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Abstract: Ge vertical heterostructures grown on deeply-patterned Si(001) were first obtained in 2012
(C.V. Falub et al., Science 2012, 335, 1330–1334), immediately capturing attention due to the appealing
possibility of growing micron-sized Ge crystals largely free of thermal stress and hosting dislocations
only in a small fraction of their volume. Since then, considerable progress has been made in terms
of extending the technique to several other systems, and of developing further strategies to lower
the dislocation density. In this review, we shall mainly focus on the latter aspect, discussing in detail
100% dislocation-free, micron-sized vertical heterostructures obtained by exploiting compositional
grading in the epitaxial crystals. Furthermore, we shall also analyze the role played by the shape of
the pre-patterned substrate in directly influencing the dislocation distribution.

Keywords: heteroepitaxy; defects; semiconductors; elasticity; plasma-enhanced chemical
vapour deposition

1. Introduction

Integration of materials with superior optical and/or electronic properties on Si [1] is extremely
appealing as it leads to a wealth of new possible devices and applications while maintaining
mainstream silicon technology. As both the lattice parameter and the elastic constants of the deposited
material generally differ from the Si ones, some fundamental issues are encountered in terms of misfit-
and thermal-stress fields unavoidably originated during growth and/or annealing. Misfit strain is
typically relaxed via the introduction of a suitable network of dislocations which can thread through
the whole film, deteriorating the performances of devices built on the heterostructure. Thermal stress,
instead, can lead to cracking of thick films.

Reduction of the threading dislocation density (TDD) has been the subject of countless studies.
A direct way for reducing the TDD is to grow thick films (see [2] and references therein), as this
increases the probability that two opposite threading dislocations fall within their interaction cutoff,
eventually annihilating each other [3]. The same effect can be obtained by extended annealing cycles,
where thermal stress is exploited to promote dislocation motions. For Ge/Si systems, such strategies
were demonstrated to lower the original TDD by several (depending on the film thickness) orders
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of magnitudes, saturating around the limit TDD ≈ 107/cm2. In order to lower the defect density
by a further order of magnitude different approaches must be used. A key one was introduced by
Fitzgerald and coworkers. They demonstrated [4,5] the possibility to lower typical TDDs in Ge/Si
films down to only ≈106/cm2 by growing “graded layers”, i.e., by actually depositing Si1−xGex

alloys with x gradually increasing during deposition. Grading allows for two main advantages with
respect to constant-composition films: (a) threading arms are always subject to a nonzero gliding
driving force [6] (b) the character of a dislocation can change during growth, threading segments
bending and allowing for further strain relaxation without the need for nucleating new dislocations.
While nowadays graded layers are still the main route to produce substrates with low dislocation
densities, it is worth to emphasize that recent attempts have shown that 106/cm2 density values can be
reached also by direct deposition at the desired final composition, provided that a suitable annealing
and “etch back” procedure is exploited [7].

All the aforementioned techniques focused on deposition on unpatterned/unmasked wafers.
In the last decade, considerable research has been instead devoted to defect control by suitable
substrate design. These include “epitaxial necking” [8] and the similar “aspect ratio trapping” [9]
techniques, in which the epitaxial material is selectively deposited in oxide mask windows and TDs
are geometrically confined close to the heterointerface, “pendeoepitaxy” (leading to the formation of
a suspended film starting from a suitable seed layer) [10], and 3D heteroepitaxy [11]. Here we shall
focus on the latter, summarizing the main results obtained so far and focusing on last achievements
and perspectives. In particular, in Section 2 we briefly review 3D heteroepitaxy obtained by depositing
materials with constant composition, in Section 3 we discuss the key role played by grading, in Section 4
we analyze the influence of the shape of the pillar on the dislocation distribution. Finally, Section 5 is
devoted to Conclusions and Perspectives.

2. Vertical Heterostructures with Constant Composition

2.1. Vertical Growth of Ge/Si by LEPECVD

3D heteroepitaxy [11] of constant-composition Ge/Si heterostructures was already reviewed
in [12], so that here we shall only recall a few key results.

Two examples of Ge/Si heterostructures are reported in Figure 1a,c. In both cases, prior to
deposition, a Si(001) substrate was deeply patterned, exploiting a Bosch process [13] resulting in
ordered arrays of square-based 2 × 2 µm2 Si pillars, separated by 2 and 4 µm trenches. Ge was
subsequently deposited by Low-Energy Plasma-Enhanced Chemical Vapour Deposition (LEPECVD).
LEPECVD [14] allows for the grow of crystalline Ge under strong out-of-equilibrium conditions,
determined by the high deposition rate (≈4 nm/s for both structures in Figure 1) and by the low
deposition temperature (440 ◦C in Figure 1a; 490 ◦C in Figure 1c). Under such conditions, typical
diffusion lengths are much smaller than the micrometric pillar sizes, so that the Ge crystal has a
tendency to grow vertically [11] from the very beginning. Some lateral enlargement also takes place,
leading to a progressive shrinking of the lateral distance between crystals growing on adjacent pillars.
This causes a strong self-shielding effect ultimately leading to (almost) perfect vertical growth. Once
vertical growth is established, the crystals can be grown for several dozens of microns without
ever touching, separated by a very small gap (Figure 1b). The vertical morphology offers two key
advantages with respect to common 2D layers. On one hand, the free surface surrounding the
crystals allows for very efficient relaxation of the thermal-stress field [15–18], therefore avoiding
cracking. On the other hand, 60◦ dislocations forming at the Ge/Si interface and laying on (111) planes,
are confined to the bottom of the crystal only (no 60◦ defect can reach the region located at a height h
>1.4 b, where b is the Si pillar base width). While 60◦ dislocations are the dominant linear defects in
Ge/Si systems grown under typical conditions, the LEPECVD out-of-equilibrium conditions lead to
the formation of perfectly vertical defects [19,20] which can thread through the whole pillar, reaching
the topmost surface as shown in Figure 2a,b. However, also these dislocations can be expelled laterally,
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provided that the top facet of the pillar is not parallel to the (001) substrate during growth. This can be
easily achieved by raising the growth temperature [12], as shown in Figure 2c. Fortunately, indeed,
linear defects tend to follow the growth front, so that the problem of vertical dislocations can be easily
solved by properly tuning the growth conditions eliminating the top (001) facet.
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Figure 2. Dislocations in Ge micro-crystals on Si pillars. (a) Bright-field TEM cross-section in the 
Ge[220] Bragg condition showing both 60° and vertical dislocations. AFM view of the Ge crystal top 
after defect etching in iodine solution for (b) a (001) flat-top morphology obtained by growing at 440 
°C and (c) a {113} pyramidal shape obtained at 560 °C. The schematics illustrate the different 
propagation of dislocation lines with respect to the faceting of the growth front. Reproduced with 
permission from [12]. 

Figure 1. Self-aligned vertical growth of Ge micro-crystals on 2 × 2 µm2 Si pillars, 8 µm deep.
(a) Dark-field STEM view of 7 µm tall Ge crystals grown at 440 ◦C on pillars spaced by 2 µm. (b) Plot
of the distance between the adjacent crystals in panel a. (c). SEM lateral view of 50 µm tall Ge crystals
grown at 490 ◦C on pillars spaced by 4 µm. Reproduced with permission from [12].
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Figure 2. Dislocations in Ge micro-crystals on Si pillars. (a) Bright-field TEM cross-section in the
Ge[220] Bragg condition showing both 60◦ and vertical dislocations. AFM view of the Ge crystal top
after defect etching in iodine solution for (b) a (001) flat-top morphology obtained by growing at 440 ◦C
and (c) a {113} pyramidal shape obtained at 560 ◦C. The schematics illustrate the different propagation
of dislocation lines with respect to the faceting of the growth front. Reproduced with permission
from [12].
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3D LEPECVD growth of vertical heterostructures is not limited to pure Ge: upon properly tuning
the growth conditions, analogous crystals have been obtained for GexSi1−x alloys of various Ge-content
x. Actually, growth at low x is even more convenient in terms of lateral expulsion of defects, as the
aforementioned vertical dislocations are not formed [20]. This is explicitly shown in Figure 3, where
the etch-pit distribution clearly shows the lateral expulsion of defects.
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Figure 3. Lateral expulsion of dislocations. SEM image showing confinement of etch-pits in the bottom
pillar region for a Ge0.2Si0.8/Si(001) crystal. Reproduced with permission from [20]. American Institute
of Physics.

2.2. Other Deposition Techniques and Other Materials

The aim of this subsection is to show that (a) 3D heteroepitaxy is not achievable only by LEPECVD
and that (b) a wide class of materials different from Ge/SiGe alloys can be grown in similar ways.

Let us first consider point (a). In Figure 4a a few representative snapshots of the morphology of a
Ge crystal grown by Reduced-Pressure Chemical Vapour Deposition (RPVCD) on a 2 × 2 µm2 Si pillar
are reported [21]. As the typical growth conditions in RPCVD are very different from LEPECVD in
both terms of flux (lower) and temperature (higher), longer diffusion lengths make vertical growth
more difficult. To limit horizontal growth and material diffusing from the top regions to the pillar
bottom, growth was therefore performed on pillars whose lateral walls were oxidized.

Crystals 2018, 8, x FOR PEER REVIEW  4 of 16 

 

3D LEPECVD growth of vertical heterostructures is not limited to pure Ge: upon properly 
tuning the growth conditions, analogous crystals have been obtained for GexSi1−x alloys of various 
Ge-content x. Actually, growth at low x is even more convenient in terms of lateral expulsion of 
defects, as the aforementioned vertical dislocations are not formed [20]. This is explicitly shown in 
Figure 3, where the etch-pit distribution clearly shows the lateral expulsion of defects. 

 
Figure 3. Lateral expulsion of dislocations. SEM image showing confinement of etch-pits in the 
bottom pillar region for a Ge0.2Si0.8/Si(001) crystal. Reproduced with permission from [20]. American 
Institute of Physics. 

2.2. Other Deposition Techniques and Other Materials 

The aim of this subsection is to show that (a) 3D heteroepitaxy is not achievable only by 
LEPECVD and that (b) a wide class of materials different from Ge/SiGe alloys can be grown in 
similar ways. 

Let us first consider point (a). In Figure 4a a few representative snapshots of the morphology of 
a Ge crystal grown by Reduced-Pressure Chemical Vapour Deposition (RPVCD) on a 2 × 2 μm2 Si 
pillar are reported [21]. As the typical growth conditions in RPCVD are very different from 
LEPECVD in both terms of flux (lower) and temperature (higher), longer diffusion lengths make 
vertical growth more difficult. To limit horizontal growth and material diffusing from the top 
regions to the pillar bottom, growth was therefore performed on pillars whose lateral walls were 
oxidized. 

 
Figure 4. Growth sequence of a Ge micro-crystal on a 2 × 2 μm2 Si pillar by RPCVD. (a) Lateral and 
perspective SEM views of samples after deposition of different duration. Multiple crystal seeds are 
observed at the early stages, coalescing into a single faceted structure later on. (b) Profiles obtained 
by a phase-field simulation of crystal growth, matching the experimental behavior. Reproduced with 
permission from [21]. American Chemical Society. 

Figure 4. Growth sequence of a Ge micro-crystal on a 2 × 2 µm2 Si pillar by RPCVD. (a) Lateral and
perspective SEM views of samples after deposition of different duration. Multiple crystal seeds are
observed at the early stages, coalescing into a single faceted structure later on. (b) Profiles obtained
by a phase-field simulation of crystal growth, matching the experimental behavior. Reproduced with
permission from [21]. American Chemical Society.
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In Figure 4b, results of a phase-field [22] growth simulation are displayed. Material deposition
is modeled in terms of condensation from the gas phase, according to the local chemical potential µ,
including anisotropies in the surface energy γ to induce spontaneous faceting [23]. The nice agreement
between the model and the experiments of Figure 4a allowed for a detailed analysis, reported in
Ref. [21], of both thermodynamic and kinetic factors influencing the crystal morphology, confirming
that growth by RPCVD is closer to equilibrium with respect to LEPECVD.

Let us now analyze the possibility to grow other materials. In Figure 5, the final morphology of
SiC [24] (panel a), GaN [25] (panel b), GaAs [26,27] (panel c), and GaAs/Ge [28,29] (panel d) crystals
grown on Si pillars is displayed. The various deposition techniques are listed in the caption. All such
materials are extremely interesting for applications (in fields such as power electronics and optics),
and the urge of lowering the typical defect density while attempting integration on Si is perhaps even
more important than the already discussed Ge case.
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Figure 5. Deposition of several different materials on Si pillars. (a) SiC/Si, deposited by hot-wall
Chemical Vapour Deposition. Reproduced with permission from [24]. Electrochemical Society (b)
GaN/Si, deposited by plasma-assisted molecular beam epitaxy. Reproduced with permission from [25].
American Chemical Society (c) GaAs/Si, deposited by molecular beam epitaxy. Reproduced with
permission from [26]. Copyright 2013, the American Institute of Physics (d) GaAs/Ge/Si, where Ge
was deposited by LEPECVD and GaAs by metal-organic vapour-phase epitaxy. Reproduced with
permission from [28]. American Institute of Physics.

Despite the successful growth of 3D crystals reported in Figure 5, it is important to emphasize
that 3D heteroepitaxy of binary materials such as SiC or GaAs still demands for a significant effort in
order to control the additional defects, such as stacking faults and/or anti-phase domains, which are
typical of these systems while playing a lesser role in SiGe.

2.3. Suspended Films

We have pointed out that micron-size vertical crystals can be grown stress-free and without
dislocations in the majority of their volume. These are surely appealing features from the point of view
of applications. However, mainstream technology is mainly developed to handle planar 2D layers.
With this in mind, researchers have also started to look at the possibility to form suspended films,
formed by merging of adjacent vertical crystals. Note that if crystals are first vertically grown above
the height needed to laterally expel dislocations (see Figure 3) and merging occurs only at the topmost
regions, the suspended film would not inherit dislocations formed at the pillar/crystal interface.

The suspended film displayed in Figure 6 was obtained [30] by prolongated high-temperature
annealing of vertical Ge crystals on Si pillars. Temporal snapshots of the evolution are also displayed,
together with a corresponding continuum simulation [31] (panel b). The latter was performed
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exploiting a diffusion-equation approach, implemented in a phase-field framework [22], where the
only contribution to the chemical potential µ (determining material flow) was the Mullins [32] term
µ = −kγ, where k is the local curvature and γ the surface-energy density. Therefore, the almost perfect
agreement between experiments and theory signals that the whole material redistribution leading to
the merging process is determined solely by surface-curvature. The evolution displayed in Figure 6
was subsequently simulated [33] by also taking into account surface-energy anisotropy [23], yielding
results even closer to the experimental ones.
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Figure 6. Coalescence of vertically-aligned Ge micro-crystals into a suspended film. (a) Top and
(b) lateral SEM images of the as-grown crystals and of identical samples after annealing of different
duration. (c) Evolution sequence obtained by a phase-field simulation of surface diffusion. First, local
rounding of the facets occurs; then, connection bridges form between neighboring crystals leaving
holes, that are finally filled by material flow. Reproduced with permission from [30]. American
Chemical Society.

It has been further demonstrated that merging can also be obtained directly during growth (by
raising the growth temperature) [21,31]. The suspended film is found [18] to still profit of the ability of
the underlying pillars to release thermal strain by tilting. Despite displaying a good crystal quality,
suspended films do display some defects, likely to be created during actual merging [21]. Present
efforts are dedicated to minimizing such defects by adding further control on growth conditions and
by exploiting fully dislocation-free micro-crystals using the technique described in the next Section.
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3. Graded, Vertical Heterostructures

3.1. Elastic vs. Plastic Relaxation: Theory

Vertical heterostructures (VHEs) are characterized by the presence of free surfaces allowing for
the partial elastic relaxation of in-plane strains/stresses. Indeed, at variance with heteroepitaxial
films, these structures can expand/contract laterally to partially accommodate lattice misfits. This also
leads to a significant compliance mechanism, i.e., a redistribution of the misfit strain between layers
having a different lattice parameter. As a result, the tendency towards plastic relaxation is expected to
be inhibited.

These properties of VHEs allow for dislocation-free structures, provided that the lateral size is
smaller than critical values depending on the materials and on the misfit strain as discussed in [34].
In Ref. [35] these critical sizes were computed for the specific case of Si1−xGex/Si VHEs by means of a
quasi-3D approach allowing for detailed estimation of thermodynamic plasticity onsets. This method
exploits isotropic linear elasticity theory and Finite Element Method (FEM) calculations (see also [36])
while VHEs are modeled by simplified geometries as in Figure 7a. However, notice that it can be
straightforwardly used to investigate realistic shapes as shown in Refs. [37–39].
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Figure 7. Theoretical modeling of VHEs and stress fields. (a) Simplified geometry of VHEs used to
perform the theoretical analysis. (b) Illustrative map of the hydrostatic stress σxyz in a VHE as in panel
(a) with x = 1. (c–e) σxyz in the central slice of a coherent 3D VHE as in panel (a,b) with an aspect-ratio
R = h/B equal to 0.1, 0.5 and 1.0 respectively. (f) σxyz as in panel (e) superposed to the hydrostatic
stress field induced by a dislocation lying at the interface (B = 25 nm). Reproduced with permission
from [35]. American Institute of Physics.

Following the work in [35], the typical elastic field of VHEs as in Figure 7a can be computed by
FEM calculations and it is illustrated in Figure 7b for a pure Ge epilayer by means of the hydrostatic
stress σxyz. It consists of a compressive and a tensile region above and below the Si1−xGex/Si interface,
respectively. The resulting elastic field is self-similar, i.e., its qualitative features depend on the
height-to-base aspect-ratio R = h/B and it can be adapted to any specific size upon proper rescaling.
Figure 7c–e shows the different distributions of σxyz in the central slice of a VHE for R = 0.1, R = 0.5,
and R = 1.0, respectively.

The tendency towards plastic relaxation can be quantified by the formation energy,
∆E = Edislo − Ecoh, computed in the 2D central slice of the full 3D geometry representing the VHE.
Ecoh is the elastic energy of the coherent system, i.e., without dislocations. Edislo is the elastic energy
accounting for the presence of a 60◦ dislocation at the interface, known to be always favored in
Si1−xGex/Si systems with respect to other dislocation types [40]. In particular, the stress field of
the coherent system is evaluated in the 3D structure, as in Figure 7b, and it is extracted in the
central slice to compute Ecoh. Then, the same elastic field is superimposed to the one of a straight
(perpendicular to the 2D slice) 60◦ dislocation lying at the center of the Si1−xGex/Si interface, as in
Figure 7f, to compute Edislo. When ∆E < 0, plastic relaxation is energetically favored, and dislocations



Crystals 2018, 8, 257 8 of 16

are expected. The central position for the dislocation is the minimum energy configuration for relatively
small and large values of R. For intermediate aspect-ratios, the minimum energy configuration may
be shifted towards the sidewalls. However, the central position gives a very good approximation of
the global energy minimum. Notice that computing ∆E in the central slice corresponds to evaluate
an energy per unit length of the dislocation misfit segment. Therefore, this approach describes the
tendency of a dislocation to elongate, resembling the classical method used to evaluate the critical
thickness for the insertion of dislocation, hc, in planar structures [5,41]. Further details about the
method, its assessment, and the simulation setup can be found in Refs. [35,36].

With the approach described above, hc can be calculated as a function of the Ge content in the
Si1−xGex epilayer, x, and the lateral size of the VHE, B. Moreover, it is possible to determine the
critical lateral size as a function of x, namely Bc(x). These quantities are shown in Figure 7: hc(B, x) is
illustrated by means of dashed black isolines, while Bc(x) corresponds to the solid red line. Above
the red curve, ∆E > 0 for thicknesses smaller than hc, at which plasticity is expected to set in. Below
the red curve, ∆E > 0 for any thickness of the epilayer, i.e., the corresponding VHE is predicted to be
always coherent.

For a fixed Ge content value x, we then expect a coherent structure when B < Bc(x). VHEs with a
larger B are predicted to have dislocations with a critical thickness that is larger than the corresponding
one in a planar configuration, achieved in the B→ ∞ limit. Similar arguments apply for a targeted
lateral size B. A VHE with a Ge content x smaller than the critical one as a function of the base, xc(B),
is predicted to be coherent, while dislocations are expected for x > xc(B). From the results reported in
Figure 8, such critical curves can be fitted as follows:

Bc(x) =
α

x
+

β

x2 + (Bx=1
c − α− β) (1)

with α = 55.2, β = 2.52, Bx=1
c = 35.6 nm (the latter corresponding to the predicted critical base for a

pure-Ge pillar epilayer) and

xc(B) =
Bx=1

c
B

α′ +
Bx=1

c

B2 β′ + (1− α′ − β′) (2)

with α′ = 1.31, β′ = −0.38. Being these values based on a purely energetic balance, and due to the
assumption of the model, they are expected to be quantitative lower bounds indicating the worst
possible scenario to growth coherent VHEs.
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Figure 8. Model results. Critical pillar base Bc as a function of the Ge content x (solid red curve)
and critical thickness of Si1−xGex/Si VHEs as function of B and x (dashed black isolines, numbers
correspond to hc expressed in nm). Reproduced with permission from [35]. American Institute
of Physics.
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From a technological point of view, Bc(x) and xc(B) set the limits for the realization of
fully-coherent VHE. Let us focus on the target of a Si1−xGex epilayer on Si with Ge content xepi.
With the configuration of VHEs as discussed so far, this can be achieved only up to a lateral size of
∼ Bc(xepi), that is less than 40 nm for a pure-Ge epilayer. However, looking at the elastic field of the
VHEs in Figure 7, one can easily notice that for a thickness h ∼ B, i.e., for an aspect ratio R ∼ 1, the top
of the epilayer is fully relaxed. Moreover, this is a purely geometric effect that is not dependent on B or
x [34]. So that, even for basis larger than Bc(xepi), one can think about growing a first coherent layer
with x1 ≤ xc(B) up to h ∼ B. Then, as far as the top of the structure is relaxed, a second layer can be
considered, and the vertical structure is predicted to be coherent provided that the increase in the Ge
content with respect to the first layer is lower than xc(B), i.e., the second layer can have a Ge content
x2 such as x2 − x1 ≤ xc(B). So that a coherent structure with a Ge content up to 2xc(B) can be grown.
If this Ge content is smaller then xepi, further layers can be considered exploiting the same idea up to
the desired target. The discrete number of layers n(B) required to reach xepi for a given B is then given
by the simple relation n(B) = xepi/xc(B).

This concept has been explicitly verified in Ref. [35] by checking the formation energy at different
interfaces and also investigating in the detail the elastic relaxation of layers with different thicknesses.
In experiments aiming at the growth of SiGe structures, a continuous grading of the Ge content
is often performed. From the aforementioned results, and under the assumption of h ∼ B ideal
layer, the grading rate r(B) to achieve a fully coherent structure up to a Ge content xepi can be easily
calculated as

r(B) =
xepi

n(B)B
=

xc(B)
B

(3)

where the second equal sign holds true when removing the ceiling function in n(B) as the constraint of
a discrete number of buffer layers is not required when speaking about the continuous grading rate.
Notice that, the resulting expression of the grading rate is a function of the size but it is independent
of xepi. The calculations reported in Figure 8 are limited to structures with B ≤ 300 nm. However,
by assuming that the equation for Bc(x) and xc(B) are still valid for larger basis, recipes to grow
fully-coherent VHEs can be provided for any size. In Table 1 the prediction about xc(B) and r(B),
as well as n(B) and the total thickness computed as t(B) = n(B)B to obtain pure Ge (xepi = 1),
are reported for some representative values of B (larger than B ∼ 100 nm for which n(B) ∼ 1). It is
worth mentioning that once a dislocation-free structure is obtained following the recipes in Table 1,
any thickness of additional pure Ge can be deposited, still resulting in a dislocation-free structure.
Indeed, the top of this structure is fully relaxed and made of pure Ge, so that further Ge deposition
would result, de facto, in a homoepitaxial growth. However, notice that when approaching values of B
in the order of ten microns, t(B) become very large and it is practically unfeasible for applications.

Table 1. Critical parameters and design of fully-coherent VHEs as function of B. The values of critical
Ge content xc(B), grading rate r(B), number of layers n(B) to achieve xepi = 1 and corresponding total
thickness t(B) under the assumption of h ∼ B are reported.

B xc(B) r(B) n(B) t(B)

150 nm 0.360 0.23%/nm 2 300 nm
200 nm 0.291 0.45%/nm 3 600 nm
300 nm 0.210 73.37%/µm 4 1.2 µm
500 nm 0.161 32.27%/µm 6 3.0 µm
1.0 µm 0.116 11.62%/µm 8 8.0 µm
1.5 µm 0.101 6.73%/µm 9 13.5 µm
2.0 µm 0.093 4.66%/µm 10 20.0 µm
3.0 µm 0.085 2.85%/µm 11 33.0 µm
5.0 µm 0.079 1.59%/µm 12 60.0 µm
7.5 µm 0.076 1.01%/µm 13 97.5 µm
10.0 µm 0.075 0.75%/µm 13 130.0 µm
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3.2. Dislocation-Free Graded Heterostructures

The theoretical recipe for growing dislocation-free crystals (see Table 1) was experimentally
demonstrated in Ref. [42] and further analyzed in Ref. [43]. The target Ge content was set to 40%, and a
Ge grading rate GR = 1.5%/µm was employed. Two sets of samples were considered. In case 1 (2) the
initial Si pillar was 2 µm (5 µm in case 2) wide, while the deposited SiGe crystal grew laterally reaching
a final width of 5.5 µm (8.0 µm). According to the theoretical estimate reported in Table 1, case 1 should
lead to dislocation-free crystals, at variance with case 2. This was exactly the case, as demonstrated in
Figure 9.
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(a–c)) vs. plastically relaxed (d,e) SiGe crystals. Panel b reports the encircled region of panel (a) with a
higher magnification. Reproduced with permission from [42]. Copyright 2016, Wiley.

The result displayed in Figure 9 is of particular importance as it directly demonstrates the
possibility to grow micron-sized heterostructures completely free of dislocations, in spite of the large
lattice mismatch. The misfit strain is only accommodated by lateral elastic relaxation. More recently,
the same result was achieved also for higher lattice mismatches (up to 80% Ge content) [44]. In principle,
there is no limitation in the maximum lattice mismatch that can be relaxed or in the width of the SiGe
crystal. In practice, however, one is limited by the need to grow very tall crystals (Table 1). To overcome
this problem, attempts were made to lower the tendency towards inserting dislocations by changing
the shape of the Si pillars. This led to interesting and unexpected results, reported in the next Section.

4. Deposition on Under-Etched Pillars

4.1. Graded Heterostructures on Under-Etched Pillars: Experimental Results

As discussed in the previous section, vertical heterostructures can exploit lateral surfaces to relax
the misfit strain also in the in-plane direction at variance with planar films. With the aim of increasing
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the compliance of the Si pillars, vertical Si structures (Figure 10a) were suitably under-etched (exploiting
a two-step dry etching process [45]) prior to SiGe deposition, leading to the necked structures reported
in Figure 10b. Graded vertical heterostructures where then grown on both “standard” (Figure 10d)
and under-etched (Figure 10c) pillars of different width, using a grading rate GR = 1.5%Ge/µm and
reaching a final 40% Ge content. The dislocation density was inferred by etch-pits counts, leading to
the results displayed in Figure 11.
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Figure 11. Experimental characterization of dislocations in SiGe crystals. (a) Average dislocation
density in SiGe crystals (DDSiGe) deposited on vertical (black spheres) and under-etched (red
triangles) Si pillars with different widths. (b) Probability of having dislocation-free SiGe crystals
(DFPSiGe) as a function of the vertical (black spheres) and under-etched (red triangles) Si pillars width.
(c,d) Analogous to (a,b), respectively, but for dislocations located in the Si pillars. The strong tendency
towards dislocations piling-up in the Si region is well evident in the SEM image reported in panel (e).
Reproduced with permission from [46]. American Physical Society.
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Measurements of the dislocation density (DD) and the dislocation-free probability (DFP) are
reported in Figure 11, distinguishing between estimate relative to the actual SiGe crystal (panel a and
b) and to the Si pillar (panel c and d). Results clearly show the key role played by morphology.
In the presence of the “neck” (under-etched morphology), indeed, a large fraction of defects is
transferred from the SiGe crystal to the underlying Si pillar, the effect being present also for large
pillar widths. The effect is nicely evidences by the SEM image in panel (e), where etch pits are clearly
distinguished. Notice that also for a base as large of 10 µm, a considerable fraction of the crystals
grown on under-etched pillars is dislocation free, as evidenced by the value of the DFP reported in
Figure 11b.

Summarizing the results discussed so far, by using a GR of 1.5%Ge/µm one can grow fully
dislocation-free heterostructures, where “fully” means that defects are not present in the deposited
crystal as well as in the pillar, up to to ~5 µm. If one is willing to grow larger vertical heterostructures,
then suitable under-etching allows for enlarging the critical width to 10 µm. In this case, however,
only the crystal is dislocation-free, while defects are introduced in the Si pillar. Still, this could be still
very appealing for applications exploiting only the SiGe crystal as active region. In the following the
theoretical justification of the effect produced by introducing substrate necking is discussed.

4.2. Graded Heterostructures on Under-Etched Pillars: Theoretical Interpretation

The role played by necking was theoretically investigated in Ref. [46]. Here we briefly summarize
the main findings. In Figure 12 we report the hydrostatic stress maps computed by solving isotropic
elasticity theory by finite element methods, simulating the same grading rate used in the experiments
(GR = 1.5%Ge/µm).
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Figure 12. Model results. Hydrostatic stress maps (σxyz) and considered geometry for the vertical (a)
and under-etched (b), (c) Si pillars. The SiGe/Si interface is marked with a black line. Two considered
pillar bases Lm (b) and LM (c) are taken to mimic the extreme values of bases measured on the tapered
geometry of the grown pillar (Figure 9c). In (d) is reported the stress map for an under-etched pillar
once the first dislocation is introduced. In panel (e) a schematic representation of the four possible
Burgers vectors is reported along with their in-plane projection. Reproduced with permission from [46].
American Physical Society.

In Figure 12a, a standard “vertical” pillar morphology is considered, while in all other panels the
effect of under-etching was taken into account. As in Section 3.1, the pillar morphology is simplified:
instead of considering the enlargement of the width (Figure 10c) caused by deposition, we fix it and
repeat calculations for the lowest (Lm) and largest (LM) dimensions. Figure 12 shows that necking
changes the local misfit relaxation both in Si and in SiGe, introducing a strongly compressed region
(blue color in the maps) within Si. This has a profound influence on the nucleation and distribution
of dislocations.
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In SiGe/Si systems, misfit is typically relaxed by 60◦ dislocations. In the 2D model used to
generate all results discussed in this Section, the dislocation line is assumed to run in the third direction
(perpendicular to the Figure, in Figure 12), and there exist two possible glide planes (G.P. 1 and G.P. 2
in Figure 12e) and four Burgers vectors, called b1, b2, b3, and b4 in Figure 12e. Two of them (b1 and b2)
provide expansion of the region above the core, the others have the opposite effect. These are the ones
more often encountered in SiGe/Si planar films or in vertical pillars, as the tensile strain introduced
by the dislocations reduces the lattice compression due to lattice-parameter misfit. The presence of
the strong compressive stress in under-etched Si pillars (Figure 12b–d), instead, reverses the sign of
the lowest-energy defects. This is shown in Figure 13: insertion of the same dislocations relaxing
SiGe/Si films or SiGe on vertical pillars (“normal” case in Figure 13) raises the energy of the system
for both explored sizes. On the contrary, the introduction of dislocations with opposite sign of the
in-plane component of the Burgers vector (b3, or b4, helping to relax compression in the Si region)
becomes energetically favored beyond a critical height. The difference in energy between the system
with and without a dislocation located at its minimum-energy position (∆Emin), indeed, becomes
negative. In Ref. [46] it was shown by dislocation dynamics simulations that accounting for the change
in Burgers vector orientation is fundamental in order to explain the typical dislocation distributions
experimentally observed in SiGe crystals grown on underetched Si pillars. The typical pile-up in the Si
region, well evident in Figure 11e, is indeed compatible only with dislocations removing half atomic
plane in the Si region (Burgers vector b3).

Crystals 2018, 8, x FOR PEER REVIEW  13 of 16 

 

These are the ones more often encountered in SiGe/Si planar films or in vertical pillars, as the tensile 
strain introduced by the dislocations reduces the lattice compression due to lattice-parameter misfit. 
The presence of the strong compressive stress in under-etched Si pillars (Figure 12b–d), instead, 
reverses the sign of the lowest-energy defects. This is shown in Figure 13: insertion of the same 
dislocations relaxing SiGe/Si films or SiGe on vertical pillars (“normal” case in Figure 13) raises the 
energy of the system for both explored sizes. On the contrary, the introduction of dislocations with 
opposite sign of the in-plane component of the Burgers vector (b3, or b4, helping to relax 
compression in the Si region) becomes energetically favored beyond a critical height. The difference 
in energy between the system with and without a dislocation located at its minimum-energy 
position (∆Emin), indeed, becomes negative. In Ref. [46] it was shown by dislocation dynamics 
simulations that accounting for the change in Burgers vector orientation is fundamental in order to 
explain the typical dislocation distributions experimentally observed in SiGe crystals grown on 
underetched Si pillars. The typical pile-up in the Si region, well evident in Figure 11e, is indeed 
compatible only with dislocations removing half atomic plane in the Si region (Burgers vector b3). 

 

Figure 13. Model results. Energy gain for the introduction of the first ‘normal’ (red-dashed curve) or 
‘opposite’ (purple solid curve) dislocations in under-etched pillars with base L with respect to the 
pillar height H. The formation energy is negative only for dislocations with the ‘opposite’ Burgers 
vector b. Reproduced with permission from [46]. American Physical Society. 

5. Conclusions and Perspectives 

In this paper we reviewed a five-years-long investigation on the 3D growth of Ge, GeSi and 
Ge-graded crystals on deeply patterned substrates, where proper deposition conditions and 
patterning geometry allows for a dense array of vertical structures. This high aspect ratio strategy, in 
turn, exploits the termination of misfit dislocations on lateral sidewalls, the accommodation of the 
thermal strain, and even the elimination of plastic relaxation by fully elastic misfit-strain relaxation, 
in case of graded deposition. The important result is that, whenever a device application requires a 
dense array of Ge, or GeSi, individual crystals, such as the case of X-ray detectors, or infrared 
single-photon-avalanche-detectors (SPAD), this proof-of-concept is ready to be transferred to the 
stage of the industrial prototype. In fact, for both the applications mentioned above are currently the 
subject of projects devoted to increase the technology readiness level. 

However, more widespread applications may arise if the concept is extended to other 
heteroepitaxial binary materials, such as the cubic SiC for power electronics, GaN and GaAs for 
optoelectronics. In Section 2.2 we have reviewed a set of promising, preliminary attempts to grow 
such materials. However, a convincing proof-of-concept is still missing, due to the fact that other 
extended defects, such as stacking faults and twins, or anti-phase domains may occur, and that the 
extended lateral sidewalls may act as a source of them. To this end, a merging of the individual 
crystals into a continuous suspended layer should be eventually obtained, taking the risk that in the 
merging process additional dislocations, or other extended defects, may originate, as it has been 

Figure 13. Model results. Energy gain for the introduction of the first ‘normal’ (red-dashed curve) or
‘opposite’ (purple solid curve) dislocations in under-etched pillars with base L with respect to the pillar
height H. The formation energy is negative only for dislocations with the ‘opposite’ Burgers vector b.
Reproduced with permission from [46]. American Physical Society.

5. Conclusions and Perspectives

In this paper we reviewed a five-years-long investigation on the 3D growth of Ge, GeSi and
Ge-graded crystals on deeply patterned substrates, where proper deposition conditions and patterning
geometry allows for a dense array of vertical structures. This high aspect ratio strategy, in turn,
exploits the termination of misfit dislocations on lateral sidewalls, the accommodation of the thermal
strain, and even the elimination of plastic relaxation by fully elastic misfit-strain relaxation, in case
of graded deposition. The important result is that, whenever a device application requires a
dense array of Ge, or GeSi, individual crystals, such as the case of X-ray detectors, or infrared
single-photon-avalanche-detectors (SPAD), this proof-of-concept is ready to be transferred to the stage
of the industrial prototype. In fact, for both the applications mentioned above are currently the subject
of projects devoted to increase the technology readiness level.
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However, more widespread applications may arise if the concept is extended to other
heteroepitaxial binary materials, such as the cubic SiC for power electronics, GaN and GaAs for
optoelectronics. In Section 2.2 we have reviewed a set of promising, preliminary attempts to grow such
materials. However, a convincing proof-of-concept is still missing, due to the fact that other extended
defects, such as stacking faults and twins, or anti-phase domains may occur, and that the extended
lateral sidewalls may act as a source of them. To this end, a merging of the individual crystals into a
continuous suspended layer should be eventually obtained, taking the risk that in the merging process
additional dislocations, or other extended defects, may originate, as it has been shown for the case
of Ge, probably because of some crystal tilting. The efforts and the timescale required for such an
improvement are probably much larger than the ones devoted in obtaining defect-free Ge crystals.

Still, a lot of new scientific knowledge is likely to be produced when exploring the features of
3D heteroepitaxy of binary materials on deeply patterned substrates, and vertical growth by selected
area depositions. In our opinion, the morphologies arising from tuning the competitive growth of
neighboring facets by suitable deposition conditions may result in exciting and, possibly, promising
issue to extend this Ge-based technique to other materials.

6. Patents
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