected due to the inherent difficulties in obtaining complementary
conductivity types and the epitaxial n-type devices show limited performance in relation to the gallium
nitride counterparts. It has however seen a significant surge in interest in the chemical community
due to the wide variety of synthetic approaches it lends itself to and the broad array of achievable
nanostructure morphologies that can be applied in many devices. The works on overcoming the p-type
doping obstacle have died down in intensity but are still continued and should lead to a final success,
however most probably the material will not be pure ZnO but some sort of an alloy or highly defected
material due to the need to form complexes and co-dope. Opening up the way for p-type ZnO will
lead to a revival of interest in the material as the common p-n devices will be developed, most notably
for light emitters, which may finally realize the dream some have of phasing out GaN. The works
on the 2DEG devices are limited due to much lower mobilities than in AlGaN/GaN structures and
other ZnO film structures are mostly believed to be waiting for the stable p-type. ZnO single crystal
substrates are emerging as price and size competitive substrates for GaN-based devices, however the
growth processes for GaN are weary of oxide outdiffusion into the GaN layers, leading to uncontrolled
compensation of the grown structures. ZnO single substrates are therefore not seen as the game
changer for GaN devices in terms of lattice match and crystalline perfection, with most growth of the
nitride occurring on the highly mismatched sapphire, silicon carbide and silicon. On the other hand,
the nanostructured ZnO range is constantly developing and catching researcher interest. One of the
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most promising areas for these nanostructures is the sensor area where metal oxide devices are well
established and ZnO can find relatively easy implemented applications. However, the nanostructured
ZnO area seems to become saturated with reports where the different morphologies are often seen as
‘yet another’ report that does not contribute much to bridging the knowledge gap. It is probably the
role of individual researchers to move from the synthesis to serious device development utilizing ZnO
nanostructures to push for the market presence, otherwise the topic may be seen as stagnant. The need
for a rigorous research approach is evident both for nanostructures where the experimental details
have to be thoroughly controlled as for the films, where the various conductivity origins have to be
thoroughly understood and presented. To summarize, ZnO is now in the stage where the initial hype
has died down or is slowly saturating, and mostly comprehensive investigations are needed to push
the material to deliver on its promising capabilities and fulfill its potential.
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