## **Supporting Information**

## Removal of Acid Orange 7 from Aqueous Solution by Metal-Organic Frameworks

Sung Won Yoon, James J. Calvo, Monica C. So\*
California State University, Chico, Chico, CA 95929-0210, United States

\*Contact email: mso@csuchico.edu

| Table of Contents                                                           | <u>Pages</u> |
|-----------------------------------------------------------------------------|--------------|
| Full spectrum of PXRD of MOFs                                               | 2            |
| SEM images                                                                  | 2            |
| Full spectrum of FT-IR of MOFs                                              | 3            |
| N <sub>2</sub> sorption isotherms                                           | 3            |
| UV-vis absorbance spectra                                                   | 4            |
| Proposed interaction of AO7 with MOFs                                       | 5            |
| Comparison of adsorption abilities of different MOFs for the removal of AO7 | 6            |
| Effect of NaCl on adsorption of AO7                                         | 6            |



**Figure S1.** Full spectrum of PXRD of a) UiO-66 and UiO-66-NH $_2$  and b) ZIF-8 and ZIF-67 before and after dye adsorption.



**Figure S2.** SEM image of expected sodalite structures of (a) ZIF-8 and (b) ZIF-67 and octahedral shapes of (c) UiO-66-NH $_2$ , and (d) UiO-66.



**Figure S3.** N<sub>2</sub> isotherms and BET surface areas of (a) UiO-66 (blue) and UiO-66-NH<sub>2</sub> (green) and (b) ZIF-8 (red) and ZIF-67 (purple) before and after AO7 adsorption.



**Figure S4.** UV-visible absorbance spectra of water samples containing AO7 dye with (a) UiO-66, (b) UiO-66-NH $_2$ , (c) ZIF-8, and (d) ZIF-67. These were recorded over the course of the decontamination experiment.



**Figure S5.** Proposed interaction between AO7 and UiO-66 through monodentate and bridging motifs. Black lines represents a coordinating carboxylate from the organic linkers.



**Figure S6.** Proposed mechanism of ZIF-8 and ZIF-67 and AO7 interaction. Black lines represent methylimidazole linkers and purple dots represent metal ions. Dashed lines indicate proposed pi-pi stacking interactions.

## Yoon et al.

| Adsorbent              | Dye             | q <sub>t</sub> (mg/g) | Ref.      |
|------------------------|-----------------|-----------------------|-----------|
| ZIF-67                 | Malachite Green | 161                   | [1]       |
| ZIF-8                  | Methylene Blue  | 20.2                  | [2]       |
| UiO-66                 | Methyl Orange   | 39.42                 | [3]       |
| UiO-66-NH <sub>2</sub> | Methyl Orange   | 28.97                 | [3]       |
| ZIF-67                 | AO7             | 272.7                 | This work |
| ZIF-8                  | AO7             | 16.9                  | This work |
| UiO-66                 | AO7             | 106.6                 | This work |
| UiO-66-NH <sub>2</sub> | AO7             | 85.0                  | This work |
| MIL-100 (Fe)           | AO7             | 27.10                 | [4]       |
| Activated Carbon       | AO7             | 87.67                 | [5]       |
| Soil                   | AO7             | 3.47                  | [6]       |
| Canola Stalks          | AO7             | 25.06                 | [7]       |

**Table S1.** Comparison of the maximum adsorption abilities of different MOFs for the removal of dyes.

| NaCl Concentration (M) | Adsorbed amount (mg AO7/g adsorbent) |                        |       |        |
|------------------------|--------------------------------------|------------------------|-------|--------|
|                        | UiO-66                               | UiO-66-NH <sub>2</sub> | ZIF-8 | ZIF-67 |
| 0                      | 106.5                                | 84.9                   | 13.5  | 272.6  |
| 0.043                  | 12.48                                | 19.77                  | 8.46  | 141.45 |
| 0.13                   | 11.88                                | 21.98                  | 9.28  | 139.8  |

 Table S2.
 Effect of chloride anions on adsorption of AO7 by studied MOFs.

## References

- Lin, K.Y.A. and Chang, H.A. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 2015, 139, 624-631.
- Zheng, J; Cheng C.; Fang, W.J.; Chen, C.; Yan, R.W.; Huai, H.X.; Wang, C.C.; Surfactant-free synthesis of a Fe<sub>3</sub>O<sub>4</sub>@ZIF-8 core—shell heterostructure for adsorption of methylene blue. Cryst. Eng. Commun., 2014, 16, 3960-3964.
- Chen, Q.; He, Q.; Lv, M.; Xu, Y.; Yang, H.; Liu, X. Selective adsorption of cationic dyes by UiO-66-NH<sub>2</sub>.
   *Appl. Surf. Sci.* 2015, 327, 77-85.
- 4. Tsai, F.C.; Xia, Y.; Ma, N.; Shi, J.J.; Jiang, T.; Chiang, T.C.; Zhang, Z.C.; Tsen, W.C. Adsorptive removal of acid orange 7 from aqueous solution with metal–organic framework material, iron (III) trimesate. *Desalin. Water Treat.*, **2016**, *57*, 3218-3226.
- Samarghandi, M.R.; Poormohammadi, A.; Fatemeh, N.; Ahmadian, M. Removal of acid orange 7 from aqueous solution using activated carbon and graphene as adsorbents. *Fresenius Environ. Bull.* 2015, 24, 1841-1851
- 6. Smaranda, C. Bulgariu, D. Gavrilescu, M. An investigation of the sorption of acid orange 7 from aqueous solution onto soil. *Environ. Eng. Manag. J.* **2009**, *8*, 1391-1402.
- 7. Hamzeh, Y.; Izadyar, S.; Azadeh, E.; Abyaz, A.; Asadollahi, Y. Application of Canola Stalks Waste as Adsorbent of Acid Orange 7 from Aqueous Solution. *Iran J. Health Environ.* **2011**, *4*, 49-56.