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Abstract: Effect of Zr content on the structure and water–gas shift reaction catalytic activities of
Au-CeO2-ZrO2 catalysts were quantitatively analyzed in detail. For the low ZrO2 content (0–15 wt. %),
the Ce-Zr-O solid solutions were formed through the substitutional incorporation of Zr cations into
CeO2 lattice, resulting in the contraction of cell parameters a and d-spacing (i.e., lattice distortion) and
the increase of microstrain and oxygen vacancies. Quantitatively, the enhanced WGS activities have
good linear correlation with the cell parameters a, microstrain, Raman shift and oxygen vacancies.
Whereas, for the rich-zirconia (45 wt. %) sample, Au-CeZr-45 has some isolated t-ZrO2 and fluorite
CeO2 instead of solid solution. The isolated t-ZrO2 crystallites block the contact between Au and
CeO2, resulting in the agglomeration of gold clusters and, as a consequence, poor WGS activity of
Au-CeZr-45 catalyst.
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1. Introduction

The water–gas shift (WGS) reaction (CO + H2O ↔ CO2 + H2) has represented a paramount
step in the industrial production of hydrogen. Nevertheless, the traditional WGS catalysts (such as
Cu-Zn-Al, Fe-Cr and Co-Mo) often require complicated prereduction and/or prevulcanization or are
possibly pyrophoric. Accordingly, some new efficient WGS catalysts, such as supported catalysts,
are continuously pursued. For instance, both precious metals (Pt, Au, Rh, Ir, Pd, Ru, etc.) [1,2] and
non-precious metals (Ni and Cu) [3] were supported on various oxides, such as TiO2 [4–8], CeO2 [9–12],
ZrO2 [13–17], Mo2C [18] and FeOx [19,20]. Hereinto, due to the high activity and selectivity of dispersed
Au [1], gold catalysts have been considered among the most promising WGS catalysts. Meanwhile,
for the supports, CeO2 has been paid considerable attention, due to the high oxygen storage capacity
(OSC) of ceria, associated with its rich oxygen vacancies, the character of strong interaction with active
metal and the easy change between Ce3+ and Ce4+ [9–12]. Thus, Au-CeO2 should be potential catalysts
to deliver high WGS activities.

The catalytic activity of CeO2-based catalysts are significantly enhanced by the presence of a small
amount of transition metal due to the synergistic effect among multiple components compared with
single-component supports. For example, the mixed oxides, like CeO2-TiO2 [21], CeO2-ZrO2 [22–26],
CeO2-La2O3 [27] and CeO2-Co3O4 [28], were usually paid considerable attention. Hereinto, the
Ce-Zr-O solid solution were easily approached by the introduction of Zr. Accordingly, addition of Zr
to CeO2 has been reported to improve the oxygen storage capacity of ceria, which is paramount for the
above WGS, CO oxidation [29] and steam reforming of methanol [30]. Nevertheless, the amount of
incorporated Zr in the Ce-Zr-O solid solution should have the maximum. Furthermore, the effect of Zr
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content on the structure and water–gas shift reaction catalytic activities of Au-CeO2-ZrO2 catalysts
should be quantitatively analyzed in detail, to our best knowledge, which has been rarely reported.

In the present work, quantitative effect of Zr content on the structure and water–gas shift reaction
catalytic activities of Au-CeO2-ZrO2 catalysts were investigated in detail. The results indicate that
the enhanced WGS activities correlate well in a linear fashion with the cell parameters a, microstrain,
Raman shift and oxygen vacancies.

2. Experimental

2.1. Catalyst Preparation

Firstly, a series of CeO2 doped with various zirconia content (i.e., 0, 3, 5, 15, 45 wt. %, calculated
as ZrO2) were prepared by co-precipitation method and used as supports. In brief, the mixed aqueous
solution of Ce(NO3)3·6H2O (1 mol/L) and ZrOCl2·8H2O with desired Zr content was precipitated by
parallel addition of 3 mol/L NH3·H2O solution with mechanical stirring at 60 (±3) ◦C, keeping the pH
at 8–9 and aging the resulting precipitate for 1 h. After that, the precipitate was centrifuged and washed
several times with distilled water until there were no residual Cl− ions in the supernatant, which were
detected by an aqueous solution of AgNO3 (0.1 mol/L). The precipitate was dried overnight at 110 ◦C
and calcined in static air at 300 ◦C for 2 h.

Then, the fixed content (3 wt. %) of gold was loaded on the above as-synthesized support by
deposition-precipitation. The detailed procedure is described as follows. The above as-synthesized
CeO2-ZrO2 support (0.7 g) was dispersed in 100 mL of deionized water by sonication for 10 min.
The HAuCl4 (0.0025 mol/L, 44 mL) and a certain amount of NH3·H2O (0.05 mol/L) solution were
simultaneously added into the above suspension, and the pH value and the temperature of the
solution were kept at 9–10 and 60 ◦C, respectively. After aging of 4 h, the samples were carefully
washed like the supports, and then also dried overnight at 110 ◦C and calcined in air at 300 ◦C for 4 h.
Depending on the different zirconia content, the final samples were denoted as Au-Ce, Au-CeZr-3,
Au-CeZr-5, Au-CeZr-15 and Au-CeZr-45, respectively.

2.2. Catalytic Test

The catalytic activity measurements of all samples towards the WGS reaction were carried out in
a commercial fixed-bed reactor (CO-CMAT9002, HD Co. Ltd., Beijing, China) at atmospheric pressure.
A stainless-steel tube with an inner diameter of 9 mm was chosen as the reactor. The catalysts were
firstly sieved to obtain granules, then 0.7 g of catalyst granules between 20 mesh and 40 mesh
were placed between two quartz wool layers in the reactor. For the measurement of reaction
temperature, two thermocouples were inserted into the reactor wall and the catalyst bed, respectively.
The experiment was directly performed under feed gas (10% CO balance in N2) with the flow rate of
85 mL/min at standard temperature and pressure (STP) without any pre-reduction. Water was injected
into the flowing gas stream by calibrated syringe pump and vaporized in the vaporizer (110 ◦C) before
entering the reactor. The ratio of vapor to feed gas was maintained at 1:1. A condenser was installed
after the reactor to remove water. The outflow was analyzed using an on-line gas chromatograph
(Shimadzu GC-8A) equipped with a thermal conductivity detector. The CO conversion was calculated
as follows: XCO (%) = (1 − V’CO/VCO) × 100%/(1 + V’CO) [8,9], where VCO and V’CO are the inlet and
outlet content of CO of dry gas due to condensation, respectively.

2.3. Characterizations

X-ray powder diffraction (XRD) patterns of the samples were obtained on a Bruke D8 Advance
X-ray diffractometer, using Cu Kα1 radiation (40 mA, 40 kV) over the range 2θ = 20◦–70◦ (a scan
rate of 2◦/min). For Rietveld analysis, the XRD pattern of standard reference material (NIST 640A
silicon), which is a material with no microstrain nor size broadening, was measured from 10◦ to 140◦

on the same instrument with the same experimental parameters. The patterns of the standard and
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experimental samples were fitted with a pseudo-Voigt function (PVF), which were carried out with
X’pert highscore plus software. High resolution transmission electron microscopy (HRTEM) analysis
was performed using a JEOL-2100 microscope. The powered samples were ultrasonically dispersed
in ethanol and the obtained suspensions were deposited on a copper grid, coated with a porous
carbon film. Raman spectra were collected at room temperature on a Renishaw Invia Plus instrument
using a semiconductor laser as an illumination source (532 nm). The actual Au loading in each catalyst
was measured by ion coupled plasma-atomic emission spectroscopy (ICP-OES) using a Varian 710-ES
analyzer (Varian, Englewood, NJ, USA).

3. Results and Discussions

The WGS catalytic activity of the Au-CeO2-ZrO2 catalysts with various zirconia content are
presented in Figure 1. Compared with Au-Ce catalyst, the trifle addition of zirconia (Au-CeZr-3)
did not significantly influence the WGS catalytic activity. With the increase of zirconia content
(5 wt. %–15 wt. %), the WGS activities gradually increased. For instance, the CO conversion of
Au-CeZr-15 catalyst arrived at the maximum, and noticeably increased by 23% (i.e., from 40.2% to
49.5% at 200 ◦C) compared with Au-Ce catalyst. However, rich-zirconia Au-CeZr-45 catalyst showed
poor activity. The WGS reaction activity of the samples will be related to their structural properties.
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Figure 1. Catalytic activity of various Au-CeO2-ZrO2 catalysts. 

As shown in Figure 2a, the diffraction peaks of the fluorite structure of ceria (JCPDS: 43-1002) 
were observed in all samples. With an increase of Zr content, the diffraction peaks of CeO2 
gradually weaken and broaden. Correspondingly, the crystal sizes of CeO2 were calculated from the 
Rietveld analysis of XRD patterns and gradually decreased, as listed in Table 1. In addition, the 
diffraction peaks of rich-zirconia Au-CeZr-45 catalyst obviously shift to higher diffraction angles. 
This significant upshift might be ascribed to the formation of Ce-Zr-O solid solution through the 
substitutional incorporation of Zr cations into CeO2 lattice. For this reason, the cell parameters (a) 
and lattice spacing (d-spacing) were calculated from the Rietveld analysis of XRD patterns, as 
presented in Table 1. It is found that both cell parameters a and d-spacing gradually decreased with 
the increase of Zr content. The above lattice contraction might be ascribed to the substitutional 
incorporation of Zr cations into CeO2 lattice, because the radius of Zr4+ (0.084 nm) is smaller than 
that of the Ce4+ (0.092 nm). Thus, some Ce-Zr-O solid solutions were formed. 

More impressively, as shown in Figure 2c, there is a softer linear relationship between the cell 
parameters a and CO conversion at 250 °C in the range of 0–15 wt. % of Zr content, illustrating that 
the Ce-Zr-O solid solution facilitated the improvement of WGS activities. However, the 
rich-zirconia Au-CeZr-45 catalyst present the poorest WGS activity, might be attributed to the 

Figure 1. Catalytic activity of various Au-CeO2-ZrO2 catalysts.

As shown in Figure 2a, the diffraction peaks of the fluorite structure of ceria (JCPDS: 43-1002)
were observed in all samples. With an increase of Zr content, the diffraction peaks of CeO2 gradually
weaken and broaden. Correspondingly, the crystal sizes of CeO2 were calculated from the Rietveld
analysis of XRD patterns and gradually decreased, as listed in Table 1. In addition, the diffraction peaks
of rich-zirconia Au-CeZr-45 catalyst obviously shift to higher diffraction angles. This significant upshift
might be ascribed to the formation of Ce-Zr-O solid solution through the substitutional incorporation
of Zr cations into CeO2 lattice. For this reason, the cell parameters (a) and lattice spacing (d-spacing)
were calculated from the Rietveld analysis of XRD patterns, as presented in Table 1. It is found that
both cell parameters a and d-spacing gradually decreased with the increase of Zr content. The above
lattice contraction might be ascribed to the substitutional incorporation of Zr cations into CeO2 lattice,
because the radius of Zr4+ (0.084 nm) is smaller than that of the Ce4+ (0.092 nm). Thus, some Ce-Zr-O
solid solutions were formed.
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Figure 2. X-ray diffraction patterns of various Au-CeO2-ZrO2 catalysts (a,b); CO conversion at 
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Table 1. Physical properties and microstructural parameters of Au/ceria-zirconia catalysts. 
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38.2°) are discernible in the samples with less amount (0 wt. %–15 wt. %) of zirconia, while the 
obvious diffraction peak of Au clusters was observed in rich-zirconia Au-CeZr-45 catalyst. The 
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Figure 2. X-ray diffraction patterns of various Au-CeO2-ZrO2 catalysts (a,b); CO conversion at 250 ◦C
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Table 1. Physical properties and microstructural parameters of Au/ceria-zirconia catalysts.

Catalysts Au Content (%) a of CeO2 (Å) d-Spacing of CeO2 (111) (nm) Crystal Size of CeO2 (nm)

Au-Ce 3.34 5.413 0.3125 17.2
Au-CeZr-3 3.32 5.406 0.3121 11.3
Au-CeZr-5 3.25 5.404 0.3120 10.3
Au-CeZr-15 3.26 5.396 0.3115 8.8
Au-CeZr-45 3.35 5.380 0.3106 5.5

More impressively, as shown in Figure 2c, there is a softer linear relationship between the cell
parameters a and CO conversion at 250 ◦C in the range of 0–15 wt. % of Zr content, illustrating that
the Ce-Zr-O solid solution facilitated the improvement of WGS activities. However, the rich-zirconia
Au-CeZr-45 catalyst present the poorest WGS activity, might be attributed to the overloading of Zr
content. Accordingly, the limited solubility of Ce-Zr-O solid solution was calculated by the empirical
formula described as follows [31]:

aCe = 0.5413 + ∑k (0.022∆rk + 0.00015∆zk)mk

where a (in nanometers) is the lattice parameter of the fluorite structured solid solution at room
temperature, ∆rk is the difference in ionic radius (rZr − rCe), ∆zk is the valence difference between Ce4+

and Zr4+, and mk is the mole percent of the Zr dopant. Based on the experimental lattice parameter
aCe listed in Table 1, the theoretical value of mZr in rich-zirconia Au-CeZr-45 catalyst is calculated to
18.8 at. %. which is lower than the experimental value of 53 at. % (i.e., 45 wt. % of ZrO2). It means that
there is about 34.2 at. % ZrO2 exist as isolated tetragonal zirconia (t-ZrO2, as shown in Figure 2b) in
Au-CeZr-45 catalyst, which will be further confirmed from the next HRTEM and Raman analyses.

Furthermore, all the catalysts have almost identical Au loading (Table 1), suggesting that the
loading of gold was not influenced by the changing of zirconium content in ceria-zirconia support.
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However, isolated t-ZrO2 microcrystallite and Ce-Zr-O solid solution presented the different effects on
particle size of Au clusters. As shown in Figure 2a, no peaks related to any gold species (2θ = 38.2◦) are
discernible in the samples with less amount (0 wt. %–15 wt. %) of zirconia, while the obvious diffraction
peak of Au clusters was observed in rich-zirconia Au-CeZr-45 catalyst. The results indicate that the
agglomeration of gold clusters that has occurred might be due to that the isolated ZrO2 crystallites
block the contact between Au and ceria. In other words, the excessive isolated ZrO2 crystallites result
in the sintering of Au particles, as reported in the literature [30]. Additionally, HRTEM results also
indicate that the Au-CeZr-15 catalyst (around 5–10 nm, Figure 3a) has smaller particle size of Au
compared with Au-CeZr-45 catalyst (around 20–50 nm, Figure 3c). This sintering of Au particles
should be responsible for the poor WGS activity of Au-CeZr-45 catalyst. Therefore, Ce-Zr-O solid
solution in the low Zr content of catalysts facilitated the dispersion of Au particles and improvement
of WGS activities, whereas the excessive isolated ZrO2 crystallites result in the sintering of Au particles
and poor WGS activity.
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HRTEM images of Au-CeZr-15 and Au-CeZr-45 catalysts are presented in Figure 3b,d, respectively.
There are some crystal planes of CeO2 (111) in Figure 3b, and no crystal planes of any ZrO2 species
were observed. In contrast, both crystal planes of CeO2 (111) and t-ZrO2 (101) are presented in
Figure 3d, suggesting that isolated t-ZrO2 located in Au-CeZr-45 catalyst, in good agreement with
the calculated results from the above empirical formula and XRD. In addition, for the CeO2 (111)
in Au-CeZr-15 catalyst, the d-spacing calculated from FFT using Digital Micrograph 3.7 software
(0.3105 nm, Figure 3b) and the Rietveld analysis of XRD patterns (0.3115 nm, Table 1) are almost
identical. The small error can be allowable because of the difference in calculation methods. However,
there is a large difference in d-spacing of CeO2 (111) in Au-CeZr-45 catalyst calculated from FFT
(0.3135 nm, Figure 3d) and the Rietveld analysis of XRD patterns (0.3106 nm, Table 1). The d-spacing
calculated from FFT (0.3135 nm, Figure 3d) is similar to the d-spacing of dopant-free Au-Ce catalyst
(0.3125 nm, Table 1). The results illustrate that there is no solid solution in the rich-zirconia Au-CeZr-45
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catalyst because the excessive amount of zirconium led to the segregation of Zr from solid solution to
form the isolated t-ZrO2 crystallites [30]. Thus, the d-spacing (0.3106 nm, Table 1) is pseudo, because
the XRD peaks consist of the overlapped diffraction peaks of fluorite CeO2 (JCPDS: 43-1002) and
tetragonal ZrO2 (JCPDS: 24-1164), as shown in Figure 2b. Hereinto, there is no solid solution in the
rich-zirconia Au-CeZr-45 catalyst, which will be further proven by the next Raman results.

For the Rietveld analysis of XRD patterns, the microstrain values were obtained (Figure 2d) to
investigate the distortion of crystal lattice. It can be found that the microstrain of CeO2 monotonously
increased with the increase of Zr content, and CO conversion at 250 ◦C has an excellent positive
linear correlation with microstrain of CeO2. As stated in above paragraph, Ce-Zr-O solid solution
was formed through the substitutional incorporation of Zr cations into CeO2 lattice, which led to
the cell contraction (i.e., lattice distortion), embodying as the increase in microstrain. Our previous
studies communicated that larger microstrain gave rise to stronger metal-support interactions and
higher surface energy, as well as higher catalytic activities [32,33]. Therefore, the forming of Ce-Zr-O
solid solution led to the lattice distortion (e.g., higher microstrain, smaller lattice spaces), stronger
interaction between Au and CeO2-ZrO2 and higher surface energy, so as to improve catalytic activities
of Au-CeO2-ZrO2.

The structural studies of various Au-CeO2-ZrO2 catalysts are also complemented by Raman
results, as presented in Figure 4. The Raman spectra show a strong peak at about 460 cm−1 in all cases
except Au-CeZr-45 catalyst, which corresponds to the triply degenerate F2g mode and can be viewed
as a symmetric breathing mode of Ce-O [33]. For the F2g mode, the Raman bands shift to higher
wavenumber with the increase of ZrO2 content (0–15 wt. %), as shown in Figure 4b. Impressively, CO
conversion at 250 ◦C correlates almost in a positive linear fashion with the F2g mode Raman shift of
Ce-O in CeO2, as presented in Figure 4c. The blue-shift of Raman bands at 460 cm−1 should be related
to the introduction of Zr, which affects the polarizability of the symmetrical stretching mode of [Ce-O]
vibrational unit, embodying as the increase of the microstrain of CeO2 [32,33]. Thus, the results of
Raman blue-shift (Figure 4c) and enhanced microstrain (Figure 2d) are consistent with each other.
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microstrain. Our previous studies communicated that larger microstrain gave rise to stronger 
metal-support interactions and higher surface energy, as well as higher catalytic activities [32,33]. 
Therefore, the forming of Ce-Zr-O solid solution led to the lattice distortion (e.g., higher microstrain, 
smaller lattice spaces), stronger interaction between Au and CeO2-ZrO2 and higher surface energy, 
so as to improve catalytic activities of Au-CeO2-ZrO2. 

The structural studies of various Au-CeO2-ZrO2 catalysts are also complemented by Raman 
results, as presented in Figure 4. The Raman spectra show a strong peak at about 460 cm−1 in all 
cases except Au-CeZr-45 catalyst, which corresponds to the triply degenerate F2g mode and can be 
viewed as a symmetric breathing mode of Ce-O [33]. For the F2g mode, the Raman bands shift to 
higher wavenumber with the increase of ZrO2 content (0–15 wt. %), as shown in Figure 4b. 
Impressively, CO conversion at 250 °C correlates almost in a positive linear fashion with the F2g 
mode Raman shift of Ce-O in CeO2, as presented in Figure 4c. The blue-shift of Raman bands at 460 
cm−1 should be related to the introduction of Zr, which affects the polarizability of the symmetrical 
stretching mode of [Ce-O] vibrational unit, embodying as the increase of the microstrain of CeO2 
[32,33]. Thus, the results of Raman blue-shift (Figure 4c) and enhanced microstrain (Figure 2d) are 
consistent with each other.  
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Figure 4. (a) Raman spectra of various Au-CeO2-ZrO2 catalysts; (b) Magnification of the region around
460 cm−1 (the dotted rectangle in (a)); CO conversion at 250 ◦C (%) vs. Raman shift of Ce-O (c) and the
Raman intensity ratio of oxygen vacancies (Vo) to Ce-O (d).
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Raman shift (∆ν) is the wavenumber difference between Stokes scattered light (νs) and incident
light (ν0). To explain these phenomena, the calculation of the Raman band is simplified by a physical
model-harmonic oscillator. The wavenumber (ν) is expressed by Hooke’s law as follows:

ν (cm−1) = (k/µ)1/2/2πc

where c is the velocity of light, k is the bond force constant, and µ is the reduced mass. On the basis of
the equation, the blue-shift of Raman bands at 460 cm−1 should be ascribed to the increase of the Ce-O
bond force constant (k), which arises from the decrease of the length of Ce-O bond. It shall result in
the decrease of cell parameters a and d-spacing, in very good agreement with XRD Rietveld analysis
results (Table 1) and HRTEM analysis results (Figure 3).

In addition, there are almost the same Raman bands in the different focus regions of all the samples.
However, the Au-CeZr-45 catalyst shows two different sets of Raman bands in different focus regions,
which are shown in the Au-CeZr-45-1# and Au-CeZr-45-2# of Figure 4a, respectively. The F2g mode
Raman bands of Ce-O in Au-CeZr-45-1# downshifts and is similar to that of dopant-free Au-Ce catalyst,
indicating that there is no solid solution in the rich-zirconia Au-CeZr-45 catalyst, in good agreement
with HRTEM analysis results. The bands of Au-CeZr-45-2# should be assigned to tetragonal ZrO2

(t-ZrO2), implying that a part of zirconium exists as isolated t-ZrO2 in Au-CeZr-45 catalyst, consistent
with the above XRD and HRTEM analyses results. Therefore, the isolated t-ZrO2 crystallites block the
contact between Au and ceria, resulting in the agglomeration of gold clusters and, as a consequence,
poor WGS activity of Au-CeZr-45 catalyst.

Furthermore, the Raman spectra also exhibit a weak band at around 600 cm−1, which has been
related to the presence of oxygen vacancies (Vo) [33]. With the increase of Zr content, the intensity ratio
of Vo (600 cm−1) to Ce-O (460 cm−1) gradually increased. Impressively, as shown in Figure 4d, CO
conversion at 250 ◦C has an excellent positive linear correlation with the intensity ratio of Vo to Ce-O.
The results indicate that the amount of oxygen vacancies gradually increased with the increase of
Zr content. Thus, a part of zirconium has incorporated into ceria lattice along with the formation of
oxygen vacancies.

In a word, for the low ZrO2 content (0–15 wt. %), the Ce-Zr-O solid solutions were formed through
the substitutional incorporation of Zr cations into CeO2 lattice, because the radius of Zr4+ is smaller
than that of Ce4+. As a consequence, cell parameters a and d-spacing and lattice distortion embodying
are reduced as the increase of microstrain and oxygen vacancies arise. Thus, the appropriate ZrO2

can improve the WGS activities of Au-Ce catalyst. Whereas, for the rich-zirconia sample, Au-CeZr-45
has some isolated t-ZrO2 and fluorite CeO2 instead of solid solution. The isolated t-ZrO2 crystallites
block the contact between Au and CeO2, resulting in the agglomeration of gold clusters. Thus, the
Au-CeZr-45 catalyst presents poor WGS activity.

4. Conclusions

The water–gas shift catalytic activities of Au-CeO2 catalysts were improved by the appropriate
doping of zirconia in the range from 0 to 15 wt. %, whereas excessive amount of zirconia could
lead to a significant negative effect on catalytic performance. Effects of Zr content on the structural
properties of Au-CeO2-ZrO2 catalysts were quantitatively analyzed in detail and related to their
WGS catalytic activities. For the low ZrO2 content (0–15 wt. %), the Ce-Zr-O solid solutions were
formed through the substitutional incorporation of Zr cations into CeO2 lattice, resulting in the
contraction of cell parameters a and d-spacing (i.e., lattice distortion) and the increase of microstrain
and oxygen vacancies. Quantitatively, the enhanced WGS activities have good linear correlation with
cell parameters a, microstrain, Raman shift and oxygen vacancies. However, for the rich-zirconia
(45 wt. %) sample, Au-CeZr-45 has some isolated t-ZrO2 and fluorite CeO2 instead of solid solution.
The isolated t-ZrO2 crystallites block the contact between Au and CeO2, resulting in the agglomeration
of gold clusters and, as a consequence, poor WGS activity of Au-CeZr-45 catalyst. It is clear that
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quantitative analyses of correlation between the structural properties and WGS activities will provide
a fundamental understanding to design more efficient WGS catalysts in the future.
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