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Abstract: Phenanthroline dioxothiadiazoles are redox active molecules that form stable radical
anions suitable for the construction of supramolecular magnetic materials. Herein, the preparation,
structures and magnetic properties of bis(triphenylphosphine)iminium (PPN) salts of [1,2,5]
thiadiazole[3,4-f][1,10]phenanthroline 1,1-dioxide (L), [1,2,5]thiadiazole[3,4-f][4,7]phenanthroline
1,1-dioxide (4,7-L), 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (BrL), and
5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (diBrL) are reported. The
preparation of new bromo derivatives of the L: 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline
2,2-dioxide (BrL) and 5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide
(diBrL)—suitable starting materials for further derivatization—are described starting from a
commercially available and cheap 1,10-phenanthroline. All PPN salts show antiferromagnetic
interactions between the pairs of radical anions, which in the case of PPN(diBrL) are very strong
(−116 cm−1; using Ĥ = −2JSS type of exchange coupling Hamiltonian) due to a different crystal
packing of the anion radicals as compared to PPN(L), PPN(4,7-L), and PPN(BrL).
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1. Introduction

Purely organic molecular materials that show electric conductivity and non-trivial magnetic
properties [1–4] are at the forefront of molecular materials science due to the tremendous flexibility
and tunability of organic molecules. Moreover, the potential synergy and interplay between the
properties of redox-active organic molecules and metal complexes open new routes to redox-active
multistable systems [5,6], single molecule magnets (SMMs) and single chain magnets (SCMs) [7–9], and
switchable magnetic conductors [10,11]. Achievement of such advanced properties requires, however,
an expansion of the library of easily accessible and electroactive molecules with relatively stable
radical forms. The most commonly studied radicals comprise α-diimines [12], dithiolenes [13–15],
oxolenes [16,17], nitronyl nitroxides [18,19], tetrathiafulvalene (TTF) derivatives [20], π-conjugated
macrocycles [21], TCNE and TCNQ derivatives [22–25], and verdazyl radicals [26].

Dioxothiadiazole-based electroactive molecules [27–33] and their complexes [34], on the other
hand, are still underrepresented, despite their obvious advantages: easy reduction to a stable radical
form, good coordination abilities (including bridging mode) and chemical tunability presented
here for the first time. In 2011, Awaga et al. studied [1,2,5]thiadiazole[3,4-f][1,10]phenanthroline
1,1-dioxide (L) in context of its electrochemical properties and synthesis of radical salts [35].
Later on, the same group reported a number of radical salts of L, which revealed efficient π-orbitals
overlap [36,37] transmitting efficient magnetic exchange interactions varying in strength from ferro- to
very strong antiferromagnetic.
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Some of us focused on the design of a dioxothiadiazole derivative with the ability to bridge two
3d metals [34]: [1,2,5]thiadiazole[3,4-f][4,7]phenanthroline 1,1-dioxide (4,7-L). The bridging potential
was tested resulting in the formation of a coordination chain ([CuCl2(4,7-L)]}n. Both L and 4,7-L reveal
very similar mild reduction potentials to the radical form

Introduction of substituents to tune the redox potential of organic molecules is a well-known
concept in electrochemistry [26,38]. We used the same approach to shift the reduction potentials
of phenanthroline based dioxothiadiazole derivatives towards less negative values. Herein, we
present two new members of the dioxothiadiazole family: 5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]
phenanthroline 2,2-dioxide (BrL) and 5,10-dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline
2,2-dioxide (diBrL) (Figure 1) and expand the library of potential spin carrying substrates by
preparing and investigating bis(triphenylphosphine)iminium (PPN) salts of L, 4,7-L, BrL and diBrL
anion-radicals. The synthetic scheme is presented concisely in Figure 1. Structurally, these compounds
reveal alternating cation–anion layers with the exception of the PPN(diBrL) which comprises chains
of π-conjugated molecules. The influence of the structural differences on the magnetic properties of
the organic salts is analyzed.
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PPN(diBrL) (a) and (b) structural formulas of PPN(L) and PPN(4,7-L). The reaction conditions and 

yields are as follows: (1) H2SO4(conc.), KBr, 3 h reflux, yield 95%; (2) H2SO4(98%), HNO3(99%), KBr, 16 h 

reflux, yield 9% for diBr-phendione and 22% for Br-phendione; (3) Ethanol(anh.), sulfamide (3 

portions), 7 d reflux, yield 91% for BrL, 35% for diBrL; (4) anhydrous acetonitrile, NaI, sonication; (5) 

THF, PPNCl, yield 11% for PPN(BrL), and 22% for PPN(diBrL).  

2. Materials and Methods 

Chemicals and reagents were of analytical grade unless otherwise stated. Inert 

PureSolv-MD-5/7 solvent purification system with alumina filled columns and argon gas was used 

for the deoxygenation and dehydration of acetonitrile and tetrahydrofuran. 

Figure 1. Schematic view of the synthetic route to BrL, diBrL and their radical salts: PPN(BrL),
PPN(diBrL) (a) and (b) structural formulas of PPN(L) and PPN(4,7-L). The reaction conditions and
yields are as follows: (1) H2SO4(conc.), KBr, 3 h reflux, yield 95%; (2) H2SO4(98%), HNO3(99%), KBr, 16 h
reflux, yield 9% for diBr-phendione and 22% for Br-phendione; (3) Ethanol(anh.), sulfamide (3 portions),
7 d reflux, yield 91% for BrL, 35% for diBrL; (4) anhydrous acetonitrile, NaI, sonication; (5) THF, PPNCl,
yield 11% for PPN(BrL), and 22% for PPN(diBrL).
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2. Materials and Methods

Chemicals and reagents were of analytical grade unless otherwise stated. Inert PureSolv-MD-5/7
solvent purification system with alumina filled columns and argon gas was used for the deoxygenation
and dehydration of acetonitrile and tetrahydrofuran. 1,10-phenantroline-5,6-dione (phendione) was
prepared according to literature procedure [39]. Some of the operations that required inert gas
atmosphere were performed using Inert PureLab HE glove box filled with Ar gas.

2.1. Syntheses

2.1.1. 3-Bromo-1,10-phenantroline-5,6-dione (Br-phendione) and 3,8-Dibromo-1,10-phenantroline-
5,6-dione (diBr-phendione)

Bromo derivatives of phendione were prepared according to the modified literature procedure [40].
1,10-phenantroline-5,6-dione (phendione) (20 g, 95.2 mmol) was dissolved in a chilled mixture of
120 mL 98% H2SO4 and 60 mL 99% HNO3 in a 500 mL round-bottom flask. KBr (20 g, 168 mmol) was
added and the mixture was refluxed at 120 ◦C overnight. After 16 h, the mixture was allowed
to cool down to room temperature and poured onto 500 mL of crushed ice, pH was carefully
adjusted to around 5 using 0.25 M NaOH solution. The mixture was extracted with chloroform
(6 × 150 mL) and the combined organic extracts were dried using MgSO4 and evaporated to
dryness. Column chromatography (SiO2, eluent: CHCl3:AcOEt:n-hexane, 10:2:1) afforded pure
3-bromo-1,10-phenantroline-5,6-dione (6.0 g, 22%), 3,8-dibromo-1,10-phenantroline-5,6-dione (3.0 g,
9%) and the unreacted phendione (0.9 g). 3-bromo-1,10-phenantroline-5,6-dione 1H NMR (CDCl3)
δ [ppm]: 9.14 (d, 1H, J = 2.5 Hz), 9.11 (dd, 1H, J = 4.8, 1.9 Hz), 8.60 (d, 1H, J = 2.5 Hz), 8.50 (dd, 1H,
J = 7.8, 1.8 Hz), 7.61 (dd, 1H, J = 7.9, 4.7 Hz); 3,8-dibromo-1,10-phenantroline-5,6-dione 1H NMR
(CDCl3) δ [ppm]: 9.15 (d, 2H, J = 2.3 Hz), 8.62 (d, 2H, J = 2.5 Hz). 1H NMR spectra can be found in the
Supplementary Materials.

2.1.2. 5-Bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-Dioxide (BrL)

3-bromo-1,10-phenantroline-5,6-dione (1.0 g, 3.5 mmol) was suspended in 35 mL of anhydrous
ethanol, sulfamide (0.56 g, 5.8 mmol) was added and the mixture refluxed for seven days. After 24 h,
another quantity (0.25 g) of sulfamide was added. Additions were repeated daily for one week. Next,
the mixture was allowed to cool down to room temperature and filtered. The yellow solid was washed
with two aliquots of ethanol (2 × 20 mL) and dried in vacuo to afford 1.1 g (91%) of the desired product.
1H NMR (CDCl3) δ [ppm]: 9.22 (d, 1H, J = 2.5 Hz), 9.19 (dd, 1H, J = 4.8, 1.8 Hz), 8.84 (d, 1H, J = 2.3 Hz),
8.72 (dd, 1H, J = 7.9, 1.8 Hz), 7.67 (dd, 1H, J = 7.9, 4.7 Hz). 1H NMR spectra can be found in the
Supplementary Materials.

2.1.3. 5,10-Dibromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (diBrL)

3,8-dibromo-1,10-phenantroline-5,6-dione (150 mg, 0.4 mmol) was suspended in 20 mL of
anhydrous ethanol, sulfamide (50 mg, 0.5 mmol) was added and the mixture refluxed for three
days. After 24 h, another quantity (50 mg) of sulfamide was added. Additions were repeated daily
for the duration of the synthesis. Next, the brownish-orange mixture was allowed to cool down to
room temperature and filtered to afford a brownish-yellow which was washed with two aliquots of
ethanol (2 × 10 mL) and dried under vacuum. The crude product was once more suspended in 20 mL
of the ethanolic solution of sulfamide (50 mg) and refluxed for another 24 h. The mixture was allowed
to cool down to room temperature and filtered. An orange solid was washed with 20 mL of ethanol,
10 mL of cold diethyl ether and dried under vacuum to afford 198 mg (17%) of the desired product.
1H NMR (CDCl3) δ [ppm]: 9.19 (d, 2H, J = 2.2 Hz), 8.42 (d, 2H, J = 2.3 Hz). 1H NMR spectra can be
found in the Supplementary Materials.
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2.1.4. Bis(triphenylphosphine)iminium [1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 1,1-Dioxide
H2O/(CH3)2CO Solvate (PPN(L))

This compound was obtained in a two-step procedure: the suspension of 310 mg of
[1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 1,1-dioxide (1.15 mmol) (L) in 90 mL of MeCN was stirred
overnight with 4 g of NaI (26.7 mmol) under ambient atmosphere. The resulting dark red precipitate
was filtered and washed with 60 mL of MeCN until the colour of the product Na(L) changed from
dark red to purple. The Na(L) was dried in vacuo for a few hours. Anal. calcd. for C12H7N4NaO2.5S
(Na(1,10-tdapO2)·0.5 H2O): C, 47.68; H, 2.33; N, 18.54; S, 10.61. Found: C, 47.75; H, 2.45; N, 18.55;
S, 10.20.

293 mg of Na(L)·0.5H2O was dissolved in 210 mL of acetone followed by the addition of 2.0 g
(3.6 mmol) of PPNCl and stirring for 40 min. After that time the purple/violet solution was filtered to
remove the precipitated NaCl. The filtrate was concentrated in a rotary evaporator to ca. 10 mL, which
was left undisturbed for 1 h for crystallization.

The product was collected by decantation, filtered and washed with a single drop of cold acetone.
Product was dried in air. Yield 660 mg (75%) based on Na(L). Anal. calcd. for PPN(L)·H2O·(CH3)2CO,
C51H44N5O4P2S (884.9 g/mol): C, 69.22; H, 5.01; N, 7.91; S, 3.62. Found: C, 68.97; H, 4.89; N, 7.96;
S, 4.06.

2.1.5. Bis(triphenylphosphine)iminium [1,2,5]thiadiazole[3,4-f][4,7]phenanthroline 1,1-Dioxide
(PPN(4,7-L))

Product was obtained similarly to PPN(L). The suspension of 63 mg (0.23 mmol) of
[1,2,5]thiadiazole[3,4-f][4,7]phenanthroline 1,1-dioxide (4,7-L) in 35 mL of dry MeCN was stirred
overnight under an inert atmosphere with a 1.0 g (6.6 mmol) of NaI. Next day the dark violet
precipitate was separated from the mother solution by filtration and washed with dry MeCN (ca.
20 mL). The powder attains violet colour after washing. After vacuum drying for a few hours the
30 mg of crude Na(4,7-L) was used to obtain PPN(4,7-L). This was achieved by stirring MeCN (135 mL)
suspension with 210 mg of PPNCl for two hours. The NaCl precipitate was filtered off and a clear violet
solution was quickly condensed on a rotary evaporator to ca. 6 mL and transferred to the Ar-filled
glovebox, where it was left for 2 h for crystallization. Large elongated block crystals were separated
from the mother suspension by decantation, filtered and washed with a single drop of cold MeCN.
Yield 49 mg (59% based on Na(4,7-L)). Anal. calcd. for PPN(4,7-L), C48H36N5O2P2S (808.8 g/mol):
C, 71.28; H, 4.4; N, 8.66; S, 3.96. Found: C, 70.67; H, 4.30; N, 8.62; S, 4.12.

2.1.6. Bis(triphenylphosphine)iminium 5-Bromo-[1,2,5]thiadiazole[3,4-f][1,10]phenanthroline
1,1-dioxide THF Solvate (PPN(BrL))

350 mg of BrL (1.0 mmol) and 2.0 g of NaI (13.3 mmol) was sonicated for 20 min in anhydrous
acetonitrile (50 mL). During sonication the yellow suspension turned dark violet due to the reduction
of BrL to a radical anion BrL•− by iodide. The mixture was filtered and the dark violet precipitate was
washed with three portions of anhydrous acetonitrile (3 mL each). The sodium salt Na(BrL) was dried
under vacuum for 1 h (300 mg, 81%) and then suspended in dry tetrahydrofuran (50 mL). Solid PPNCl
(1.15 g, 2.0 mmol) was added resulting in the color change of the liquid phase to deep violet and the
precipitation of white sodium chloride. NaCl was removed by filtration and the violet THF solution
was concentrated by rotary evaporation to ca. 15 mL. Large crystals of the THF solvate were obtained
by slow vapor diffusion of dry diethyl ether onto the THF mother solution (two days). The violet
crystals (ca. 1–3 mm) were separated by hand under the microscope from the smaller colorless crystals
of PPNCl. Yield 90 mg (11% based on BrL). Anal. calcd. for PPN(BrL)·2THF, C56H51BrN5O4P2S
(1032.0 g/mol): C: 65.18, H: 4.98, 6.79, S: 3.11. Found: C: 65.49, H: 5.15, N: 6.58, S: 2.71.
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2.1.7. Bis(triphenylphosphine)iminium 5,10-Dibromo-[1,2,5]thiadiazole[3,4-f][1,10]phenanthroline
1,1-Dioxide (PPN(diBrL))

150 mg of diBrL (0.35 mmol) and 1.0 g of NaI (6.6 mmol) was sonicated for 10 min in anhydrous
acetonitrile (20 mL). During the sonication, the yellow suspension turned dark violet due to the
reduction of diBrL to a radical anion by iodide. The mixture was filtered and the dark violet precipitate
was washed with three portions of anhydrous acetonitrile (2 mL each). The sodium salt Na(diBrL)
was dried under vacuum for 1 h (95 mg, 60%) and then suspended in dry tetrahydrofuran (50 mL).
Solid PPNCl (0.4 g, 0.7 mmol) was added in small portions resulting in the color change of the liquid
phase to deep violet and the precipitation of sodium chloride. NaCl was removed by filtration and
the violet THF solution was evaporated to dryness. The crude PPN(diBrL) was dissolved in ca.
15 mL of MeCN. Then the solution was evaporated to ca. 2 mL. The sample was left for an hour for
crystallization and then the crystals were separated and purified similar to PPN(4,7-L). Yield 45 mg
(22%). Anal. calcd. for PPN(diBrL), C48H34Br2N5O2P2S (966.6 g/mol): C: 59.64, H: 3.55, N: 7.25, S:
3.32. Found: C: 59.32, H: 3.46, N: 7.15, S: 3.05.

2.2. Other Physical Measurements

IR spectra were collected using Nicolet iN10 MX FT-IR microscope in the transmission mode.
Cyclic voltammetry was performed using Mtm-anko M-161C electrochemical analyzer. Glassy carbon
electrodes were used in both experiments. 1H NMR spectra were measured using Bruker Avance II
300 MHz spectrometer. Elemental CHNS analysis were done with ELEMENTAR Vario Micro Cube
CHNS analyzer.

2.2.1. Magnetic Measurements

The magnetic measurements were carried out using Quantum Design MPMS3 Evercool SQUID
magnetometer. The samples were sealed in HDPE foil bags to protect them from the crystallization
solvent loss. Corrections for the diamagnetism of the sample holder and the compounds themselves
(Pascal constants) were applied [41].

2.2.2. X-ray Diffraction Data Collection/Refinement

Single crystal X-ray diffraction (XRD) data was collected on a Bruker D8 Quest Eco diffractometer
equipped with Photon 50TM CMOS detector and Mo-Kα Triumph® monochromator. The data were
collected at low temperature using Kryoflex II low-temperature device. Data were integrated using
SAINT [42], while multi-scan absorption corrections were applied using SADABS or TWINABS [43,44],
all incorporated into APEX3 environment [45]. The structures were solved using SHELXT [46] and
refined with SHELXL [47,48] software within the Olex2 package [49]. All hydrogen atoms were
refined using riding model, and the non-hydrogen atoms were refined anisotropically using weighted
full-matrix least-squares on F2. Disorder of THF crystalline solvent molecules in PPN(BrL) was refined
using constraints. Ideal THF geometry was supported by IMGL library [50]. The occupancy factors of
THF molecules are changed so that the refinement could be stable. The positions should not be taken
as perfect because the model shows just one possibility. One of the phenyl rings of PPN cation is also
strongly disordered, apparently over four positions, but it was refined using only two of them, where
positive electron densities were the strongest. PPN(diBrL) was refined as two component twin with
scales 0.6227(6). In case of PPN(L) the occupation factor of the water oxygen atom was fixed at low
value due to disorder of the solvent molecules.

CCDC 1882326-1882331 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail:
deposit@ccdc.cam.ac.uk).

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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2.2.3. Calculation Details

Density functional theory (DFT) calculations were done in Gaussian09 program [51]. For each
molecule hybrid Becke 3-parameter Lee-Yang-Parr (B3LYP) [52,53] functional with 6-311++G(2d,2p)
basis set was used [54]. Single crystal XRD structural models were taken as a starting geometry. No
structural constraints were imposed on any atom.

3. Results

3.1. Syntheses

The Br-phendione and diBr-phendione were synthesized by bromination of phendione using
KBr in the mixture of concentrated HNO3 and H2SO4 acids (Figure 1). The products were purified
by column chromatography. Both were further used in the procedure of attaching the thiadiazole
dioxide functional group to the phenanthroline backbone. This includes the reaction of alpha-diketone
group with sulfamide in the anhydrous boiling ethanol (Figure 1). In contrast to the preparation of
L or 4,7-L, reactions of sulfamide with Br-phendione and diBr-phendione require longer time and
additional quantities of sulfamide added every 24 h of the reaction under reflux to achieve good yields.
The synthesis of all PPN radical salts was carried out in two steps. In the first step, the reduction of
the respective dioxothiadiazole derivative with sodium iodide led to the quantitative precipitation
of poorly soluble sodium salts. In the second step, the metathesis of the obtained sodium salts using
PPNCl resulted in the final PPN salts, which are very well soluble in THF, acetonitrile, dichloromethane,
and chloroform (Figure 1).

3.2. BrL and diBrL—Crystal Structures and DFT Calculations

Crystal structures of BrL and diBrL were determined using single crystal X-ray diffraction
(Table S1 in the Supplementary Materials). BrL crystallizes in the P-1 space group while diBrL
in P21/c. The asymmetric units of both compounds are presented in Figure 2a,b. BrL and diBrL
molecules are equipped with bromine substituents which change the crystal packing of the molecules
as compared to the non-substituted L. BrL forms π-π stacks along “a” crystallographic direction with
the parallel off-centered arrangement of the molecules forced by steric hindrance of the SO2 group
(Figure S1a in the Supplementary Materials). The plane of each molecule in a stack is inclined relative to
the direction of stack propagation. The structure of BrL seems to be similar to that of L with the layers
of molecules forming a two-dimensional (2-D) network of double N···H-C hydrogen bonds (donor
acceptor distance of 3.525 Å on one side of the molecule and 3.642 Å on the other). The presence of the
Br substituent in BrL disrupts the H-bonding and the molecular packing as compared to L. One side of
the molecule forms slightly different interactions, namely N···S close contacts (3.331 Å) which replace
the N···H-C bonds (Figure S1b in the Supplementary Materials). Also, the donor acceptor distances in
N···H-C hydrogen bonds of BrL are a little shorter (3.467 Å) compared to those in L. The molecules of
BrL do not lie completely flat, but are slightly tilted directing the bromine atoms slightly below the
plane of the neighboring molecule.

The structure of the diBrL is completely different. The chains of parallel hydrogen bonded dimers
interacting with each other through π-orbitals and bromine atoms are easily distinguished (Figure S2
in the Supplementary Materials). The neighboring chains run in two perpendicular directions, and the
source of closest contacts between them are N and O atoms of the dioxothiadiazole groups.

The DFT calculations (B3LYP exchange-correlation functional; 6-311++G(2d,2p) basis set) were
performed for BrL and diBrL. Noteworthy, the inspection of molecular orbitals revealed that low-lying
LUMO is not spread over the bromine atoms in contrast to the HOMO (Figure 3). The LUMOs for both
BrL and diBrL molecules exhibit an antibonding character at the N-C bonds of the dioxothiadiazole
group (nodal plane) and a bonding character at the dioxothiadiazole’s S-N and C-C bonds, which is
consistent with the observed shortening and elongation of the respective bonds discussed below.
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(f) PPN(diBrL); crystallization solvent molecules and disorder treated parts omitted for the sake
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Figure 3. Results of the DFT B3LYP calculations results: HOMO of diBrL (a), LUMO of diBrL (b),
HOMO of BrL (c), and LUMO of BrL (d).

3.3. BrL and diBrL—Cyclic Voltammetry

Electrochemical properties of brominated BrL and diBrL are similar to the previously reported
L [35] and 4,7-L [34] featuring two distinct reduction processes (Figure 4). The first reduction leads
to an anion radical and appears at ca. −441 mV vs Fc+/Fc. The second one results in a diamagnetic
dianion and appears ca. 800 mV below the first reduction. The exact values of the reduction potentials
are presented in Table 1. The first reduction potential of diBrL (−441 mV) and BrL (−471 mV) are
shifted to less negative values as compared to L (−499 mV) and 4,7-L (−520 mV). This trend is also
reflected in the HOMO-LUMO gap, which is much smaller for the brominated species (Table 1).
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Table 1. Reduction half-potentials and HOMO-LUMO gap (∆) of the dioxothiadiazole-based molecules.

Compound Reduction Wave No. Eox/mV Ered/mV E1/2/mV ∆/eV Ref.

diBrL
1 −387 −495 −441 3.183

this work2 −1139 −1279 −1208

BrL
1 −405 −538 −471 3.352

this work2 −1166 −1324 −1245

L
1 −499 3.562

[35]2 −1320

4,7-L 1 −520 3.583
[34]2 −1229

3.4. PPN Radical Salts—Crystal Structures

Structural X-ray diffraction data revealed that PPN(L), PPN(BrL), and PPN(diBrL) crystallize in
P-1 while PPN(4,7-L) crystallizes in P21/c space group (Table S1 in the Supplementary Materials).

The asymmetric unit (ASU) of PPN(diBrL) contains two anion-radicals and two PPN+ cations
while ASUs of PPN(4,7-L), PPN(L), and PPN(BrL) comprise only one respective radical anion and
one counter-cation (Figure 2). PPN(4,7-L) and PPN(diBrL) crystallize without solvent molecules
while PPN(L) incorporates one acetone and one water molecule and PPN(BrL) crystallizes with
tetrahydrofuran molecules.

In terms of crystal packing PPN(L), PPN(BrL), and PPN(4,7-L) exhibit alternating anion-cation
layered arrangement presented in Figure 5. Due to this particular arrangement the radical anions
in these three organic salts exhibit negligible π-orbital overlap and a number of N···H-C hydrogen
bonds (Figure 5) that connect neighboring anions in pairs as indicated in Figure 5 by the green
ovals. Crystal packing of PPN(diBrL) is completely different and comprises infinite π-π stacks of
radical anions separated by PPN cations (Figure 5d). The shortest D···A (H-bond) or π-π contacts
connecting the dioxothiadiazole groups, where the spin density is the highest, is as follows: 3.403 Å
(PPN(4,7-L)), 3.520 Å (PPN(BrL)), 3.455 Å (PPN(L)) and 3.322 Å (PPN(diBrL)). Please note, that in the
case of (PPN(4,7-L)) the separation of dioxothiadiazole groups is the most efficient, despite the shortest
D···A distances.

As already mentioned, L•− and BrL•− anion radicals in their respective PPN salts form almost flat
anionic layers (Figure 5b,c) while 4,7-L•− layer is significantly corrugated (as in corrugated cardboard)
(Figure 5a).

Similarly to previously reported dioxothiadiazoles, a one electron reduction results in the
contraction of the C-C and S-N bonds (by ca. 0.06 Å and 0.04 Å, respectively), as well as the elongation
of C=N and S=O (by ca. 0.05 Å and 0.015 Å, respectively). These results line up with the shape
of the LUMO, which is occupied in the radical form [34,35,37]. These particular bond lengths are
indicative of the oxidation state of the molecule. Table 2 compares bond lengths of neutral and radical
dioxothiadiazole-based compounds presented here.

As can be seen from Table 2, the bond lengths in all presented compounds do not deviate from those
of previously reported dioxothiadiazoles. Most notable difference between neutral and anion-radical
molecules are found in C-C bond lengths which are shortened due to one electron reduction by more
than 0.06 Å as compared to the neutral form (from ca 1.51 Å to ca. 1.44 Å, respectively).



Crystals 2019, 9, 30 11 of 18

Crystals 2018, 8, x FOR PEER REVIEW  11 of 18 

 

 

Figure 5. Packing diagrams of the layered structural models of (a) PPN(4,7-L); (b) PPN(BrL); (c) 

PPN(L); and (d) PPN(diBrL); Cationic PPN+ layers are marked with blue colour and anionic radical 

layers are marked with yellow for clarity. On the right side is the top view of a single radical anion 

layer. Note that the anionic layers of PPN(4,7-L) as well as PPN(BrL) are not completely flat, as the 

radical anions are slightly tilted. The green ovals indicate the shortest D∙∙∙A (H-bond) or π-π contacts 

connecting the dioxothiadiazole groups: 3.403 Å  (a), 3.520 Å  (b), 3.455 Å  (c), and 3.322 Å  (d). 

Figure 5. Packing diagrams of the layered structural models of (a) PPN(4,7-L); (b) PPN(BrL);
(c) PPN(L); and (d) PPN(diBrL); Cationic PPN+ layers are marked with blue colour and anionic
radical layers are marked with yellow for clarity. On the right side is the top view of a single radical
anion layer. Note that the anionic layers of PPN(4,7-L) as well as PPN(BrL) are not completely flat,
as the radical anions are slightly tilted. The green ovals indicate the shortest D···A (H-bond) or π-π
contacts connecting the dioxothiadiazole groups: 3.403 Å (a), 3.520 Å (b), 3.455 Å (c), and 3.322 Å (d).
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Table 2. Selected bond lengths (in Å) of BrL, diBrL vs. PPN(4,7-L), PPN(BrL), PPN(L), PPN(diBrL).

Compound S=O S-N C=N C-C

Br-L 1.423(4)
1.429(4)

1.693(5)
1.695(4)

1.284(7)
1.293(6) 1.505(7)

diBr-L 1.421(4)
1.426(4)

1.693(4)
1.696(5)

1.289(7)
1.284(7) 1.514(7)

av. in neutral molecules 1.425 1.694 1.288 1.510

PPN(4,7-L•) 1.439(2)
1.436(2)

1.648(2)
1.657(2)

1.333(2)
1.333(2) 1.443(2)

PPN(Br-L•) 1.437(3)
1.433(3)

1.649(3)
1.660(3)

1.333(5)
1.332(5) 1.441(5)

PPN(1,10-L•) 1.442(2)
1.448(2)

1.664(2)
1.664(3)

1.342(3)
1.340(3) 1.443(4)

PPN(diBr-L•) Molecule B 1.443(4)
1.443(4)

1.646(5)
1.660(5)

1.336(7)
1.333(8) 1.452(8)

PPN(diBr-L•) Molecule A 1.442(4)
1.444(4)

1.656(5)
1.660(5)

1.338(8)
1.333(8) 1.435(8)

av. in radical anions 1.441 1.656 1.335 1.443

3.5. PPN+ Radical Salts—Magnetic Properties

The results of magnetic measurements are presented in both Figure 6 and Table 3. In all three
salts that reveal layered structures (PPN(4,7-L), PPN(L), and PPN(BrL)) the χT(T) curves show very
similar behavior. This dependence is constant above ca. 60 K and takes the values which are close to
the theoretical 0.375 cm3 K mol−1 spin-only value assuming S = 1

2 and g = 2.0 (Table 3 and Figure 6).
Below ca. 60 K the χT(T) decreases and plummets below 15 K achieving values close to zero due to
antiferromagnetic interactions between the radical anions. M(H) curves at 1.8 K differ slightly among
these three compounds. The M(H) are slowly, almost linearly increasing with field (Figure 6b), until
at some point the increase becomes steep, which again is typical for weak local antiferromagnetic
interactions between neighboring spins. For PPN(4,7-L) the inflection point is located around 4 T, while
for PPN(L)—around 6 T and for PPN(BrL) well above 7 T. The M(H) dependencies do not saturate
at 7 T and the magnetization values at this field decreases along the series PPN(4,7-L), PPN(BrL),
PPN(L), suggesting that the strongest magnetic interactions operate within the PPN(L) salt.

Table 3. Values of χT at 300 K and 1.8 K, M(H) at 7T and the magnetic exchange constants J obtained
from fitting of M(H) and χT(T) in the whole temperature range using PHI software [55].

Compound χT(T) @300K/cm3 K mol−1 χT(T) @80K/cm3 K mol−1 χT(T) @1.8K/cm3 K mol−1 M(H) @7T/µB J/cm−1

PPN(4,7-L) 0.374 0.377 0.075 0.76 −2(1)
PPN(BrL) 0.374 0.363 0.024 0.20 −4(1)

PPN(L) 0.367 0.352 0.006 0.07 −5(1)

PPN(diBrL) 0.313 * 0.200 0.157 ** 0.37 −116(10)
−0.6(5)

* at 340 K; ** at 7 K.

χT(T) curve for PPN(diBrL) (Figure 6 black dots), on the other hand, decreases in the whole
340–80 K temperature range from 0.313 cm3 K mol−1 at 340 K to 0.196 cm3 K mol−1 at 80 K with a
plateau-like feature around 0.186 cm3 K mol−1 below this temperature. The signal starts to decrease
again below 30 K and reaches a minimum of 0.158 cm3 K mol−1 at 7 K. Near 2.0 K additional
small increase of the χT(T) signal is observed which might be ascribed to very weak ferromagnetic
interactions between the radical anions. The M(H) curve increases in a Brillouin like fashion reaching
the value of 0.37 µB (well below the expected 1.0 µB for S = 1

2 and g = 2.0), but close to 0.5 µB which
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suggests the presence of strong antiferromagnetic interactions between half of the radical anions in
the compound.

The magnetic data were fitted assuming local antiferromagnetic interactions between the pairs of
anion radicals which in the case of PPN(4,7-L), PPN(L), and PPN(BrL) are transmitted through C-H···N
hydrogen bonds (Figure 5) and for PPN(diBrL) through the π-π contacts with different interplane
distances (two types of radical pairs with two types of magnetic interactions (one very strong and the
other very weak). Figure S8 presents the magnetic coupling scheme for all four compounds. The results
of the simultaneous fitting of χT(T) and M(H) (PHI program [55]) using the following Hamiltonians
(Equation (1) for PPN(4,7-L), PPN(L), and PPN(BrL) and Equation (2) for PPN(diBrL)) are collected
in Table 3 and presented as solid lines in Figure 6

Ĥ = −2J12·S1·S2 + µB·g1·S1·B+ µB·g2·S2·B (1)

Ĥ = −2J12·S1·S2 + −2J34·S3·S4 + µB·g1·S1·B+ µB·g2·S2·B+ µB·g3·S3·B+ µB·g4·S4·B (2)

where S1 = S2 = S3 = S4 = 1
2 are the spin numbers of the radical anions, g1 = g2 = g3 = g4 = 2.0

is the g-factor, µB is the Bohr magneton, B is the magnetic field induction and J12 and J34 are the
superexchange coupling constants—the fitting parameters with J12 >> J34.

The magnetic interaction pathways between pairs of radical anions are justified by the presence
of hydrogen bonded supramolecular pairs highlighted in Figure 5b,c. In this simplified model, each
radical anion interacts with only one neighbor utilizing two C-H···N hydrogen bonds. These hydrogen
bonds are the strongest mediators of magnetic interactions in the structures of PPN(4,7-L), PPN(L),
and PPN(BrL) justifying the use of single exchange coupling parameter. In case of PPN(diBrL) four
spin carriers were taken into account operating with two different exchange coupling constants J12

and J34, assuming that J12 >> J34. This is dictated by the presence of two step-like features in the
χT(T) dependence.

The χT(T) fits correspond well with the experimental data above 10 K and the antiferromagnetic
exchange coupling increases with the increasing temperature at which the decrease of the χT occurs.
The weak match between the fitted and experimental M(H) is a consequence of a simplified model
employed in the analysis of the magnetic data and the presence of non-interacting S = 1/2 spins due to
the defects in the crystal structure. However, the inflection of the M(H) curves at 4 T for PPN(4,7-L),
6 T for PPN(L), and >7 T for PPN(BrL) is followed by the increase of the antiferromagnetic exchange
coupling in this series.

The PPN(4,7-L), PPN(BrL), and PPN(L) belong to a structurally-related series where the anions
and cations are arranged in layers. It appears that the magnetic interactions are strongly related to
this arrangement. The strongest interactions are achieved in completely flat layers of PPN(L) with
J12 = −5(1) cm−1. In PPN(BrL) the bulky bromine substituent increases the separation between the
radicals and disrupts the C-H···hydrogen bonds resulting in slightly weaker magnetic interactions
(J12 = −4(1) cm−1). Finally, in PPN(4,7-L) the layer is composed of tilted molecules with much
weaker C-H···N H-bonds and the estimated magnetic interactions are even weaker (J12 = −2(1) cm−1).
While this magneto-structural correlation is simplified, it clearly demonstrates how the derivatization
of dioxothiadiazole-based radical anions enables fine-tuning of their magnetic behavior.

Magnetic behavior of PPN(diBrL) is also strongly correlated with the structural packing.
The stacks of diBr-L•− radical anions reveal four different π-contacts between them leading to two
types of radical anion pairs within the infinite stack (Figure S9 in the Supplementary Materials).
The most efficient one controls the magnetic behavior of one half of the radical anions and results
in very strong antiferromagnetic coupling (J12 = −116(10) cm−1) that is comparable with the values
reported for sodium salts of 4,7-L [34] and L [35] and other types of molecular magnets ([56] and
references therein). The antiferromagnetic interactions result in a χT value of 0.313 cm3 K mol−1 at
340 K which is significantly lower than the expected 0.375 cm3 K mol−1 for non-interaction S = 1/2
species. These interactions lead also to a plateau of 0.186 cm3 K mol−1 below 70 K corresponding to
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half of the radical anions in the compound. The second exchange parameter J34 is much weaker than
J12 but seems to be slightly underestimated as the fit does not reproduce the second step around 30 K
where a further decrease of the χT(T) to 0.157 cm3 K mol−1 occurs. This weaker exchange controls the
magnetic behavior of the remaining half of radical anions and is responsible for the observation of the
0.186 cm3 K mol−1 plateau below 70 K and the Brillouin-like M(H) curve reaching a saturation value
approaching 0.5 µB expected for half of the radicals in PPN(diBrL) (Figure 6b).
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Figure 6. Experimental magnetic data (points) and best fits (solid lines) for PPN(4,7-L) (red), PPN(L)
(blue), PPN(BrL) (green), and PPN(diBrL) (black): χT(T) recorded at 0.1 T with an inset showing the
low temperature window (a) and M(H) recorded at 1.8 K with the schematic representation of the
packing of radical anions (b). The χT and M values are calculated per one mole of radical anions.

4. Conclusions

Two new derivatives of [1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 1,1-dioxide (L)—a redox
active dioxothiadiazole—have been prepared and synthesized starting from 1,10-phenathroline:
5-bromo-[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (BrL), and 5,10-dibromo-
thiadiazolo[3,4-f][1,10]phenanthroline 2,2-dioxide (diBrL). In the next step their organic paramagnetic
salts with PPN+ counter-cations have been prepared along with the previously unknown PPN+ salts
of 4,7-L [34] and L [35]. The PPN salts show very good solubility in THF, acetonitrile, chloroform, and
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dichloromethane, which renders them suitable for the preparation of mixed-spin systems. All four
radical anion-based compounds were characterized by means of single-crystal X-ray diffraction
and magnetic measurements (SQUID magnetometry). PPN(L), PPN(4,7-L), and PPN(BrL) exhibit
layered-type structures where the flat/weaved anionic layers are separated by layers of PPN+

cations. PPN(diBrL), on the other hand, forms infinite chain-like π-π stacks of radical anions that are
separated from each other by cations. The structures of the reported compounds directly influence
the magnetic properties. The ‘layered salts’ show weak-to-moderate antiferromagnetic interactions
despite slightly different substituents (bromine atoms) or the location of the nitrogen atoms, while the
‘π-π-stacked-salt’ exhibits very strong antiferromagnetic interactions transmitted through the direct
overlap of the π orbitals of the radical anions. PPN(L), PPN(4,7-L), and PPN(BrL) constitute a rare
example of a layered packing where the layers of radical anions are separated by the layers of cations
(similar packing was observed for a few other PPN-based supramolecular systems [57]).

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/9/1/30/s1.
Table S1. Details of single crystal X-ray data and structural refinement for PPN(L) (CCDC 1882329) PPN(BrL)
(CCDC 1882331), PPN(4,7-L) (CCDC 1882328), PPN(diBrL) (CCDC 1882330), diBrL (CCDC 1882327), and
BrL (CCDC 1882326). Figure S1. Illustration of molecular stacks in BrL with marked short σ-π contacts
a) and fragment of a supramolecular layer with marked contacts that are shorter than the sum of the
Van der Waals radii b) (CCDC Mercury program). Figure S2. Illustration of crystal packing of diBrL.
The supramolecular chains of parallel hydrogen bonded dimers run through the structure interacting via
π-orbitals and short contacts with bromine atoms. Figure S3. Illustration of PPN(BrL) supramolecular layers.
Contacts between BrL anions that are shorter than the sum of the Van der Waals radii. Figure S4. NMR
spectrum of 3-bromo-1,10-phenantroline-5,6-dione., Figure S5. NMR spectrum of 5-bromo-[1,2,5]thiadiazole[3,4-f]
phenanthroline 2,2-dioxide. Figure S6. NMR spectrum of 3,8-dibromo-1,10-phenantroline-5,6-dione. Figure
S7. NMR spectrum of 5,10-dibromo-[1,2,5]thiadiazole[3,4-f][1,10]phenanthroline 2,2-dioxide. Figure S8.
Superexchange coupling scheme in PPN(4,7-L) (a), PPN(BrL) (b), PPN(L) (c), and PPN(diBrL) (d). The green
ovals and dotted lines indicate the magnetic interaction pathways taken into account in the fitting of the magnetic
data. In the case of PPN(diBrL) (d) two interaction pathways are considered: J12 and J34 with the assumption that
J12 >> J34. Figure S9. Illustration of supramolecular stacks of diBrL anions in the crystal structure of PPN(diBrL).
The molecules are color coded to depict different intermolecular contacts between them. The asymmetric unit
contains one green and one blue molecule. The most efficient π-π overlap is between the light blue and navy blue
colored radical anions.
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