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Abstract: Point defects are inevitable, at least due to thermodynamics, and essential for engineering
semiconductors. Herein, we investigate the formation and electronic structures of fifteen different
kinds of intrinsic point defects of zinc blende indium arsenide (zb-InAs ) using first-principles
calculations. For As-rich environment, substitutional point defects are the primary intrinsic point
defects in zb-InAs until the n-type doping region with Fermi level above 0.32 eV is reached, where the
dominant intrinsic point defects are changed to In vacancies. For In-rich environment, In tetrahedral
interstitial has the lowest formation energy till n-type doped region with Fermi level 0.24 eV where
substitutional point defects InAs take over. The dumbbell interstitials prefer < 110 > configurations.
For tetrahedral interstitials, In atoms prefer 4-As tetrahedral site for both As-rich and In-rich
environments until the Fermi level goes above 0.26 eV in n-type doped region, where In atoms
acquire the same formation energy at both tetrahedral sites and the same charge state. This implies a
fast diffusion along the t − T − t path among the tetrahedral sites for In atoms. The In vacancies VIn
decrease quickly and monotonically with increasing Fermi level and has a q = −3e charge state at the
same time. The most popular vacancy-type defect is VIn in an As-rich environment, but switches
to VAs in an In-rich environment at light p-doped region when Fermi level below 0.2 eV. This study
sheds light on the relative stabilities of these intrinsic point defects, their concentrations and possible
diffusions, which is expected useful in defect-engineering zb-InAs based semiconductors, as well as
the material design for radiation-tolerant electronics.

Keywords: point defects; formation energy; indium arsenide; first-principles; charged defects

1. Introduction

The III-V zinc-blende semiconductors are among the most important semiconductors, and have
recently received much attention since they have potential to be employed as base materials
for light-emitting diodes, infrared photodetectors, and spintronic devices, e.g., quantum-dot and
quantum-well applications [1–3]. The materials have been the subject of interest in a large variety
of experimental and theoretical investigations [4–6]. The III-V semiconductors are strong candidates
to be incorporated into high-performance opto-electronics due to their direct band gap and high
electron mobility [7,8]. In the family of III-V materials, InAs stands out because of its very high electron
mobility which can be as much as three times higher than those in InGaAs and GaAs [7,9]. Meanwhile,
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it also acquires a small direct band gap of 0.35 eV at room temperature and a low carrier effective
masses as well [10]. Together, these properties make InAs a promising candidate for incorporation
into next-generation nano-electronics [7]. Additionally, InAs has already been made successfully into
nanowires [11–13] and demonstrated to integrate well into novel field-effect transistor (FET) device
geometries [14–17].

Due to its important applications in electronics, extensive efforts have been put in studying the
electronic properties and performance of nanowire-based devices [18–20] and quantum dots [21]. It is
also desirable to understand the instabilities in these materials and devices under severe conditions
including radiation damage and their survivability under single event upset [22,23]. One of the
fundamental questions is the formation energy of point defects, which is essential to understand the
creation of defects from an energetics aspect. Moreover, thermodynamic arguments suggest that the
intrinsic or native defects will be inevitably present within a crystal at finite temperatures.

Under ambient conditions, InAs crystallizes into a cubic zinc-blende (zb) geometry with space
group F4̄3m (T2

d) [24]. The atomic structure of pristine zb-InAs in a conventional eight-atom unit
cell is depicted in Figure 1a, and we will limit our study to this type of crystalline structure. In this
computational study, we primarily focus on the formation energy of various point defects, providing
insights in understanding defect energetics within the bulk InAs crystal. For enhancing accuracy,
our calculations are performed at the Ab initio level using density-functional theory (DFT). Generally,
DFT describes reasonably well the structural properties, such as lattice constants and bulk moduli [25].
For a more accurate description of defect structures, we have carried out the investigation with
enlarged simulation cells (216 lattice sites systems) to ensure that the accuracy is within 0.02 eV/cell.
A 3 × 3 × 3 supercell with 108 In and 108 As atoms and referenced for defect calculations is illustrated
in Figure 1b. Our study aims to provide an extensive and accurate study of the intrinsic point defect
formation which is missed in the literature, e.g., a very recent computational study [26], but is highly
desirable.

(a) (b)

Figure 1. Atomic structures of pristine zinc blende InAs in (a) conventional unit cell with 4 In and 4 As
atoms and (b) 3 × 3 × 3 super unit cell with 108 In and 108 As atoms, referenced for defect calculations.
Here, the small yellow ball denotes As atoms, while the large silver balls are for In atoms.

The remainder of this paper is organized as follows. Section 2 presents the computational method,
including the formula for defect formation energy and the finite-size corrections, as well as the details
of DFT calculations. The results and analysis are presented in Section 3, discussing the Fermi-level
dependence of the formation energies of fifteen intrinsic defects in five groups under different chemical
environments and in various charge states. The conclusions are provided in Section 4.
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2. Methods

2.1. Defect Formation Energy

To reduce the artificial self-image interactions imposed by periodic-boundary conditions, defects
are generally modeled in an enlarged super cell. The selection of the super-cell size is a compromise
between the accuracy and the computing demands. In general, the formation energy for a defect
with charges in a semiconductor or an insulator has contributions from both ions and electrons. In a
super-cell formalism, for a defect or impurity X in a charge state q, its formation energy E f (Xq) is
computed by

E f (Xq, EF) = Etot(Xq)− Etot
bulk(q = 0)

− ∑
i

∆niµi + q(EVBM + EF) + Ecorr , (1)

where Etot(Xq) is the total energy of the super-cell containing the defect X in the charge state q,
Etot

bulk(q = 0) denotes the total energy of the pristine bulk supercell which is neutral and free of any
defects, ∆ni represents the number of atoms of species i added to (∆ni >0) or removed from (∆ni <0)
the supercell as a result of the defect formation, and µi = µbulk

i + ∆µi corresponds to the chemical
potential of element species i. When an atom is added to the system, the associated electrons are
also added to the system and contribute to the formation energy. Such a contribution is described by
the chemical potential of electrons, known as the Fermi level EF at zero temperature. Here, EF of a
semiconductor is treated as an independent variable that can take any value within the bandgap. It is
worth noting that EF is measured with respect to EVBM, the energy of valence band maximum (VBM)
of the bulk material.

Since the exact value of the chemical potential µi in Eqaution (1) cannot be determined, it is treated
as a parameter for the formation energy calculations. As such, the defect formation energies are given
in the limiting conditions of As-rich and In-rich growth regimes. In the As-rich regime, the chemical
potential of As atoms is assumed to be the value in bulk As, whereas in the In-rich (As-poor) regime,
it corresponds to the chemical-potential difference between InAs and bulk In (and vice versa for the
chemical potential of In). For an in-depth discussion of formation-energy calculations, the reader is
referred to the following papers [27–30].

The correction term Ecorr in Equation (1) is used to remove the errors introduced by finite size
(L) effects and periodic-boundary conditions, such as spurious overlaps of neighboring defect wave
functions and, in case of charged defects, Coulomb interactions between image charges. There is
still extensive debate on the performance and applicability of different schemes of corrections [31–33],
e.g., Makov and Payne (MP) scheme [34], alignment-only scheme [35], Freysoldt, Neugebauer and
Van de Walle (FNV) scheme [36], Lany and Zunger (LZ) scheme [37]. The mutual relation between
various schemes and defining the conditions for their applications are discussed by Komsa et al. [38].
The classical MP scheme is adopted in this paper and gives the correction terms as

Ecorr(q, L) = Ecorr
mono + Ecorr

quad = −αq2

εL
+

A3

L3 . (2)

Here, the first term is the monopole Madelung term [32], while the second term is the third-order
quadrupole electrostatic correction. In addition, α is the Madelung constant of the crystal, q is the
charge of a defect state, embedded in a uniform compensating background charge, with the unit of e
(the positive electron charge). ε is the static dielectric constant. The third-order parameter A3 is taken
as a fitting parameter.

Several early studies indicated that the quadrupole correction does not always improve results,
leaving its utility somewhat in question [39,40]. Therefore, in this paper we only consider the leading
term of the monopole Madelung correction. The Madelung constant α is 1.638 for zinc blende cubic
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lattice of point charges, and 2.8373 for simple cubic lattice of point charges. Within the approximation
of a single charge monopole, we adopt α = 2.8373 for the cubic system. ε = 15.15 is chosen for the
static dielectric constant of InAs.

2.2. Details of Density Functional Theory Calculations

The conventional unit cell contains eight atoms (four In and four As atoms). We used
a 3 × 3 × 3 supercell containing 216 regular lattice sites, which consists of 108 In and 108 As
atoms before including defects. The total energies of the system and forces on each atom are
characterized via first-principles calculations within the framework of DFT. All DFT calculations
are carried out with the Vienna Ab-initio Simulation Package (VASP) [41,42] which is based on the
Kohn-Sham density-functional theory (KS-DFT) [43,44] with generalized gradient approximation
for the exchange-correlation functionals [45] as parameterized by Perdew, Burke and Ernzerhof
(PBE) and revised for solids (PBEsol) [46]. The electrons explicitly included in the calculations are
the 4d105s25p1 electrons (13 electrons) and the 4s24p3 electrons (5 electrons) for each of In and As
atom, respectively. The core electrons are replaced by the projector augmented wave (PAW) and
pseudo-potential approach [47,48]. A plane-wave cutoff of 400 eV is used in the geometry relaxation to
reduce Pulay stress. For all other calculations, we employ a plane-wave cutoff of 240 eV with accurate
and dense k-mesh, where the irreducible Brillouin Zone is sampled with a Gamma-centered 3 × 3 × 3
k-mesh. Moreover, the calculations were performed at zero temperature. The criterion for stopping the
relaxation of the electronic degrees of freedom is set by requiring the total energy change to be smaller
than 10−5 eV. The optimized atomic geometry is achieved through minimizing Hellmann-Feynman
forces acting on each atom until the maximum forces on ions become smaller than 0.01 eV/Å.

After the geometry optimization of a perfect crystal, we introduce defects by either removal
of an appropriate atom to create a vacancy, or addition of an extra atom to create an interstitial in
a pre-specified position (tetrahedral or dumbbell). The resulting structures were allowed to relax
energetically, permitting atoms to move in all three dimensions. Here, all geometry optimizations were
performed using the classical conjugate gradient algorithm.

It is well known that GGA level exchange correlation functions severely underestimate the band
gaps of semiconductors, although the the total energy of the system could be obtained with fairly and
satisfactorily accurate [49]. More accurate bandgap prediction require higher level exchange correlation
functionals including GW and HSE methods [25]. However, because the defective systems are in
general contain hundreds of atoms, for example, about 216 atoms in this study, it is unfeasible to carry
out higher levels (GW, or HSE for example) calculations. Therefore, here we used the experimental
(0.417 eV) of the band gap throughout this study, as previous efforts [31,49,50].

3. Results and Analysis

3.1. Atomic Structures of Intrinsic Defects

Under the ambient condition, InAs, one of the most important III-V semiconductors, has a cubic
3C zinc-blende crystalline configuration, We first optimized the geometry of the pristine zb-InAs with
lattice parameters measured between 6.0584 Å and 6.060 Å [51]. Our result with the lattice parameter
of 6.058 Å from GGA-PBEsol agrees well with previous GGA-PBE results of 6.059 Å [20], PBE-PW91
results of 6.061 Å [52], and experiment of 6.0588 Å reported by Thompson, Rowe, and Bubenstein in
1969 [53].

We then generated fifteen different defect configurations for intrinsic point defects in zb-InAs ,
as depicted in Figure 2. Each defect configuration sits around the center of a 3 × 3 × 3 supercell with
216 lattice sites, which ensures that the interactions between images become negligible. All these defect
configurations are fully relaxed so that the maximum amplitude of the forces on every atom is less
than 0.02 eV/Å . The final relaxed atomic structures of these fifteen configurations in neutral states
(charge q = 0) are displayed in Figure 2. For denotation of these point defects, we take the form of
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the element or vacancy (V) with a subscript of the site. For example, As110 means a configuration
with an As atom on the <110> dumbbell position, and InAs means a configuration with an In atom
substituting for an As atom on the site.
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substituting for an As atom on the site.

Figure 2. The atomic structures of 15 intrinsic point-defect configurations of zb-InAs after full
geometry optimization according to the minimum energy in neural charge state: (a) As100, (b) As110,
(c) As111, (d) Ast, (e) In100, (f) In110, (g) In111, (h) InT , (i) AsIn, (j) VAs, (k) AsT , (l) VAsAsIn, (m) InAs,
(n) VIn, (o) Int. Here, the small yellow spheres denote As atoms, while the large silver spheres denotes
In atoms.

The defects in Figure 2 are divided into five groups. Group-1 is the dumbbell interstitial-type
point defects. The dumbbell configuration is characterized by two atoms of the same species sharing
one lattice site. There are three typical orientations: <100> , <110> , and <111> . Therefore, there
exist totally six dumbbell configurations: (a) As100, (b) As110, (c) As111, and (e) In100, (f) In110, (g) In111

as seen in Figure 2. Group-2 is the tetrahedral interstitial-type point defects. There are two kinds of
tetrahedral sites in a zb-InAs lattice: one is formed by four In atoms denoted as t site, and the other is
formed by four As atoms denoted as T site. Both In and As atoms could take either atom site, resulting
in four tetrahedral interstitial-type point defects: (d) Ast, (h) InT , (k) AsT , and (o) Int as presented in
Figure 2. Group-3 is the substitutional point defects, where a pristine As site is replaced by an In
atom, or vise versa. The two intrinsic substitutional point defects in zb-InAs are (i) AsIn and (m) InAs
as shown in Figure 2. Group-4 is the vacancy-type point defects. There are two types of intrinsic
vacancy-type point defects in zb-InAs : (j) VAs and (n) VIn, as displayed in Figure 2. The last Group-5

Figure 2. The atomic structures of 15 intrinsic point-defect configurations of zb-InAs after full geometry
optimization according to the minimum energy in neural charge state: (a) As100, (b) As110, (c) As111,
(d) Ast, (e) In100, (f) In110, (g) In111, (h) InT , (i) AsIn, (j) VAs, (k) AsT , (l) VAsAsIn, (m) InAs, (n) VIn,
(o) Int. Here, the small yellow spheres denote As atoms, while the large silver spheres denotes In atoms.

The defects in Figure 2 are divided into five groups. Group-1 is the dumbbell interstitial-type
point defects. The dumbbell configuration is characterized by two atoms of the same species sharing
one lattice site. There are three typical orientations: <100> , <110> , and <111> . Therefore, there
exist totally six dumbbell configurations: (a) As100, (b) As110, (c) As111, and (e) In100, (f) In110, (g) In111

as seen in Figure 2. Group-2 is the tetrahedral interstitial-type point defects. There are two kinds of
tetrahedral sites in a zb-InAs lattice: one is formed by four In atoms denoted as t site, and the other is
formed by four As atoms denoted as T site. Both In and As atoms could take either atom site, resulting
in four tetrahedral interstitial-type point defects: (d) Ast, (h) InT , (k) AsT , and (o) Int as presented in
Figure 2. Group-3 is the substitutional point defects, where a pristine As site is replaced by an In atom,
or vise versa. The two intrinsic substitutional point defects in zb-InAs are (i) AsIn and (m) InAs as shown
in Figure 2. Group-4 is the vacancy-type point defects. There are two types of intrinsic vacancy-type
point defects in zb-InAs : (j) VAs and (n) VIn, as displayed in Figure 2. The last Group-5 is a point-defect
complex such as VAsAsIn, which is formed by an As vacancy VAs combined with a substitutional As
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atom on the nearest-neighbor In site (AsIn), as demonstrated by Figure 2o. This defect is interesting
because an In vacancy VIn could attract a nearby As atom to fill it up, resulting in the VAsAsIn complex.
It is worth pointing out that the relaxed atomic structures of the dumbbell interstitial-type defect of
In111 and tetrahedral interstitial-type defect of AsT are also point-defect complexes, indicating they are
highly unstable. Next, we investigate the formation energies of all these different types of defects.

3.2. Defect Formation Energies

The formation energies of defects are computed according to Equation (1) for different charge
states from q = −4 to q = 4. In order to estimate the uncertainties caused by the finite size of supercells
as well as the spurious image interactions, we therefore evaluate the corrections, as detailed in Section 2.
As a result, we find the deviations up to 0.01 eV for defects with a charge of q = ±4. We regard these
values as unavoidable uncertainties which nevertheless do not significantly alter the main conclusions.

It is clear from the formula in Equation (1) that the formation energies of intrinsic defects will
depend on the choice of chemical potentials, i.e., the choice of reservoir with which equilibrium is
achieved. The chemical potentials are constrained by equilibrium conditions, which varies from case to
case, location to location, time to time. Here we only consider two extreme conditions: (1) As-rich and
(2) In-rich. Our results of the chemical potentials are computed as µbulk

As = −3.014 eV, µbulk
In = −2.389

eV, and µbulk
InAs = −6.574 eV.

Another factor we need to consider is the Fermi level EF, which is required for counting the
formation energies from the electrons’ contribution. However, the exact value of EF is very sensitive
to local environments including doping concentrations. Consequently, we have expressed the defect
formation energy as a function of EF which varies in the whole range of the electronic band gap.
The experimental value of the bandgap is 0.417 [51]. We adopted this value as the range for EF
in our study. In fact, the formation energy depends linearly on the Fermi level, as manifested in
Equation (1). The band-gap predicted from PBE solid is 0.142 eV, which is severely underestimated
from the experimental value of 0.417 eV, because the artificial self-interaction of electrons are not
excluded [54]. Here we have applied the “extended gap scheme” to map the calculated transfer levels
onto the experimental band gap [39]. The regime near the edge of the valence bands or VBM is the
p-type doped where EF is small. The regime near the edge of the conduction bands or CBM is the
n-type doped and EF is large and comparable to the band gap. The two two different regimes are
dislayed in the figures of the formation energies to mark the doping stage through out this study.

The formation energies of fifteen defect configurations in the dilute limit are computed using
the supercell method as aforementioned. It is worth mentioning that although the point defects are
generated in a non-equilibrium process, the relative formation energies of different configurations can
shed light on preferential locations and determine the accessible ground-state charge states, as well as
charge-state transition levels [54]. The formation energies as functions of EF in the As-rich and In-rich
environments for all these intrinsic defects in zb-InAs with all possible charge states from −4 to +4 are
displayed in the upper and lower panels of Figure 3, respectively. Our results show the distinctive
trend and significant variations of the formation energies under various charge states as functions of
EF for each point defect in both As-rich and In-rich environments. All calculated formation energies
lie between 1.0 eV and 9.0 eV. The general trend is that the formation energy decreases for negative
charge state (q < 0) but increases for positive charge state (q > 0) with increasing EF. The slope of
the formation energy as a function of EF is positively correlated with the charge state. For q = +4e,
the amount of the increment in formation energy is more than 1.5 eV as EF changes from VBM (0 eV)
to CBM (0.417 eV).
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Figure 3. Formation energies as functions of EF in the As-rich (a) and In-rich (b) environments for
fifteen different types of point defects in zb-InAs with all possible charge states from −4 to +4 +e.
The different doping regimes near valance bands (p-type) and conduction bands (n-type) are displayed.

The defect formation energy is the minimum energy for the generation of a defect. It is more
practical to analyze the minimum formation energies among all the possible charge states given the
fact that electrons have much higher mobilities (over three order of magnitude) than atoms. Therefore,
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we define the lowest formation energy of a defect as the minimum formation energy with respect to all
possible charge states with −4 ≤ q ≤ 4. We would focus on the discussion of the lowest formation
energies of these defects in the following subsections. For simplicity, the formation energy refers
to the lowest formation energy among various charge states hereafter until specified. Such lowest
formation energies as functions of EF for each of fifteen defective configurations are presented in
Figures S1 and S2 in the Supplementary Information for As-rich and In-rich environments, respectively.
Here, we only discuss the lowest formation energies for five selected defect groups in the following
subsections.

3.3. Formation Energy of Dumbbell Interstitials

As one atom squeezes itself into a lattice site taken by the same species in the pristine configuration,
a dumbbell interstitial-type point defect will be formed. We explicitly examined six dumbbell
interstitials of As100, As110, As111, In100, In110, In111 depicted in Figure 2. The configuration of In111

after relaxation becomes much different from the original < 111 > dumbbell structure (not shown here
but similar to Figure 2c for As111 with species switched). This result indicates that In111 is unstable
and will relax to a complex simultaneously. The formation energies of these six dumbbell interstitials
as function of EF in As-rich and In-rich chemical environments are shown in the left and right panel,
respectively, of Figure 4. In111 and As111 are found to have the two highest formation energies for both
cases, indicating that the < 111 > dumbbell configurations are unfavorable for either environment
and both In and As atoms.
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Figure 4. Formation energies as functions of EF under (a) As-rich and (b) In-rich environment for six
labeled dumbbell type point defects in zb-InAs with all possible charge states from −4 to +4 marked
with different colors.

For an As-rich environment, the As110 has over all the lowest energy among the six dumbbell
interstitials, followed by In110 and In100. It is worth noting that in the very light p-doped region
EF < 0.02 eV, In110 has slightly (<0.03 eV) lower formation energy than that of As110, which should
be indistinguishable within this DFT study. For an In-rich environment, the configurations with the
lowest three formation energies are In110, In100, and As110, similar to the As-rich case with switched
elements. Therefore, we can conclude that the dumbbell interstitials prefer < 110 > configurations in
zb-InAs under various charge states, chemical environment, and Fermi levels.

3.4. Formation Energy of Tetrahedral Interstitials

The tetrahedral sites are among the most energetic favorable sites for interstitials in diamond and
zinc-blende structures. The four intrinsic tetrahedral interstitials are studied explicitly for (1) As on
4-As formed tetrahedral site Ast, (2) As on 4-In formed tetrahedral site AsT , (3) In on 4-As formed
tetrahedral site Int, (4) In on 4-In formed tetrahedral site InT . Their corresponding formation energies
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are displayed in Figure 5 as functions of EF for both As-rich and In-rich chemical environments. In the
whole Fermi level, Int has the lowest formation energy for both chemical environments, followed by
InT . When EF > 0.26 eV, InT has the same formation energy as Int structure. In the very light p-doped
region of EF < 0.02 eV, Int prefers +4e charge states. With the increase of doping, Int prefers +3e
charge state in the p-doped region but +1e in the n-type doped region. The As tetrahedral interstitials
are much less common in all chemical environments because their formation energy are much larger
than that of In tetrahedral interstitials. AsT prefers +3e charge state, opposed to Ast with +1e or
neutral state, in both chemical environments. The energy difference between As and In tetrahedral
interstitials is larger in In-rich environment then that in As-rich environment.
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Figure 5. Formation energies as functions of EF in the (a) As-rich and (b) In-rich environment for four
tetrahedral-site interstitial type point defects in zb-InAs with all possible charge states from −4 to +4
marked with different colors. The y-axises are enlarged for viewing details.

The most interesting feature of the formation energy of tetrahedra interstitials is that for both
As-rich and In-rich environments, In atoms prefer the 4-As tetrahedral site until EF > 0.26 eV, where In
atoms have the same formation energy at both tetrahedral sites with the same charge state. The identical
formation energies and charge states suggest a fast diffusion for In atoms along the t − T − t − T
path among tetrahedral sites. Additionally, in an In-rich environment, the formation energies of In
tetrahedral interstitials are very low, less than 2 eV. Furthermore, for the p-doping case, Int has a small
formation energy of 1.3 eV and with the charge state of q = +3e. Here, the low defect formation
energy implies that the concentration of the corresponding defects is high under thermal equilibrium.
Therefore, in the In-rich environment, In atoms prefer a tetrahedral sites with fast diffusion along the
t − T − t path. The quantities that describe the diffusion dynamics, including diffusion energy barrier
and diffusion coefficients, deserve further study.

Finally, in In-rich environment, the formation energies of both AsT and Ast are much higher
(about 2 eV) than those of In counterparts, implying that As tetrahedral interstitials are energetically
unlikely to form. As a contrast, in the As-rich environment, all the formation energies of As and In
interstitials become close to each other. As a result, As-type tetrahedral interstitials are preferred in
this case with lower formation energies.

3.5. Formation Energy of Substitutionals

Next, we consider substitutional intrinsic point defects. Since we have two elements in the pristine
zb-InAs , there are only two substitutional intrinsic point defects, i.e., AsIn, and InAs. The formation
energies of these two substitutionals as functions of EF are displayed in Figure 6 for both As-rich and
In-rich chemical environments. As seen in this figure, the formation energies of substitutionals are
greatly affected by chemical environment. Under an As-rich environment, AsIn has a relatively low
formation energy, and is at least 1 eV lower than that of InAs. This result indicates that As atoms tend
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to replace In atoms at In lattice sites. As a result, the As concentration will be much higher. In addition,
As substitutionals favor neutral (q = 0) or lower positively charged states (q = +1,+2e).
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Figure 6. Formation energies as functions of EF in the (a) As-rich and (b) In-rich environment for two
substitutional type point defects in zb-InAs with all possible charge states from −4 to +4 marked with
different colors.

On the other hand, for an In-rich environment, In substitutionals are energetically favored, with its
formation energy only slightly lower than that of As substitutionals. Here, the difference of formation
energy between two substitutionals is much less than that in As-rich environment, implying that the
difference of concentrations between substitutionals will be much less than that in As-rich environment.

3.6. Formation Energy of Vacancies

Vacancy-type defects are known as the most common defects and play an important role in
vacancy-mediated diffusion and mass transports. There are two intrinsic vacancy-type point defects
in zb-InAs : VAs and VIn. We will only consider a point defect complex VAsAsIn. This complex is of
interest because it is closely related to VIn. When one vacancy is generated on an In atom site, one As
atom on a nearest-neighbor site might dissociate from the host and fill up this vacancy site, forming
the VAsAsIn complex. Here, we will not consider the As counterpart of VInInAs, since a previous study
has already reported that the defect complex of VInInAs is unstable and spontaneously relaxes back to
VAs single vacancy-type defect [26].

The formation energies of three vacancies related to intrinsic defects are plotted in Figure 7 as
functions of EF. For both As-rich and In-rich chemical environments, VIn decreases quickly and
monotonically with increasing EF. In addition, the charge state prefers q = −3e throughout the
whole range of EF. The decrease amounts are 1.2 and 1.3 eV for As-rich and In-rich environments,
respectively. Both VAs and VAsAsIn have a general trend of increasing in formation energy with EF
up to EF > 0.31 eV. The defect complex VAsAsIn has the highest formation energy among the three
vacancy defects, larger than 3 eV, indicating that this defect complex is much less favored than two
single-vacancy defects.
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Figure 7. Formation energies as functions of EF in the (a) As-rich and (b) In-rich environment for
two vacancy-type point defects in zb-InAs with all possible charge states from −4 to +4 marked with
different colors.

For the As-rich environment, VIn has the lowest formation energy among three types of
vacancy-related defects. The monotonic decrease of formation energy from 2.56 eV at EF = 0 to 1.35 eV
at EF = 0.417 eV indicates that VIn defects are energetically favored, especially for n-type doping.
For the In-rich environment, on the other hand, VAs has the lowest formation energy, till EF > 0.2 eV,
implying that As vacancy becomes the dominant vacancy in p-doped In-rich zb-InAs . For n-type
doped zb-InAs , In vacancy is the majority vacancy for all chemical environments.

3.7. Lowest 6 Formation Energy of Point Defects

After comparison of the formation energies within each individual defect group, it is insightful to
compare all fifteen intrinsic point defects as a whole. For that purpose, we plotted six lowest formation
energies of fifteen defect configurations in a dilute limit as functions of EF in Figure 8 under two
extreme chemical environments, i.e., As-rich and In-rich one. The six lowest formation energies ordered
from low to high belongs to AsIn, VIn, Int, InT , VAs, and As110 at EF = Eg/2 = 0.209 eV at As-rich
environment. The corresponding order is Int, InT , InAs, AsIn, VAs, and VIn at In-rich environment.
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Figure 8. Six lowest defect formation energies in zb-InAs as functions of EF in the (a) As-rich and (b)
In-rich environment with all possible charge states from −4 to +4 marked by corresponding colors.

The chemical environment greatly changes the formation energies of intrinsic point defects. Six
lowest formation energies in an As-rich environment differ from those in In-rich environment for
species, amount, and charge states. For As-rich environments, the lowest formation energy is 1.24 eV
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for AsIn at EF = 0 win the charge state of q = +2e, and 1.59 eV for EF > 0.22 eV in the charge-neutral
state. Our results qualitatively agree with an earlier report that the AsIn defect has the lowest formation
energy in arsenic rich environments with the same charge status but much less formation energy. [55]
The discrepancy might attribute to the small supercell (only 64 atoms) in their study. The second
lowest formation energy belongs to vacancy-type VIn with the formation energy as low as 1.31 eV at
EF = 0.417 eV. All the other point defects have their formation energies larger than 1.6 eV, indicating
much smaller concentrations than those of AsIn and VIn defects.

On the other hand, for an In-rich environment, the lowest formation energies are among In
tetrahedral interstitials and substitutionals. For p-type doping, Int interstitials are dominant with the
lowest formation energy for EF < 0.24 eV. Actually, its smallest value is 1.33 eV at EF = 0. When
EF > 0.24 eV, the lowest formation energy among all intrinsic point defects is switched to substitutional
InAs with the minimum value of 1.715 eV at EF = 0.417 eV and the charge state of q = −2e. It is worth
noting that a previous study reported that Int interstitials have lowest formation energy, ranged from
0.3 to 1.55 eV, through out the whole Fermi level. [55] The difference might be due to the much smaller
system size in the previous study.

Overall, the minimum formation energy of an intrinsic point defect is predicted to be 1.24 eV
in zb-InAs with AsIn configuration. This is a substitutional point defect in an As-rich chemical
environment with the charge state of q = +2e in light doping regime. The predominant substitutional
point defects are expected useful in designing radiation-tolerant electronics and opto-electronics,
because the ubiquitous point defects reduce the separation of Frenkel pairs, and therefore enhance the
recombination of point defects under irradiation of high-energy particles. To increase the radiation
resistance, it is suggested to choose an As-rich chemical environment.

As a side note, these point defects accessed via first-principles calculations here could
be detected experimentally by photo-luminescence (PL) or Electron paramagnetic resonance
(EPR) spectroscopy [21]. Further experimental investigations are desirable for their irradiation
tolerance study.

4. Conclusions

We have systematically investigated fifteen different kinds of intrinsic point defects in single
crystalline zb-InAs using a supercell method by means of first-principles calculations within the frame
of density functional theory. These fifteen types of intrinsic point defects have been characterized
as five groups, namely dumbbell interstitials, tetrahedral interstitials, substitutionals, vacancies,
and complex. We have examined the formation energies of all of these intrinsic point defects as
functions of Fermi level EF in both As-rich and In-rich chemical environments with charge states
ranging from −4e to +4e in the dilute-solution limit including finite-size corrections. All fifteen
types of defect formation energies are found greatly affected by chemical environments. For As-rich
environment, substitutional point defects are the primary intrinsic point defects in zb-InAs until the
n-type doped region EF > 0.32 eV is reached, where the dominant intrinsic point defects are changed
to In vacancies. For In-rich environment, In tetrahedral interstitial has the lowest formation energy
till n-type doped EF > 0.24 eV region where substitutional point defects InAs take over. The < 111 >

dumbbell interstitials are found unfavorable among all the point defects. However, they prefer < 110 >

configurations, instead. The most interesting feature of the tetrahedral interstitials is that for both
As-rich and In-rich environments, In atoms prefer the 4-As tetrahedral site Int up to EF > 0.26 eV,
where In atoms acquire the same formation energy at both tetrahedral sites and the same charge state.
The identical formation energies and charge states strongly suggest a fast diffusion process for In
atoms along the path of t − T − t among various tetrahedral sites. The In-rich chemical environment
greatly reduces the formation energy of In tetrahedral sites, implying much higher concentrations.
In addition, VIn decreases quickly and monotonically with increasing EF, and its charge state prefers
q = −3e throughout the whole range of EF. The most popular vacancy-type defect is VIn in an As-rich
environment, but switches to VAs in an In-rich environment at p-type doped region of EF < 0.2 eV.
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Our results shed light on relative stabilities of these intrinsic point defects, as well as their relative
concentrations and possible diffusions. This study is expected very insightful in defect-engineering
the zb-InAs based semiconductors, as well as material design for radiation resistant electronics and
opto-electronics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/1/48/s1:
Figure S1: Defect formation energy in As-rich environment, Figure S2: Defect formation energy in In-rich
environment.
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