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Abstract: The inherent porous nature and facile tunability of metal-organic frameworks (MOFs) make
them ideal candidates for use in multiple fields. MOF hybrid materials are derived from existing
MOFs hybridized with other materials or small molecules using a variety of techniques. This led
to superior performance of the new materials by combining the advantages of MOF components
and others. In this review, we discuss several hybridization methods for the preparation of various
MOF hybrids with representative examples from the literature. These methods include covalent
modifications, noncovalent modifications, and using MOFs as templates or precursors. We also
review the applications of the MOF hybrids in the fields of catalysis, drug delivery, gas storage and
separation, energy storage, sensing, and others.

Keywords: metal-organic frameworks; hybrid materials; post-synthetic modifications; covalent
modifications; noncovalent interactions; encapsulation; layer-by-layer deposition; in situ growth;
MOF (metal-organic framework) template; MOF (metal-organic framework) precursor

1. Introduction

Metal-organic frameworks (MOFs) are crystalline materials self-assembled from the coordination
of polydendate ligands to metal clusters [1-3]. In addition to facile synthesis, MOF structures and
properties can be uniquely tuned by customizing the metal clusters and ligands. Despite these
beneficial properties, certain MOFs are hindered by physical and chemical limitations, leading to poor
performance. For example, ambient moisture or high temperatures can lead to the degradation of
certain MOFs’ crystalline structures [4,5]. Others are limited by the high cost of precious metal nodes
or expensive linkers [6], thus making mass production currently unfeasible. Additionally, some MOFs’
applications are restricted by physical limitations in porosity, conductivity, or steric effects, among
others [2]. Recent research has shown that hybridizing existing MOFs with external components may
give rise to new materials with characteristics similar to both the parent MOF and material added.
These MOF hybrid materials typically outperform their parent materials and have shown promise in
the fields of catalysis [7], sustainable energy [8], gas storage and separation [9,10], drug delivery [11],
detoxification [12], proton conductivity [13], energy storage [14], sensing and lighting [15,16], and
supercapacitors [17], among many other fields.

Numerous methods of preparing MOF hybrids have been reported to date (Figure 1). One such
method is the enhancement of MOFs through covalent modification at the metal nodes or organic
ligands [18]. Covalent modification of a MOF may be used to incorporate desired characteristics
of the hybridizing material within a MOF. This type of modification has been reported using metal
centers of MOFs as Lewis acid sites for the attachment of external ligands or by using MOF ligands
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to coordinate to other materials. In addition to covalent modifications, MOF hybrids can also be
made via noncovalent interactions, such as encapsulation [19,20], layer-by-layer deposition [21], and
in situ growth [22]. These methods take advantage of noncovalent interactions between MOFs and
the hybridizing species by trapping the species within the MOF pores, layering them on top of the
parent MOF, or growing MOFs crystals in situ with the species. Noncovalent modification allows the
individual characteristics of the MOF and hybridizing materials to work synergistically in the resultant
MOF hybrids while requiring less synthetic efforts than covalent modifications. These methods
can be used to achieve materials with MOF coating/protection, multi-layered membranes, and the
controlled growth of MOF structures with superior performance than individual parent materials.
Finally, hybridizing MOFs through use as either sacrificial templates [23] or precursors [24] utilizes
the ordered structure of MOFs to afford porous materials with high surface areas and uniform pore
sizes. This method eliminates the metal node and/or the organic linker, leaving behind only the newly
synthesized materials with the inherited uniform nanoframe of the template/precursor MOF.

In this review, we discuss each hybridization method with representative MOF hybrids from
literature, as well as the hybrid materials’ superior performances and applications. At the end of this
review, we also summarize all reported MOF hybrid materials.
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Figure 1. MOF (metal-organic framework) hybrid preparation methods discussed in this review.

2. Covalent Modifications

Covalent modifications, a subset of post-synthetic modifications (PSMs) [25], are chemical
modifications of MOF lattices subsequent to synthesis, including both coordinate covalent
modifications to metal clusters and covalent modifications to ligands. A variety of reactions have been
explored for covalent modification of MOFs to introduce new functionality to the framework [26].
MOF structures suitable for covalent modification are generally robust and porous to avoid compromise
of structural integrity. MOF hybrids have been prepared by covalently attaching other moieties to the
metal nodes or ligands of MOFs. Using covalent modification, small molecules (e.g., ethylene diamine,
Doxorubicin), metals/metal clusters (e.g., metal oxides, metal sulfides), and other functional materials
(e.g., covalent organic frameworks (COFs), polymers, and graphene) have been hybridized with MOFs.
The resultant MOF hybrids often inherit properties from both the MOFs and the materials used for
covalent modification, giving rise to synergistic properties for applications in catalysis, gas storage,
gas separation and drug delivery, among other fields. The notation A-B is used to represent materials
A and B hybridized via covalent modification.
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2.1. Covalent Modifications on the Metal Nodes

For numerous MOFs, solvent molecules in the solvation shell coordinating to terminal metal nodes
can be removed and the resultant coordinatively unsaturated sites (CUSs) are exposed upon activation
(i-e., desolvation by heating under vacuum) [27-29]. CUSs are available for covalent coordination with
other materials, giving rise to MOF hybrids exhibiting additional and improved properties [30].

The MOF hybrid ED-MIL-101 was made by grafting electron-rich ethylene diamine (ED) to the
Cr(Ill) nodes of the cage-structured chromium(IIl) terephthalate MIL-101 (Figure 2a) [31]. In this
ED-MOF hybrid, the chelating amines coordinate to the Cr(IlI) nodes of the MOF while free amines
act as Lewis base catalysts. The catalytic activity of ED-MIL-101 was evaluated via Knoevenagel
condensation and determined to exhibit 91.7% conversion after 19 h. Though a slight decrease in pore
size was observed, which was expected due to the addition of ED, the catalytic activity of ED-MIL-101
was greatly improved from 31.5% conversion by unhybridized MIL-101 and 74.8% conversion by
APS-grafted mesoporous silica Santa Barbara Amorphous materials (SBA-15). In addition, this
covalent modification was achieved with no loss of crystallinity or thermal stability of the MOF,
as determined by powder X-ray diffraction (PXRD). Another ED-MOF hybrid, ED-Mg/DOBDC
(DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate), was prepared by covalently attaching ED to the
dehydrated Mg nodes of Mg/DOBDC [32]. This hybrid exhibited enhanced capability of adsorbing
and desorbing CO, compared to unhybridized Mg/DOBDC, as well as greater material and multicycle
stability. Moreover, the hybrid structure displayed the ability to fully regenerate under mild conditions
in comparison with the unhybridized MOF itself, making it more energy efficient for cyclic use.

A variety of metals and metal clusters have been covalently attached to the metal nodes of
MOFs using a technique termed atomic layer deposition (ALD), resulting in MOF hybrids that exhibit
unique catalytic properties [33-42]. ALD is a vapor phase deposition technique frequently used
to synthesize thin films [43]. ALD in the channel-structured zirconium(IV) MOF NU-1000 has been
extensively studied, owning to the MOF’s mesoporous channels, high thermal stability, and -OH/-OH,
functionalities on the Zrg nodes of the structure, which act as reactive sites in ALD. To date, metals
(e.g., nickel ions [35]), metal oxides (e.g., zinc oxides [36,37], aluminum oxides [36,38], and indium
oxides [38]) and metal sulfides (e.g., cobalt sulfide [39]) have been successfully installed on the nodes of
NU-1000 using ALD (Figure 2b). The resultant MOF hybrids showed high catalytic activity for reactions
such as Knoevenagel condensation [36], hydrogenation reactions [35,39], dehydration reactions [40],
and water splitting [41,42]. These hybrids, M/MOx/MSx-NU-1000, generally showed greater catalytic
activities than metal clusters alone. This is due to not only the isolated nature of metal/metal clusters
on the MOF nodes, which prevents migration and agglomeration leading to improved stability, but
also the high surface area of NU-1000, which can facilitate diffusion for accessibility. Remarkably,
some of these hybrid catalysts obtained by ALD also exhibit high selectivity towards desired products,
presumably due to the unique structures of the grafted metal/metal clusters and the confinement from
the MOFs [34,40].
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Figure 2. (a) The preparation of ED-MIL-101 (ED = ethylene diamine) (b) Using ALD (Atomic Layer
Deposition) to attach AlOx clusters on NU-1000. Figure 2b is reproduced with permission from
Mondloch et al. [36]. Copyright 2013 American Chemical Society.
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Fu et al. reported the preparation of COF-MOF hybrid membranes by covalently linking
Zny(bdc),(dabco) (where bdc = terephthalic acid and dabco = 1,4-diazabicylco[2.2.2]octane) or ZIF-8 to
COF-300 membranes [44]. In both hybrids, covalent interactions between the amines of COF-300 and
the Zn nodes in MOFs promote the formation of the membrane structures. Compared to individual
COF and MOF materials, the COF-MOF hybrid membranes performed better in separating the
H,/CO, gas mixture. The [COF-300]-[Zn;(bdc),(dabco)] and [COF-300]-[ZIE-8] exhibited separation
factors of 12.6 and 13.5, respectively. Meanwhile, COF-300, Zn;(bdc),(dabco), and ZIF-8 membranes
measured separation factors of only 6.0, 7.0, and 9.1, showing the MOF hybrid materials are significantly
more selective than the individual materials and surpassing the Robeson upper-bound of polymer
membranes for gas separation.

In recent years, MOF hybrids synthesized by covalent modification have also been widely
studied as drug delivery systems (DDSs). In 2009, Lin et al. covalently grafted the cisplatin-based
prodrug ethoxysuccinato-cisplatin (ESCP) onto amino-functionalized MIL-101(Fe) and further coated
samples with a thin silica layer for stability [42]. The silica layer was then covalently grafted with
the cyclic peptide c(RGDfK) to increase cytotoxicity and selectivity for the «y 33 integrin, which is
overexpressed in numerous angiogenic tumors. The resultant ESCP-MOF-silica—c(RGDfK) hybrid
exhibited comparable tumor cytotoxicity (ICsy = 21 uM, compared to cisplatin IC5y = 20 uM) with
additional selectivity for an angiogenic tumor integrin.

Covalent surface attachment of polymers has also been of research interest in recent years.
In 2010, Férey et al. first demonstrated the potential applications of surface-attached polymers on
MIL-100 and MIL-101, improving solubility [45,46]. Various MOF hybrids have since been reported for
stimulus-responsive drug delivery and targeted delivery. Furthermore, pH-responsive MOF hybrid
delivery systems were investigated by several groups. Wei et al. prepared a MOF hybrid by covalently
attaching doxorubicin (DOX) to aldehyde-functionalized ZIF-90 via the Schiff base reaction with
13.5 wt% DOX incorporation [47]. The framework was then incorporated with the chemotherapy drug
5-fluorouracil (5-FU) with 36.35 wt% encapsulation (Figure 3a). Though DOX-ZIF-90 expressed slightly
lower 5-FU loading capacity compared to the parent ZIF-90 (around 65 wt%), it is still superior over
the majority of MOF loading capacities reported in literature. Additionally, pH-responsive collapse of
the framework introduced faster and targeted delivery. Wei et al. were of the first to report a codelivery
MOF DDS preparation by using MOF hybrids, showing MOFs’ potential in combination therapy.
Later, Zhang et al. and Fairen-Jimenez et al. independently studied pH-responsive MOF-PEG hybrid
materials for targeted drug delivery by covalently attaching the pH-sensitive PEG polymers onto the
surface of functionalized MOFs [48,49].

2.2. Covalent Modifications on the Ligands

In addition to the node modification approach, MOF hybrids can be also made by covalently
attaching other materials to MOF ligands. In this case, the ligands typically have coordination
sites, such as coordinatively unsaturated metals or Lewis basicity, available for further modification.
This modification can be characterized by performing NMR (Nuclear Magnetic Resonance) of the acid-
or base-digested MOF hybrids, revealing the organic composition of the modified ligands.

Jahan et al. prepared a graphene-MOF hybrid material by covalently attaching pyridine-
functionalized graphene (reduced graphene oxide, rGO) to the metalloporphyrin centers of a
Fe-porphyrin MOF [50]. Graphene sheets and graphene oxide (GO) have shown potential as an
alternative to expensive precious metals (i.e., Pd and Pt) in the catalysis of hydrogen evolution
(HER) and oxygen reduction (ORR) [31]. In this approach, the pyridine ligands are used to prevent
aggregation of graphene and coordinate graphene to the metalloporphyrin ligands of the MOEF.
Catalytic studies showed that the resultant graphene-MOF hybrid has a greater selectivity for
ORR than Pt-based electrodes and exhibits higher electrochemical activity, nearly ten times that
of unaltered graphene. This is mainly due to the incorporation of graphene into a MOF 3D structure
increasing the number of accessible active graphene sites, leading to a greater capacity of mediated
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electron transfer from the larger bond polarity of the nitrogen ligand. Moreover, the well-known
catalytic properties of iron-porphyrin are also improved in a MOF structure [46,51], which further
improved the electrocatalytic activity of graphene. In this graphene-MOF hybrid, the rGO, pyridine
ligand, and metalloporphyrin function synergistically to afford an improved catalyst compared to
individual components.

Additionally, Rao et al. reported a GO-MOF hybrid membrane that was synthesized by tethering
UiO-66-NH; onto GO surfaces, followed by incorporation into a Nafion matrix (Figure 3b) [52].
The GO surface was first coated with polydopamine (PDA) by self-polymerization. The PDA coating
then formed covalent bonds with the NH; group on UiO-66-NH; via Michael addition and Schiff
base reactions. The resultant GO-UiO-66-NH;-Nafion hybrid membrane showed excellent proton
conductivity in both high humidity and anhydrous conditions, which were 1.57 and 1.88 times higher
than that of recast Nafion, respectively. By covalently attaching UiO-66-NH; onto GO, a consecutive
proton transfer channel was created, resulting in the high performance of the hybrid membrane.
In addition, the MOF’s ability of retaining water in its pores under high humidity, as well as the
acid-base pairs (-SO3H and -NH,) formed between Nafion and UiO-66-NH, under low humidity also
contributed to the improved proton conductivity of the MOF hybrid. Due to the exceptional water and
thermal stability of GO-UiO-66-NHj, the hybrid membrane also had outstanding performance at high
temperature and high humidity.
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Figure 3. The preparations and structures of (a) DOX-ZIF-90 (b) GO-UiO-66-NH,. Figure 3b is
reproduced with permission from Rao et al. [52]. Copyright 2017 Elsevier.

MOF hybrids also importantly allow for biochemical selectivity of drug delivery. For example,
many malignant tumors are known to overexpress folate receptors on cell surfaces, providing a
potential target for selective drug delivery. Ren et al. reported the preparation of and selective drug
delivery by a folate-MOF hybrid, demonstrating potential for synthetic MOF materials to interact
with biochemical pathways [47]. The amine-functionalized MOF IRMOF-3 (IRMOF = isoreticular
MOF, meaning MOFs with the same topology) was appended with folic acid by conjugating the
IRMOEF-3 amine with the folic acid carboxyl, resulting in surface amide-bound folates. Folate-IRMOF-3
was then noncovalently loaded with 5-FU, and folate conjugation was confirmed to not affect
framework structure and loading capacity. Loaded IRMOF-3 (5-FUIRMOF-3) and folate-IRMOEF-3
(5-FU@folate-IRMOF-3) samples were compared for cytotoxicity in tumor lines both with and without
overexpression of folate receptors. Notably, in tumor lines with overexpression of folate receptors
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(KB and HelLa), treatment of 5-FU@folate-IRMOF-3 demonstrated approximately 30% lower cell
viability compared to 5-FU@IRMOF-3 and 20% lower cell viability compared to free 5-FU, showing
that folate-IRMOF-3 is an efficient DDS due to of folate conjugation.

3. Noncovalent Interactions

While covalent modification is a powerful tool of preparing MOF hybrids, not all materials or
small molecules can be hybridized with MOFs via covalent bonding without compromise of significant
functionality. In fact, many MOF hybrids have been obtained by simple mixing, coating, layering and
various other methods that do not involve the formation of covalent bonds. In this section, we discuss
three methods that are based on noncovalent interactions: encapsulation, layer-by-layer deposition,
and in situ growth. It should be noted we only discuss three methods here as examples, but there are
various other methods reported that are based on noncovalent interactions.

3.1. Encapsulation

In this review, “encapsulation” denotes the process of introducing other materials within existing
MOF pores without directly bonding to the MOF structures. The notation A@B is used to represent
material A encapsulated in material B. To date, a variety of materials have been encapsulated into
MOFs to produce MOF hybrids that are more stable and superior, often with new functionality.
The successful encapsulation of materials inside MOF pores is typically characterized by transmission
electron microscopy (TEM), UV-Vis spectroscopy, and/or NMR spectroscopy.

Encapsulation of noble metal nanoparticles (NPs) in MOFs, most commonly Pt and Pd NPs, has
enhanced their stability as well as catalytic performance [19,53]. Successful encapsulation of NPs
into MOF crystals has been achieved by incorporating NPs during solvothermal MOF synthesis [19].
This process does not affect the crystallinity of MOFs, and it allows for controlled distribution of
NPs as well as the inclusion of multiple types of NPs within one MOF [54]. For example, Pt@UiO-66
obtained using this method exhibited reactant shape selectivity (RSS) in olefin oxidation due to
the MOF confinement, which only allow smaller substrates that are able to diffuse through UiO-66
pores to react. In comparison, the non-encapsulated Pt NPs showed no selectivity towards different
substrates, and UiO-66, the MOF alone, did not exhibit catalytic activity. In addition to contributing
RSS to the NP@MOF hybrids, MOFs can also prevent the aggregation of encapsulated NPs, thus
further enhancing their catalytic activity through increased surface area. Another core-shell hybrid,
Pd@IRMOF-3, exhibited a greater catalytic activity than either parent material, as well a greater
performance over IRMOE-3-supported Pd; this hybrid showed promise in cascade reactions to
produce 2-(4-aminobenzylidene)-malononitrile, where the IRMOE-3 shell was used for Knoevenagel
condensation followed by selective hydrogenation via Pd NP cores [55]. Encapsulation of non-noble
metal NPs within MOFs have also been reported; one such hybrid is Cu(I)@MOF-5, which exhibited
enhanced ability of separating dibenzothiophene (DBT) from crude oils. A spontaneous monolayer
dispersion technique was employed to reach the dispersion threshold of the ions within the MOEF-5
network, which increased the adsorption and desorption of thiophenic sulfur compounds at a low cost
of production [56].

MOFs have also been studied for the encapsulation of polyoxometalates (POMs). POMs are a
class of polyatomic materials consisting of linked metal oxyanions, similar to some MOF metal clusters,
that are useful for redox catalysis but limited in activity by their low surface area and poor stability.
Many studies have employed MOF encapsulation of POMs to overcome these limitations, increasing
surface area [57] and distribution of catalytic material [58] while also preventing aggregation [59].
Furthermore, POM@MOF hybrids frequently demonstrate greater catalytic activity than either POM
or MOF parent material. In one such study, Buru et al. encapsulated the POM H3PW 1,049 into
NU-1000 by suspending NU-1000 in an aqueous solution of H3PW1,049 [15]. The resultant hybrid
material, PW1,@NU-1000 (Figure 4a), showed good stability towards leaching in aqueous solution, as
the nodes of NU-1000 act as counterions for [PW1,040]° . Subsequently, PW1,@NU-1000 was used as
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a catalyst for sulfide oxidation in the presence of hydrogen peroxide as both the POM and Zrg nodes of
NU-1000 catalyze the sulfide oxidations. A similar study conducted by Zou et al. encapsulated POMs
within a metalloporphyrin-based MOF via stepwise reactions between POM (H3PW1,04) and MOF
precursors (first with Mn'!Cl-tetrapyridylporphyrin, then with Cd(NO3),-4H,0). As such, this hybrid
demonstrated the combined catalytic effects of the Mn-porphyrinic ligand and the encapsulated POM,
thus acting as a powerful heterogeneous catalyst [60].

A perovskite quantum dots (QDs) encapsulated MOF was prepared by introducing the QDs
precursors (Pbl, and CH3NH3X, X = Cl, Br, and I) into an oriented microporous MOF HKUST-1 (a MOF
named after Hong Kong University of Science and Technology) by immersing the MOF thin films in
the precursor solutions (Figure 4b) [16]. The resultant QDs exhibited uniform ultrasmall particle size
(1.5-2 nm), which matches the pore size of HKUST-1. In this case, HKUST-1 not only serves as the
scaffold that controls the particle size of the MAPbI, X QDs, it also protects the encapsulated QDs from
moisture. The hybrid MAPbI, X@HKUST-1 exhibited excellent stability in moist air (70% humidity),
while the MAPbI, X decomposed under the same condition. Additionally, these QD@MOF hybrids
also had longer luminescent lifetimes compared to perovskite MAPbI, X, with the longest lifetime
occurring when X = Br in the MOF hybrid material.
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Figure 4. (a) The structure of PW;,@NU-1000. (b) The preparation of MAPbI,X@HKUST-1.
Reproduced with permission from Buru et al. [58] (Copyright 2018 Royal Society of Chemistry) and
Chen et al. [16] (Copyright 2016 American Chemical Society), respectively.

The encapsulation of gold nanoclusters (AuNC) in ZIF-8 yielded a hybrid material capable of
selectively sensing HjS in liquid and gas phases [61]. The synthesis of the hybrid AuNC@ZIF-8 was
achieved through the introduction of the MOF metal source, Zn(NOj3);, into a AuNC solution of pH
ranges 3.8-6.2. It was found that at a pH of 5, the zinc ion demonstrated its highest coordination ability,
resulting in increased precipitate. AuNC@ZIF-8 was obtained when the precipitate was placed into
a solution of 2-methylimidazole. It was determined that the encapsulation was not possible when
ZIF-8 was synthesized directly followed by the introduction of an AuNC solution. The quantum yields
and lifetimes of AuNC were found to significantly improve through their interactions with ZIF-§,
increasing from 7.6% and 2.96 ps to 33.6% and 9.18 ps. Furthermore, based on the reductive tendencies
of H,S and the affinity of gold for sulfur, the increased luminescent properties of AuUNC@ZIF-8 were
effectively quenched in the presence of Na,S in solution, with a detection limit of 0.54 uM. Gas phase
studies of H,S revealed similar selectivity and sensitivity. In addition, similarly encapsulated MOFs
are also being studied for the sensing of Hj [62], various anions [63], and Cu?* ions [64].

With the intention of yielding a material appropriate for visible-light communication (VLC),
Wang et al. encapsulated rhodamine B (a yellow light emitter) inside of an Al-based MOF with the
9,10-bis(p-benzoic acid)anthracene (DBA) linker (blue light emitter), obtaining a white light emitter [65].
Currently, the limited speed of VLC is attributed to the use of materials with long lifetimes, around
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200 ns, that results in a low intrinsic modulation frequency. The use of organic dyes, such as rhodamine
B, are believed to be a potential solution to this, as they could provide lifetimes as short as 1 ns while
maintaining high quantum yields. However, quenching induced by solid state aggregation of organic
dyes make them unideal candidates. Therefore, the encapsulation of rhodamine B in a MOF was
analyzed as a potential solution to prevent aggregation and produce a white light source through the
appropriate selection of a blue light emitting linker. It was found that the interactions between the
excited linker and encapsulated molecules provided a bridge for energy transfer that would combine
the effect of blue and yellow emission to create various hues of white light. The results indicated that
depending on the concentration of rhodamine B encapsulated in the MOF, the desired white light
emission could be obtained. A 0.019% rhodamine B encapsulated MOF, RhB-0.019%@AI-DBA, gave
the best results, with 6085 K white light color temperature, a lifetime of 5.4 ns, and a corresponding
intrinsic modulation frequency increase to 3.6 MHz from 0.8 MHz.

3.2. Layer-by-Layer Deposition

Synthesis of MOF hybrids through deposition often involves the formation of membrane-based
material by depositing layers of MOFs and other materials. Deposition is similar to encapsulation
in that other materials can adhere to the surface of a MOF and in that the elements incorporated
can be customized per application. It is worth noting that the “Layer-by-Layer Deposition” section
discussed in this review only includes examples of MOF hybrids based on noncovalent modifications.
Covalent bonds can exist in MOF hybrid materials made using this method but are not as common, so
we include relevant examples in the “Covalent Modification” section (hybrids made from ALD and
COE-MOF hybrids). Using this technique, metal clusters, metal oxides, graphene oxide, and polymers
have been hybridized with MOFs, giving rise to new materials that are useful in gas separation,
catalysis, photovoltaics, and proton conducting [52,53,56,66—-69]. The notation A |BIC is used to
represent materials A, B, and C that are hybridized via layer-layer deposition.

MOF membranes have been extensively studied for various separation processes. Combining the
properties of MOFs and other materials, MOF hybrid membranes often exhibit superior performance
than membranes based on individual materials [70-72]. For example, a MOF-polymer hybrid
membrane synthesized by Bae et al. showed high performance for CO,/CHj separation and great
gas permeability [70]. This hybrid membrane was made by incorporating submicrometer-sized
(0.81 £ 0.05 pm) ZIF-90 crystals onto a 6FDA-DAM poly(imide) and its performance was evaluated
under mixed-gas conditions (1:1 CO,/CH4 mixture at 25 °C and 2 atm total feed pressure).
ZIF-8 | 6FDA-DAM hybrid membrane with 15 wt% ZIF-8 showed CO; permeability of 720 Barrer
and CO,/CHy selectivity of 37, while these values were 390 Barrer and 24, respectively, for pure
6FDA-DAM (Figure 5a).

In addition to gas separation, MOF hybrid membranes have also offered new opportunities
for catalysis. Pd clusters were deposited onto Zn/Ni-MOEF-2 nanosheets to form hybrid
membrane, Pd | Zn/Ni-MOF-2, that exhibited greater catalytic activity towards CO-based reactions
(alkoxycarbonylation of aryl halides) than the individual Zn/Ni-MOF-2 sheets and Pd clusters, as
well as TiO, immobilized Pd clusters [73]. The better catalytic performance of the Pd | Zn/Ni-MOF-2
hybrid membrane over others was believed to be attributed to the porous MOF nanosheets that can
adsorb CO into the hybrid membrane. In another study by Maina et al., ZIF-8 membrane doped with
semiconductor nanoparticles, TiO, and CuTiO,, were deposited on a ZIF-8 | GO hybrid membrane [53].
Compared to unmodified ZIF-8, the resultant fabricated membrane CuTiO; | ZIF-8 | GO showed higher
photocatalytic efficiency toward CO, conversion, producing 70% more methanol with 7 ug of doped
CuTiO;. In addition to high CO, adsorption capacity of the MOF (ZIF-8), the MOF structure also
provided a kinetic route to transport the photogenerated electrons by semiconductor nanoparticles to
CO; [74]. Both factors contributed to the enhanced catalytic activity of the hybrid membrane.

More recently, MOF hybrid membranes were found useful in solar energy harvesting and
conversion [52,66,69]. Lee et al. prepared a TiO, | nanotube | MOF hybrid membrane that showed
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enhanced photovoltaic performance [66]. A composite film containing TiO, nanoparticles and
multi-walled carbon nanotubes was first synthesized hydrothermally. It was then sensitized with
Cu-based MOFs (copper(Il) benzene-1,3,5-tricarboxylate) via layer-by-layer deposition [75]. Combining
the nanotube’s ability of accelerating electron transfer and the small charge transfer resistance after
MOF sensitization, the resultant hybrid membrane showed an increase of nearly 60% in power
conversion efficiency in comparison to the unmodified MOF cell [76].

3.3. In Situ Growth

In situ growth approach involves the growth of MOF crystals via solvothermal /hydrothermal
reactions of the metal salts and ligands in the presence of another material. During the synthesis,
the second material generally serves as a structure directing agent, leading to oriented growth of
MOF crystals [77,78]. Hybrid materials obtained by in situ growth approach usually have ordered
morphology and/or hierarchical structure, which are useful features for applications such as gas
storage and small molecule separations [17,79-81]. In this section, a MOF that is grown in situ on
another material A is denoted as MOF@A.

In a study by Chen et al., HKUST-1 was synthesized in the presence of SBA-15 by adding a small
amount of SBA-15 with MOF precursors to form HKUST-1@SBA-15 (Figure 5b) [82]. The carbon
structures are integrated into the hybrid material and serve as a template for HKUST-1 to grow.
Silanol groups from SBA-15 and the metal centers in HKUST-1 interact, inducing the formation of new
mesopores as well as an increase of surface area and micropore volume. Furthermore, the formation
of the MOF composite on SBA-15 reduced the crystal size of the hybrid structure, which controlled
the morphology and attained a more ordered structure. From the various concentrations of SBA-15 to
MOF ratio, the hybrid synthesized from a 1 wt% SBA-15 solution produced the greatest increase in
CO; adsorption, by 15.9% compared to HKUST-1.

Upper bound o ot
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Fd W Lsartaces
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Figure 5. (a) MOF-polymer hybrid membranes prepared by lay-by-layer deposition and their enhanced
performances. (b) The in situ growth of HKUST-1 on SBA-15. Reproduced with permission from
Bae et al. [70] (Copyright 2010 John Wiley and Sons) and Chen et al. [82] (Copyright 2017 American
Chemical Society), respectively.

Zheng et al. prepared a MOF hybrid by the in situ growth of IRMOEF-3 on stainless steel
wires [80]. This hybrid was further coated by ionic liquid (IL, [bmim] [PF4]) and polymethylsioxane
(PDMS) to improve its moisture and thermal stability. The resultant IRMOEF-3@ILs/PDMS hybrid
material not only showed a dramatic increase in resistance to high temperature and moisture, as
well as an increase of 100 times the lifespan of the original ILs, but also a much better extraction
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efficiency for selected polycyclic aromatic hydrocarbons (PAHs) compared to each individual material.
The improved extraction efficiency of the MOF hybrid was due to the —m interactions between PAHs
and IRMOE-3, [bmim] [PF¢], as well as the larger surface area of IRMOF-3 that resulted from the in
situ growth method.

Falcaro et al. prepared MOF-5 crystals by adding a surfactant (Pluronic F-127) into traditional
solvothermal synthesis process [83]. The reaction between the surfactant and Zn?* in solution produced
poly-hydrate zinc phosphate microparticles that act as nucleation seeds in MOF synthesis, which
accelerated the growth of the MOF into either single crystals or multifaceted crystals surrounding
the microparticles. Functional MOF hybrids can be directly prepared by introducing functional
nanoparticles into these nucleation seeds (poly-hydrate zinc phosphate microparticles). In these MOF
hybrids, it was found that the functional nanoparticles were evenly distributed throughout the interior
of the MOF as opposed to its external surface. This method offers greater spatial control over the
distribution of the interested functional species in MOFs when compared to other methods such
as ALD, deposition, or encapsulation. Using this method, MOF-5 doped with various functional
nanoparticles (e.g., metals, QDs, polymers) were prepared, and the resultant QDs@MOF-5 hybrids
were used as selective molecular sieve sensors. In addition, this method was found to be 70% faster
than traditional solvothermal methods, showing that using surfactants is a promising in situ growth
approach for MOF hybrid synthesis.

4. Using MOFs as Sacrificial Templates or Precursors

The use of MOFs as sacrificial templates or precursors is a rising field of study as several
key properties of MOFs provide numerous benefits over previous technology; most notably, the
tunable nature of MOFs allows for versatile and customizable templates/precursors, and the uniform
distribution of the ligand and metal nodes within MOFs often leads to a uniform distribution of the
resulting hybrid material [1]. It has been shown that the hybrid materials produced by sacrificial MOFs
share comparable structures and pore sizes to their parent MOFs., especially those produced through
carbonization [2]. Carbonization, calcination, pyrolysis and annealing are the common methods of
preparing materials using MOFs as sacrificial templates/precursors. Another advantage of using MOFs
as templates/precursors is that their organic components can be used to produce carbon materials via
combustion synthesis without external carbon sources in a single step [2,3]. Alternatively, the ligands
of the template/precursor MOFs can also be removed by high temperature or acid treatment, leaving
the metal clusters or metal oxides with high surface areas. Essentially, MOF template/precursor
method allows for the facile synthesis of porous carbon nanomaterials, highly dispersed metal clusters
and porous metal oxides. Materials produced through this method are promising as environmentally
benign and cost-efficient solutions for energy storage [4]. In particular, they can be applied to
supercapacitors as electrode or anode materials [3-5], fuel cells [2], and semiconductors [2]. In addition
to these, some of them are also useful in catalysis [5] and sensing [84].

4.1. MOFs as Sacrificial Templates

In the process of material preparation, if the MOF framework was used as a structural pattern
for the synthesis of the new material, and both metal nodes and ligands of the MOF were removed or
decomposed afterwards, we categorize this method as “using MOFs as sacrificial templates”. Typically,
the MOF templates can be completely removed by either high temperature or acid treatment.

In 2008, Liu et al. for the first time used a MOF as a sacrificial template to synthesize porous
carbon, via the carbonization of a polymer/MOF hybrid (furfuryl alcohol polymerized in MOF-5
pores) [3]. After carbonization at 1000 °C, the framework of MOF-5 completely decomposes and
served as a self-sacrificed structural template, resulting in a carbon material with high surface area and
pore sizes ranging from micro- to macropores, evidenced by N; sorption isotherms. The introduction
of furfuryl alcohol into the cages of the MOF structure serves as an outside carbon source. At —196
°C and 760 Torr, the resultant porous carbon material adsorbed more hydrogen gas than MOF-5.
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In addition, the meso/macropores of the obtained porous carbon, resulting from the sacrificial
MOF template, endow it with exceptional electrochemical properties that are ideal for using as
electrode material. It had better performance than other carbon materials such as SBA-15 derived
carbons [11]. Later on, Jeon et al. used nitrogen-containing IRMOF-3 as a sacrificial template,
without any additional carbon sources, to synthesize nitrogen-doped porous carbon to be used as
supercapacitors [81]. The MOFs were prepared solvothermally, followed by carbonization under argon
gas at varying temperatures, ranging from 600-950 °C, to determine which temperature produced the
purist compound. At carbonization temperatures of 950 °C, the nitrogen-doped porous carbon had a
capacitance of 239 F g~!. By comparison, analogous nitrogen-free carbon had a capacitance of 24 F g~1.
This shows that the nitrogen dopants provided by the organic linkers of the MOF was the cause of
the increased capacitance. Chaikittisilp et al. also synthesized nanoporous carbon for supercapacitor
applications by utilizing ZIF-8 as the sacrificial template [85]. The porous nature and high surface
area of ZIF-8 made it an ideal template for preparing porous carbons through carbonization, with
results showing the relationship between carbonization temperatures and BET surface areas of the
obtained porous carbons (carbonization temperatures of 600 to 1000 °C resulted in surface areas of 520
to 1110 m? g~ 1).

Recently, Yang et al. prepared hollow and highly porous titania and other composite materials
by using ZIF nanocrystals as sacrificial templates as shown in Figure 6a [86]. A core-shell structured
composite ZIF@TiO, was first obtained by heating Ti(OBu)y in the presence of ZIF (ZIF-8 and ZIF-67)
nanocrystals. The ZIF core of the composite was then completely removed by the addition of dilute
aqueous HCI solution, producing the hollow amorphous TiO,. They also found that by using
ZIF cores of varying shapes and dimension, the morphologies and particle sizes of the resultant
hollow amorphous TiO; can be controlled. 77 K Ny adsorption experiments showed that the hollow
TiO, materials had surface areas comparable to their ZIF templates. Owning to their high surface
areas, along with great chemical and thermal stability, the hollow TiO, materials made from ZIF
templates are excellent catalyst supports. To utilize the TiO; as catalyst support, ZIF-8 infused with
Pt NPs was used as the template for TiO; synthesis, resulting in Pt/ ZIF-8@TiO, core-shell structure.
Using the same acid etching method, ZIF-8 template was completely removed and resulted in Pt NP
encapsulated hollow TiO,, Pt@TiO,. Having isolated and well-dispersed Pt NPs encapsulated in a
robust and porous TiO,, the Pt@TiO, prepared using MOF templating method is an excellent catalyst
for hydrogenation reactions.

MOF GOIMOF hydrogel
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Figure 6. The preparations and structures of (a) ZIF@TiO, and Pt/ ZIF-8@TiO,, and (b) MOF-derived
rGO/FeyO3. Reproduced with permission from Yang et al. [86] (Copyright 2015 American Chemical
Society) and Xu et al. [87] (Copyright 2017 American Chemical Society), respectively.
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4.2. MOFs as Sacrificial Precursors

If parts of the MOF components, usually metal nodes, remain after the process either in the
original metal cluster or transformed metal oxide forms, we categorize this as “using MOFs as
sacrificial precursor.” In most cases, when using MOF as a precursor, the 3D structure simultaneously
works as template in synthesis.

Malonzo et al. used NU-1000 as a sacrificial template and precursor to produce a thermally stable
catalyst with high concentration of single catalytic sites that were derived from the metal clusters of the
MOF [88]. In the catalyst preparation, a silica layer was first created inside the MOF channels by the
polycondensation of tetramethylorthosilicate. The composite was then heated 500 °C in air to remove
the organic linkers of NU-1000, leaving the Lewis acidic oxozirconium clusters of the MOF anchored
in the silica layer while retaining the MOF’s uniform 3D channel structure (3 nm). Pyridine adsorption
experiments and a glucose isomerization reaction demonstrated that the oxozirconium clusters in
this catalyst remained accessible and catalytically active after heating to 600 °C in air, while the
metal clusters in pristine NU-1000 aggregated and transformed to ZrO, nanoparticles under the same
condition. In another study, a Cu-based MOF HKUST-1 was used as the sacrificial precursor, which
underwent thermolysis followed by carbonization, to produce CuNPs@C [89]. This hybrid material
showed catalytic ability that mimics horseradish peroxidase (HRP), which can catalyze the oxidation
of 3,3/ 5,5’ -tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared to HRP, this
hybrid prepared from HKUST-1 precursor is not only more stable and less expensive, but also showed
a higher affinity for hydrogen peroxide, resulting in its higher catalytic activity. A colorimetric method
was developed using CuNPs@C for the detection of ascorbic acid with higher sensitivity than that
based on HRP.

Xu et al. used a 3D graphene oxide/MOF composite as a precursor to produce a MOF-derived
3D composite aerogel, rGO/Fe,;O3 [87]. As shown in Figure 6b, this aerogel was prepared by first
forming a GO/MOF hydrogel through adding MOF crystals into an GO aqueous solution, followed
by freeze-dry and a two-step annealing process. During the two-step annealing process, GO was
reduced to rGO and Fe-MOFs transformed to Fe,Os, while the porous structure of the aerogel
is maintained. Owing to the 3D porous structure of the Fe-MOF precursor, the resultant Fe,O3
nanoparticles formed porous nanostructures. This Fe;O3 porous nanostructures with high active
surface area, along with the 3D well-defined graphene with large electric double-layer capacitance, are
ideal electrode materials for energy storage devices. Experiments showed that electrodes built from the
hybrid rGO/Fe, O3 performs better than electrodes of only rGO or Fe;,O3. Xu et al. also utilized this
hybrid rGO/Fe,O3 as electrode materials to construct a flexible all-solid-state supercapacitor device,
which exhibited a high volumetric capacitance (250 mF cm 2 at 6.4 mA cm~2) and a great capacitance
retention (96.3% after 5000 cycles at 50.4 mA cm ).

Using Fe (Fe**)-doped MOF-5 as a sacrificial template and precursor, Song et al. developed a
hollow nanocage transition-metal oxide (TMO) semiconductor with the intention of selectively sensing
acetone [84]. Fe-doped MOF-5 underwent an annealing process to afford ZnFe;O4 hollow concave
octahedral structure. The synthesis of such a complex multimetal TMO is facilitated by the Zn and Fe
composition of the doped MOF, resulting in a stable structure that could be annealed in air. The use of
ZnFepOy is well researched as a fruitful semiconductor material, and the high specific surface area as
well as the porous nanostructure of the TMO derived from the doped MOF precursor led to greater
stability and better performance compared to ZnFe,O4 being prepared with other methods. Ultimately,
ZeFeyOy prepared from the sacrificial MOF precursor showed exceptional sensitivity for acetone at
a concentration range of 64.4-200 ppm, optimally at 120 °C. It also exhibited good selectivity and
cyclic stability.

In addition to the MOF hybrids discussed in each section, we also summarize and categorize all
reported MOF hybrids in Table 1 based on their preparation methods.
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Table 1. A summary of reported MOF hybrids and their applications.

13 of 23

Hybrid Method MOF Used Hybridized with Applications Ref
Cr(III) MIL-101 Ethylene diamine Catalysis [90]
Mg/DOBDC Ethylene diamine Gas storage [32]
o metal modes NU-1000 ALD ignggal(\ghz)j%{oi}(I){Xf'olfl\c/)vxéxc,(;gg CoSy, Catalysis [37,39-41,91-96]

Uio-66 4—(azidomethy%]k:?nlzrz)?c4 aocljcsfl, {c\lilén PEG alkyne Catalysis; drug delivery (35491
Zny(BDC),(DABCO) and ZIF-8 COF-300 (5iO, and polyaniline disks) Gas separation [44]
Mgg:’ffcljgzn MIL-88A and MIL-100 CH;-O-PEG-NH, Drug delivery [45]
UMCM-1-NH, [Fe(acac);] and [Cu(acac),] Catalysis [97]
Zr-MOF-bpy CuBr, Catalysis [98]
(Fe—P)n MOF pyridine functionalized rGO sheets Catalysis [50]

on ligands IRMOE-3 vanadium clusters, Folate Catalysis, drug delivery [47,99]
MOF-253 Rhenium, Rubidium Catalysis [100]
MIL-101(Fe)-NH, Ethoxysuccinato-cisplatin, then thin silica coating Drug delivery [42]
ZIF-90 Doxorubicin Drug delivery [47]
MIL-101(Fe)-N3 Bicyclonyne-functionalized 3-CD, then PEG-Ad Drug delivery [41]

UiO-66 Pt NPs, Pd NPs Catalysis [19,101]
IRMOEF-3 Pd NPs Catalysis [55]
[CA(DMF),Mnl(DMF), TPy P], >+ POMs Catalysis [60]

NU-1000 POMs Catalysis [15,58]
Non-covalent Encapsulation MIL-100(Cr) POM-MIL-100(Cr) with Ru NPs Catalysis [58]
Interactions Ni-PYI Ni NP-supported POMs Catalysis [102]
HKUST-1 quantum dots (QDs) Photovoltaics [16]

ZIF-8 Bra“dz‘i%l;’leyl:i?%;;?fgﬁi%g;:ﬁgg QDs; Sensing, catalysis [54,61,62,64]

Rho-ZMOEF Pt-metalated porphyrin Sensing [63]
Eu-MOF CdTe QDs Photovoltaics [103]
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Table 1. Cont.

14 of 23

Hybrid Method MOF Used Hybridized with Applications Ref
MIL-101 H,S04, Toluenesulfonic, triflic acids Proton conductivity [13,84]
Zn-NPD Naphthalene Sensing [104]
Al-DBA Rhodamine B Lighting [65]
Zn-DPP Co-doped Tb3* and Eu®* Lighting [105]
ZIF-8 TiO, /Cu—TiO, and GO Catalysis [53]
Ti-MOF Pt NPs Catalysis [67]
Layer-by-Layer MIL-100(Fe) Phosphated -CD, then PEG-Ad Drug Delivery [68]
Deposition HKUST-1 TiO, and multi-walled carbon nanotubes Photovoltaics [66]
UiO-66 GO Proton conductivity [52]
UiO-66-SO3H GO nanosheets Proton conductivity [69]
MOEF-5 Cu(l) Desulfurization of flue gas [56]
Cu-TED-BDC GO sheets Catalysis [106]
ZIF-8 Polysulfone, Matrimid Gas separation [71]
MOE-S " M.ulti-Walled Carbon Nanotubes, Pt-loa.ded . Gas storage, gas separation, PAHs
- ultl—Wa%led. Carbon Napotubes, ?olymerlc Tonic extraction, sensing [72,80,83,107-109]
In situ Growth Liquids, Matrimid, Pluronic F127
HKUST-1 Pt-loadedl\?;)lbifg ile;lt;li);?;d Carbon Gas storage, gas separation [71,82,110,111]
UiO-66-NH, Polysulfone Gas separation [112]
ZIF-90 Ultim, Matrimid, 6FDA-DAM Gas separation [70]
MIL-53(Al) Matrimid Gas separation [71]
MOFEF-74(Zn) Alginate Molecular sieves [78]
Fe3[Co(CN)g ] Graphene Catalysis [113]
MIL-88 (Fe) carbon-film-coated iron sulfide nanorods (C@Fe;Sg) Li ion battery [14]
Using MOF as a Template MOEF-5 Nitrogen-doped porous carbon; Carbon Supercapacitors; electrodes; [81,114]
catalyst support
Z1F-67 Ni-Co layered double hydroxides on graphene energy storage, catalyst support [86,115]

nanosheets, Ti(OBu)y
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Table 1. Cont.

15 of 23

Hybrid Method MOF Used Hybridized with Applications Ref
Electrode materials, fuel
ZIF-8 Nanoporous carbons, Ti(OBu), cells, supercapacitors, [85,86,89]
catalyst support
HKUST-1 Mo-POMs Energy .storage, electrqmcs, [85,116]
sensing and catalysis
HKUST-1 Decomposition of the organic MOF h.gand into a catalysis [89,117]
Cu-supported carbon matrix
NU-1000 Nanocasting with silica catalysis [88]
Co-NDC Carbonization of Co-NDC grown on Cu sheets Catalysis [118]
Zn /Ni-MOF-5 to MOEF-2 nanosheets followed by .
MOF-5 deposition of Pd clusters catalysis 73]
MIL-53 (Fe) porous Fe;O3 nanostructures Li ion battery [24,73]
Precursor ..
[CosLy(TPT)xGlp Porous Co30y4 hollow tetrahedra Li ion battery [119]
MOF-200 Nitrogen-doped graphene Wrapped okra-like Li jon battery [120]
SnO, composites
[Co(BIB)(0-BDC)] s, Porous Co@carbon nanotube composites
[Coy(BIB), (m-BDC),]e0, and (CO@CNTs) and after in situ gas-sulfurization Supercapacitor [121]
{[Co(BIB)(p-BDC)(H,0)1(H20)0.5}c0 (CoS,@CNTs)
Fe-MOF, Ni-MOF, ZIF-8, MOEF-5, Graphene oxide composite aerogels: rGO/Fe;O3 Supercapacitor
Sn-MOF, Co-MOF and rGO/NiO/Ni percap

Abbreviations: DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate, BDC = 1,4-benzenedicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2] octane, acac = acetylacetonate, bpy = bipyridine,
ad = Lys(adamantane)-Arg-Gly-Asp-Ser-bi-PEG1900 (bi = benzoic imine bond), TPyP = tetrapyridylporphyrin, PYI = L- or D-pyrrolidin-2-ylimidazole, NPD = naphthalene diimide,
DBA = 9,10-dibenzoate anthracene, DPP = 1,3Di(4-pyridyl)propane, TED = triethylene diamine, NDC = naphthalenedicarboxylate, L = 2,4,6-tris[1-(3-carboxylphenoxy)-ylmethyl]mesitylene,
TPT = 2,4,6-tris(4-pyridyl)-1,3,5-triazine, G = guest molecules, BIB = 1,4-bis(imidazol-1-yl)benzene.
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5. Conclusions and Future Outlook

Coupling MOFs with various additions to the structures have been shown to enhance the
capabilities of the materials with a boost in desired effects. Methods such as covalent attachment,
encapsulation, layer-by-layer deposition, in situ formation and MOF templating are effective
techniques that can boost materials’ intended functions or give rise to new functions in hybrid
materials. In addition to enhanced performances, some hybrid materials also benefit from greater
stability, increased cyclic use, and reduced cost. For example, some MOF hybrids allow the use
of abundant metals instead of precious metals to realize the same type of catalysis with improved
outcomes. The synergistic effects of MOF hybrid materials have a vast array of applications that are
still expanding. These applications include, but are not limited to, energy harvesting, sensing, catalysis,
drug delivery, gas storage, and gas separation.

The increased efficiency of these hybrid materials can open new doors as they are applied to
new technologies, but the field is still in its infancy. More research is needed to find ideal material
combinations to exploit the strengths of the parent materials, while diminishing their weaknesses.
Mechanistic and computational studies are also important to understand how the components interact
with each other in the hybrids and investigate what structural features contribute to the enhanced
performances. Future work for this field may focus on developing more cost effective synthetic routes
as well as increasing efficiency for each hybrid. Discovering new combinations of MOF and other
materials may yield better results than existing structures and help to advance the field of material
chemistry, as well as reaching new standards for each application.
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