
crystals

Article

Anion Influence on Spin State in Two Novel Fe(III)
Compounds: [Fe(5F-sal2333)]X

Sriram Sundaresan 1, Irina A. Kühne 1,2 , Conor T. Kelly 1 , Andrew Barker 1, Daniel Salley 1,
Helge Müller-Bunz 1, Annie K. Powell 2,3 and Grace G. Morgan 1,*

1 Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College
Dublin (UCD), Belfield, Dublin 4, Ireland; sriram.sundaresan@ucdconnect.ie (S.S.);
irina.kuhne@ucd.ie (I.A.K.); conor.kelly@ucdconnect.ie (C.T.K.); andrew.barker@ucdconnect.ie (A.B.);
danielsalley1@gmail.com (D.S.); helge.muellerbunz@ucd.ie (H.M.-B.)

2 Institute for Inorganic Chemistry (AOC), KIT (Karlsruhe Institute of Technology), Engessterstr. 15,
76131 Karlsruhe, Germany; annie.powell@kit.edu

3 Institute for Nanotechnology (INT), KIT (Karlsruhe Institute of Technology),
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

* Correspondence: grace.morgan@ucd.ie; Tel.: +353-1-716-2295

Received: 12 December 2018; Accepted: 22 December 2018; Published: 29 December 2018 ����������
�������

Abstract: Structural and magnetic data on two iron (III) complexes with a hexadentate Schiff base
chelating ligand and Cl− or BPh4

− counterions are reported. In the solid state, the Cl− complex
[Fe(5F-sal2333)]Cl, 1, is high spin between 5–300 K while the BPh4

− analogue [Fe(5F-sal2333)]BPh4, 2,
is low spin between 5–250 K, with onset of a gradual and incomplete spin crossover on warming to
room temperature. Structural investigation reveals different orientations of the hydrogen atoms on
the secondary amine donors in the two salts of the [Fe(5F-sal2333)]+ cation: high spin complex
[Fe(5F-sal2333)]Cl, 1, crystallizes with non-meso orientations while the spin crossover complex
[Fe(5F-sal2333)]BPh4, 2, crystallizes with a combination of meso and non-meso orientations disordered
over one crystallographic site. Variable temperature electronic absorption spectroscopy of methanolic
solutions of 1 and 2 suggests that both are capable of spin state switching in the solution.

Keywords: Fe(III) coordination complexes; hexadentate ligand; Schiff base; spin crossover; UV-Vis
spectroscopy; SQUID; EPR spectroscopy

1. Introduction

Spin crossover complexes (SCO) constitute an interesting class of materials exhibiting
interconversion between different electronic states by varying temperature or pressure or by light.
Many potential applications have been suggested for their use, including their utilization in data
storage, sensors, and display technologies. Fe(II) SCO complexes are more studied in the literature in
comparison to Fe(III), and spin crossover is observed only very rarely in Mn(III). We have studied the
effect of ligand flexibility on spin state choices in both Fe(III) and Mn(III) using some of the families of
hexadentate Schiff base ligands of the type shown in Figure 1 [1–6].

Such chelates are formed by a condensation reaction of linear tetra-amines and substituted
salicylaldehydes, and our studies to date have focused mostly on complexes from the “222”, “323”,
and “232” series, where the numbers indicate the number of methylene groups connecting adjacent
nitrogen atoms. Here, we show the results of our studies into the effect of the longer chain ligand
formed from the “333” polyamine on spin state choices in the resultant Fe(III) complexes. The results
of our studies into spin state choices with various metal–ligand combinations, including those
reported here, are summarized in Table 1.
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Figure 1. (a) Depiction of hexadentate ligands with different chain lengths and (b) resulting 

coordination geometry around a trivalent 3-D metal ion. 
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O cis cis trans trans 

Namine cis cis cis cis 

Nimine trans trans cis cis 

Mn(III) HS [3,7] HS a LS, HS, SCO [1–3,7–13] HS [14] 

Fe(III) LS, HS, SCO [15–24] LS, HS, SCO [4,24] LS [24–26] HS, SCO [24,25] 

a G.G. Morgan unpublished results. 

In both Fe(III) and Mn(III) complexes, three possible spin arrangements are possible in 

mononuclear complexes. These comprise the fully spin paired or low spin (LS) arrangement, the fully 

unpaired or high spin (HS) combination, and a mixture of paired and unpaired, typically termed the 

intermediate spin (IS) choice. In Fe(III) complexes, these descriptions (LS, IS, and HS) are regularly 

and accurately used. However, due to the prevalence of the S = 2 HS state in Mn(III), any other spin 

state was historically considered an oddity and the use of “LS” to describe the S = 1 state became 

common usage. In Table 1, “LS” is therefore used to describe the S = 1 state as is common in the 

literature. The true low spin S = 0 state has not yet been observed in any manganese (III) complex. 

Table 1 summarizes the results of our investigations on spin state choices for Fe(III) and Mn(III) in a 

range of coordination geometries engineered by binding to the type of N4(O2)− chelating ligands 

depicted in Figure 1. The first point to note is that the S = 2 state is dominant for Mn(III) across the 

four ligand types. However in 2006, our group discovered that the R-Sal2-323 ligand family promoted 

SCO in Mn(III) [3] and several crystal engineering studies on such complexes followed [1,2,9,11,13]. 

Although most of these SCO transitions occur below room temperature, some Mn(III) complexes of 

the R-Sal2-323 ligand family also persist in the S = 1 state up to room temperature, and these are 

defined in Table 1 as LS. 

In contrast to manganese, iron (III) shows a range of observed spin states with the four ligand 

types highlighted in Table 1. It has long been known that the R-Sal2-222 ligand family promotes SCO 

in iron(III) in addition to stabilizing both HS and LS complexes across a temperature range [15–24]. 

The Fe(III) R-Sal2-222 complexes have, in recent years, been extensively developed as new switchable 

materials due to the ease of derivatization which has led to the synthesis of ionic liquids [27], liquid 

crystals [28], Langmuir-Blodgett film formation with amphiphilic complexes [6,29], and preparation 

of templated nanowires [21]. We have also observed SCO in Fe(III) complexes from the R-Sal2-232 

ligand type [4], but the majority of this class of compound remains HS from room temperature down 

to 5 K. In contrast, the R-Sal2-323 ligand type has been shown by Reedjik [26] to promote the LS state 

in iron (III). 

Figure 1. (a) Depiction of hexadentate ligands with different chain lengths and (b) resulting coordination
geometry around a trivalent 3-D metal ion.

Table 1. Donor orientations and spin states for Fe(III) and Mn(III) complexes with selected hexadentate
Schiff base ligands. (LS = low spin; HS = high spin; SCO = spin crossover).

Bond Type R-Sal2-222 R-Sal2-232 R-Sal2-323 R-Sal2-333

O cis cis trans trans
Namine cis cis cis cis
Nimine trans trans cis cis

Mn(III) HS [3,7] HS a LS, HS, SCO [1–3,7–13] HS [14]
Fe(III) LS, HS, SCO [15–24] LS, HS, SCO [4,24] LS [24–26] HS, SCO [24,25]

a G.G. Morgan unpublished results.

In both Fe(III) and Mn(III) complexes, three possible spin arrangements are possible in
mononuclear complexes. These comprise the fully spin paired or low spin (LS) arrangement, the fully
unpaired or high spin (HS) combination, and a mixture of paired and unpaired, typically termed the
intermediate spin (IS) choice. In Fe(III) complexes, these descriptions (LS, IS, and HS) are regularly
and accurately used. However, due to the prevalence of the S = 2 HS state in Mn(III), any other spin
state was historically considered an oddity and the use of “LS” to describe the S = 1 state became
common usage. In Table 1, “LS” is therefore used to describe the S = 1 state as is common in the
literature. The true low spin S = 0 state has not yet been observed in any manganese (III) complex.
Table 1 summarizes the results of our investigations on spin state choices for Fe(III) and Mn(III) in
a range of coordination geometries engineered by binding to the type of N4(O2)− chelating ligands
depicted in Figure 1. The first point to note is that the S = 2 state is dominant for Mn(III) across the
four ligand types. However in 2006, our group discovered that the R-Sal2-323 ligand family promoted
SCO in Mn(III) [3] and several crystal engineering studies on such complexes followed [1,2,9,11,13].
Although most of these SCO transitions occur below room temperature, some Mn(III) complexes of the
R-Sal2-323 ligand family also persist in the S = 1 state up to room temperature, and these are defined
in Table 1 as LS.

In contrast to manganese, iron (III) shows a range of observed spin states with the four ligand types
highlighted in Table 1. It has long been known that the R-Sal2-222 ligand family promotes SCO in iron(III)
in addition to stabilizing both HS and LS complexes across a temperature range [15–24]. The Fe(III)
R-Sal2-222 complexes have, in recent years, been extensively developed as new switchable materials
due to the ease of derivatization which has led to the synthesis of ionic liquids [27], liquid crystals [28],
Langmuir-Blodgett film formation with amphiphilic complexes [6,29], and preparation of templated
nanowires [21]. We have also observed SCO in Fe(III) complexes from the R-Sal2-232 ligand type [4],
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but the majority of this class of compound remains HS from room temperature down to 5 K. In contrast,
the R-Sal2-323 ligand type has been shown by Reedjik [26] to promote the LS state in iron (III).

Less is known, however, about the iron (III) spin state preferences that would be conferred by
coordination to the R-Sal2-333 ligand type. An early work by Ito and co-workers [25] reported the
solid-state and methanolic solution-state properties of the nitrate salts of the iron (III) complexes with
R-Sal2-323 and R-Sal2-333 ligands, where R was hydrogen [25]. In the solid state, the iron (III) complex
with H-Sal2-323 was LS over the measured range, while that with H-Sal2-323 was HS. Ito also used the
Evans’ NMR technique and variable temperature electronic absorption spectroscopy to monitor the
spin state of both complexes in methanol solution. The LS complex with H-Sal2-323 showed no change
in solution, i.e., remained LS with only weak thermochromism in methanol. The HS complex with
H-Sal2-333, however, demonstrated a strong temperature dependence as shown by both NMR and
UV-Vis absorption and a clear isosbestic point is apparent in the electronic absorption spectra recorded
between 268–322 K.

At the outset of this work, the nitrate salt of the Fe(III) complex with H-Sal2-333 reported by Ito in
1983 was the only ferric complex with this ligand type in the literature. Given that SCO for this complex
was detected in solution, the R-Sal2-333 ligand type was deemed to constitute a good basis for further
investigations into the choice of Fe(III) spin state when coordinated to this ligand type. Here, we report
two new Fe(III) complexes with 5-Fluoro-Sal2-333 in two crystalline lattices [Fe(5F-sal2333)]Cl, 1,
and [Fe(5F-sal2333)]BPh4, 2. Both compounds were examined by single crystal diffraction, and an
important and new result to emerge from this study was the variation in orientation of the hydrogen
atoms on the two secondary amine nitrogen atoms in the 9-carbon length ligand backbone between
non-meso (Type A) and a disordered combination of meso and non-meso co-crystallized on the same site
(Type B).

To recall the definition of meso and non-meso in stereochemistry, there is the special case where a
molecule exhibits two stereo centres but is achiral, since one conformation shows an intramolecular
Cs-symmetry which is then defined as the meso form. By using a hexadentate Schiff base ligand formed
from condensation of a substituted salicylaldehyde and N,N’-bis(3-aminopropyl)-propylenediamine
(333) and by forming the iron (III) complex, the binding amine nitrogen atoms, N2 and N3 (shown
in turquoise in Figure 2), can have their attached hydrogen atoms either both pointing in the same
direction leading to the meso form or in opposite directions, leading to the non-meso form. The results
of our structural studies into the iron (III) complexes 1 and 2 reveal two structural types (Figure 2):
(i) pure non-meso (Type A) and (ii) a disordered combination of meso and non-meso, which co-crystallize
on the same Fe site (Type B).
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Figure 2. Hydrogen atoms at the amine nitrogen of the R-Sal2333 backbone, forming the non-meso
Type A form (Left) and meso form (Middle) of the ligand. Co-crystallization of both modes (Right)
was observed in the tetraphenylborate complex 2 and this crystallization mode was termed Type B.
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2. Materials and Methods

2.1. Materials and Instrumentation

All chemicals used were supplied as described: N,N’-Bis-(3-aminopropyl)-1,3-propandiamine
(Sigma-Aldrich, 90%), 5-fluorosalicylaldehyde (Fluorochem, 98%), iron (III) chloride hexahydrate
(Sigma-Aldrich, 97%), sodium tetraphenylborate (Sigma-Aldrich, ≥ 99.5%), acetonitrile (Fisher
Scientific, 99.8%), and ethanol (Fisher Scientific, ≥ 99.5%). Elemental analysis was recorded on an Exeter
Analytical CE-440 CHN analyzer, for Carbon, Hydrogen, and Nitrogen. Infrared spectra were recorded
using a Bruker Alpha Platinum attenuated total reflection (ATR) spectrometer. Mass spectrometry was
recorded using a Waters 2695 separations module electrospray spectrometer on acetonitrile solutions
of 1 and 2.

2.2. Synthesis

The synthesis of compounds 1 and 2 is straightforward, and the complexes were recovered
in varying yields. Solid 5-fluorosalicylaldehyde (1.0 mmol) was added to a solution of
N,N’-bis(3-aminopropyl)-1,3-propandiamine (0.5 mmol) in 50:50 ethanol/acetonitrile (15 mL),
causing a yellow color to form. After stirring for 15 min, solid iron (III) chloride hexahydrate (0.5 mmol)
was added whereupon the solution turned dark black. For synthesis of complex 2, solid sodium
tetraphenylborate (0.5 mmol) was then added. For both complexes 1 and 2, the dark solution was
stirred at room temperature for 30 min, then gravity filtered and allowed to stand for slow evaporation
for 3–4 days. Dark purple crystals were collected for both compounds 1 (ca. 15%) and 2 (ca. 20%)
which were suitable for single crystal X-ray structural analysis.

Complex 1, [Fe(5F-sal2333)]Cl: Elemental analysis calculated for C23H28N4O2F2ClFe. Calculated:
C 52.94, H 5.41, and N 10.74. Found: C 52.86, H 5.37, and N 10.72. Mass Spec: 486.33 ES+.

Complex 2, [Fe(5F-sal2333)]BPh4: Elemental analysis calculated for C47H48BN4O2F2Fe.
Calculated: C 67.33, H 5.77, and N 6.68. Found: C 67.10, H 5.75, and N 6.57. Mass Spec: 519.24 ES+.

2.3. Single-Crystal X-Ray Structure Determinations

X-ray crystallography was carried out on suitable single crystals using an Oxford Supernova
diffractometer (Oxford Instruments, Oxford, United Kingdom). Datasets were measured using
monochromatic Cu-Kα and Mo-Kα radiation for 1 and 2 respectively and corrected for absorption.
The temperature was controlled with an Oxford Cryosystem instrument. A complete dataset was collected,
assuming that the Friedel pairs are not equivalent. An analytical absorption correction based on the shape
of the crystal was performed [30]. All structures were solved by dual-space direct methods (SHELXT) [31]
and refined by full matrix least-squares on F2 for all data using SHELXL-2016 [31]. The hydrogen
atoms attached to nitrogen were located in the difference Fourier map and allowed to refine freely.
All other hydrogen atoms were added at calculated positions and refined using a riding model.
Their isotropic displacement parameters were fixed to 1.2 times the equivalent one of the parent atom.
Anisotropic displacement parameters were used for all non-hydrogen atoms. Crystallographic details
for both compounds are summarized in Table A1 (Appendix A) and crystallographic data for the
structures reported in this paper have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication numbers CCDC-1884365 (1, 100 K), CCDC-1884366 (2, 100 K),
and CCDC-1884367 (2, 293 K).

2.4. Magnetic Measurements

The magnetic susceptibility measurements were obtained using a Quantum Design Magnetic
Property Measurement System, the MPMS-XL SQUID Magnetometer (Quantum Design, San Diego,
CA, USA) operating between 5 and 300 K. Direct current (DC) measurements were performed on
a polycrystalline sample of 11.1 mg of complex 1 and of 11.9 mg of complex 2. Each sample was
wrapped in a polyethylene membrane, and susceptibility data were collected at 0.1 T between 5–300 K
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in cooling and warming mode. The magnetization data was collected at 100 K in order to check for
ferromagnetic impurities, which were found to be absent in the samples. Diamagnetic corrections
were applied to correct for contribution from the sample holder, and the inherent diamagnetism of the
sample was estimated with the use of Pascal’s constants.

2.5. UV-Vis and Electron Paramagnetic Resonance (EPR) Spectroscopy

UV-Vis solution spectra of [Fe(5F-sal2333)]Cl, 1, and [Fe(5F-sal2333)]BPh4, 2, were recorded
on an Agilent UV-Vis spectrometer fitted with an Oxford Instruments cryostat insert. Solid state
variable temperature EPR spectra were recorded on a Magnettech X-band EPR spectrometer (Freiberg
Instruments, Freiberg, Germany) (9.430 GHz) at variable temperatures. A modulation amplitude of
0.7 mT was used in conjunction with a microwave power of 0.1 mW and a gain of 10.

3. Results

3.1. Synthetic Route

Synthesis of [Fe(5F-sal2333)]Cl, 1, and [Fe(5F-sal2333)]BPh4, 2, was achieved in a facile reaction
by condensation of N,N’-bis(3-aminopropyl)-1,3-propanediamine (333) with two equivalents of
5-fluorosalicylaldehyde followed by addition of hydrated iron (III) chloride (complex 1) with further
addition of sodium tetraphenylborate in the case of complex 2, Scheme 1. The filtered reaction mixture
on slow evaporation yielded complexes 1 and 2 as dark purple crystals.
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Scheme 1. Synthesis of [Fe(F-Sal2333)]X complex series 1 and 2.

Both complexes were characterized by mass spectrometry, elemental analysis, IR spectroscopy,
single crystal diffraction, and SQUID magnetometry. Both showed a characteristic C=N stretch at
1611 cm−1, confirming formation of the Schiff base and a resonance at 3051 cm−1 in the case of 2 and
confirming the anion methathesis to the tetraphenylborate counterion. Elemental analysis confirmed
the purity of both crystalline samples.

3.2. Structural Analysis

For crystallographic details for complexes 1 and 2, see Table A1 (Appendix A). Complex 1
crystallized in orthorhombic and non-centrosymmetric space group Pccn where the asymmetric unit
comprises half of one complex [FeL]+ cation and half of one chloride counterion. The two halves of
the complex cation are related by a C2 axis which passes through the central carbon of the middle
propylene chain on the ligand backbone. The well-ordered non-meso arrangement of the amine on N2
is illustrated in Figure 3.

The chloride counterion within the crystal lattice exhibits short contacts to the hydrogen atoms of
the amine nitrogen atoms of the ligand backbone, which leads to the formation of a 1D-chain, Figure 4.
Bond length data at 100 K are in line with an S = 5/2 spin state assignment at this temperature as the
three bond types, Fe-Ophenolate (1.9426(9) Å), Fe-Nimine (2.1398(11) Å), and Fe-Namine (2.1837(11) Å) are
all typical for the HS state with these types of donor [21].
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on both amine nitrogen positions co-crystallized on single site are clear, Figure 5. 

Figure 3. (a) View of [Fe(5F-sal2333)]Cl, complex 1, showing symmetry equivalence of donor atoms
related by the central C2 axis, (b) view of the complex cation showing the orientation of hydrogen
atoms, including the non-meso arrangement of amine hydrogens, and (c) depiction of the symmetry
relationship of the two halves of the complex.
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Figure 4. View of 1-D hydrogen bonding chain between adjacent complexes, mediated by chloride
counterions in [Fe(5F-sal2333)]Cl, 1.

Complex 2, [Fe(5F-sal2333)]BPh4, crystallizes in triclinic space group P-1 where the asymmetric
unit at 100 K comprises one full occupancy disordered [FeL]+ cation and one full occupancy
well-ordered BPh4

− anion, Figure 5. Both the meso and non-meso orientations of the amine hydrogens
co-crystallize on a single site leading to the disorder of most of the nine propylene carbons and one of
the amine nitrogen atoms over two positions. Each component of the disorder was modelled separately
within the crystal structure, and the meso and non-meso orientations of the hydrogen atoms on both
amine nitrogen positions co-crystallized on single site are clear, Figure 5.

Structural data for complex 2 was collected initially at 100 K and some months later at 293 K on a
different crystal, after analysis of the SQUID data which revealed the change in spin state between
the two temperatures. Bond length data, Table 2, indicate a LS state at 100 K with markedly shorter
bond lengths for the three bond types, Fe-Ophenolate (ca. 1.86) Å), Fe-Nimine (ca. 1.95 Å), and Fe-Namine

(with disorder component ca. 2–2.10 Å) than those for HS complex 1 at the same temperature. The bond
lengths for 1 at 100 K are in line with other LS complexes with comparable donors [21]. At 293 K
SQUID data for 2 indicate a small HS fraction, and this is reflected in the small increase in bond
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lengths compared with those at 100 K: Fe-Ophenolate (ca. 1.87) Å), Fe-Nimine (ca. 1.97 Å), and Fe-Namine

(with disorder component ca. 2–2.15 Å), suggesting that the majority of sites remain LS. The absence
of hydrogen bond donors or acceptors on the BPh4

- counterions and the large distance between the
complex cations means no hydrogen bond network emerges to tether the complexes together as was
the case with the fully HS analogue, complex 1. The absence of hydrogen bonding in complex 2 may
contribute to the different spin state choices in the two complexes.Crystals 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 5. View of asymmetric unit of [Fe(5F-sal2333)]BPh4, 2, showing (a) disorder of three propylene
groups in ligand backbone due to co-crystallization of meso and non-meso forms; view of (b) the meso
form and (c) the pure non-meso orientation.

Table 2. Bond length data for complexes 1 and 2.

[Fe(5F-sal2333)]Cl
(1) 100 K Fe-Donor [Fe(5F-sal2333)]BPh4

(2) 100 K
[Fe(5F-sal2333)]BPh4

(2) 293 K

Fe-Ophenolate 1.9426(9) Fe–O(2) 1.8521(14) 1.8569(15)
Fe–O(1) 1.8721(15) 1.8801(16)

Fe-Nimine 2.1398(11) Fe–N(1) 1.9480(15) 1.9667(18)
Fe–N(4) 1.9582(14) 1.9778(16)

Fe-Namine 2.1837(11) Fe–N(3A) 2.014(3) 2.017(5)
Fe–N(2) 2.0624(16) 2.0734(19)

Fe–N(3B) 2.134(4) 2.162(7)

3.3. Magnetic Characterization

Magnetic susceptibility of complexes 1 and 2 were recorded on an MPMS-XL magnetometer
between 5–300 K in warming and cooling modes. The expected χMT values for S = 5/2 and S = 1/2
are 4.25 and 0.375 cm3 K/mol respectively, and plots of χMT versus T, Figure 6, indicate that complex
1 remains HS over the measured temperature range. Complex 2 persists in the predominantly LS
state on warming from 5 K to around 250 K above which the χMT value starts to rise, indicating some
thermal population of the HS state.
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warming mode.

3.4. Solid State EPR Spectroscopy

Solid state variable temperature EPR spectra of complexes 1 and 2 were recorded on a Magnettech
X-band EPR spectrometer, Figure 7. Complex 1 shows the characteristic broad S = 5/2 with g = 2 over
the whole temperature range which fits well with the HS assignment from SQUID magnetometry.
The EPR spectra of complex 2, [Fe(5F-sal2333)]BPh4, are also in line with the SQUID data, showing
a gradual thermal SCO in the solid state. A characteristic S = 1/2 signal at g = 2 with differentiation
of the x, y, and z components is apparent at low temperatures for complex 2, which is diminished on
warming to 353 K.
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3.5. UV-Vis Solution Studies

It was also possible to collect solution state variable temperature electronic absorption for complexes
1 and 2 in methanol, Figure 8, using an Oxford Instruments cryostat insert for a benchtop UV-Vis
spectrometer using a 1.0 × 10−4 mol/L methanolic solution of 1 and 1.46 × 10−4 mol/L methanolic
solution of 2. The spectra suggest that thermal SCO could be achieved in both complexes in this medium
despite the fixed HS moment observed between 5–300 K in the crystalline form of complex 1. The spectra
of both complexes show two broad absorptions at around 380 and 620 nm; the latter of which were
attributed to charge transfer absorptions rather than d-d transitions. The higher energy band is likely due
to ligand only transitions. A strong similarity between the electronic spectra of 1 and 2 in solution is to be
expected given that the cation is identical in each. It is also to be expected that the fixed meso/non-meso
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differences arise in the solid state due to significant differences in packing between the two variously
sized anions. In solution, it is most likely that the complex cation may be in a dynamic exchange
between the two forms, and therefore, the spectra of 1 and 2 in methanol should be similar. The higher
energy band at 380 nm grows on cooling for both compounds while that at 620 nm narrows on cooling,
suggesting population of the LS state which has a narrower vibrational energy well.
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4. Discussion

In this work, we have investigated the influence of geometry and counterion effects in determining
the spin state choices in an iron (III) complex with the 5-Fluoro-sal2333 ligand in a Cl− or BPh4

− lattice.
In the solid state the [Fe(5F-sal2333)]+ complex adopts the S = 5/2 spin state in a chloride lattice and
the S = 1

2 spin state in the tetraphenylborate lattice. The BPh4
− complex shows onset of a gradual spin

crossover on warming from 5 K, but it is still mainly in the LS state by room temperature. An interesting
result to emerge from the investigation was the observation that there were two possible orientations
(meso and non-meso) for the hydrogen atoms on the amine nitrogen donors and that a magnetostructural
correlation may be present. Complex 1, which adopted the pure non-meso form, showed a preference for
the HS state while complex 2, which crystallized as a mixture of meso and non-meso, showed preference
for the LS state with onset of a gradual SCO only above 250 K. In conclusion, we have established
that R-sal2333 ligands can promote SCO in Fe(III) both in the solid state and in solution. Moreover,
we have shown that a new type of ligand distortion (meso/non-meso) exists that may affect the spin state
choice and profile of the spin crossover thermal evolution. Future work will include detailed Mössbauer
spectroscopy on existing samples reported here and preparation and characterization of further members
of the series.
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Appendix A

Table A1. Crystallographic details for complexes 1 and 2.

Compound [Fe(5F-sal2333)]Cl (1) [Fe(5F-sal2333)]BPh4 (2) [Fe(5F-sal2333)]BPh4 (2)

Empirical formula C23H28N4O2F2ClFe C47H48BN4O2F2Fe C47H48BN4O2F2Fe
Formula weight 521.79 805.55 805.55
Crystal system orthorhombic triclinic triclinic

Space group Pccn P−1 P−1
Crystal size (nm) 0.195 × 0.114 × 0.033 0.3335 × 0.2632 × 0.2017 0.405 × 0.350 × 0.337

a (Å) 7.39810(6) 10.7385(2) 10.80774(8)
b (Å) 16.3083(2) 13.9687(3) 14.0136(1)
c (Å) 18.6359(2) 14.7851(2) 14.9232(2)
α (◦) 90 102.984(2) 103.0383(7)
β (◦) 90 94.039(1) 94.2739(6)
γ (◦) 90 109.415(2) 107.6673(7)

V (Å3) 2248.43(4) 2012.64(6) 2073.03(4)
Z 4 2 2

dcalc (g cm−3) 1.541 1.329 1.291
T (K) 100(2) 100(2) 293(2)

µ (mm−1) 6.871 0.429 0.416
F(000) 1084 846 846

Limiting indices h = ± 9, k = ± 20, l = ± 23 h = ± 13, k = ± 17, l = ± 8 h = ± 13, k = ± 17, l = ± 18
Reflections collected/unique 21831/2378 35866/8833 79115/7853

R(int) 0.0288 0.0315 0.0191
Completeness to Θ (%) 99.7 99.5 99.7

Data/restraints/parameters 2378/0/151 8833/0/578 7853/0/578
GooF on F2 1.047 1.041 1.079

Final R indices (I > 2σ (I)) R1 = 0.0274, wR2 = 0.0760 R1 = 0.0414, wR2 = 0.0928 R1 = 0.0396, wR2 = 0.1068
R indices (all data) R1 = 0.0292, wR2 = 0.0777 R1 = 0.0479, wR2 = 0.0963 R1 = 0.0420, wR2 = 0.1085

Largest diff. peak/hole (e−Å−3) 0.255 and −0.457 0.332 and −0.723 0.292 and −0.584
CCDC no. 1884365 1884366 1884367
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