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Abstract: Homogeneous nucleation of protein crystals in solution is tackled from both
thermodynamic and energetic perspectives. The entropic contribution to the destructive action
of water molecules which tend to tear up the crystals and to their bond energy is considered.
It is argued that, in contrast to the crystals’ bond energy, the magnitude of destructive energy
depends on the imposed supersaturation. The rationale behind the consideration presented is that
the critical nucleus size is determined by the balance between destructive and bond energies. By
summing up all intra-crystal bonds, the breaking of which is needed to disintegrate a crystal into
its constituting molecules, and using a crystallographic computer program, the bond energy of the
closest-packed crystals is calculated (hexagonal closest-packed crystals are given as an example).
This approach is compared to the classical mean work of separation (MWS) method of Stranski and
Kaischew. While the latter is applied merely for the so-called Kossel-crystal and vapor grown crystals,
the approach presented can be used to establish the supersaturation dependence of the protein crystal
nucleus size of arbitrary lattice structures.

Keywords: protein crystal nucleation; thermodynamic and energetic approach; protein ‘affinity’
to water; solubility; balance between crystal bond energy and destructive surface energies;
supersaturation dependence of the crystal nucleus size

1. Introduction

Crystallization is the most efficient and economical way of obtaining chemically pure compounds.
That is why it is widely used in the pharmaceutical, fertilizer and sugar industries. Single crystal
X-ray diffraction, being the most universal, powerful and accurate tool for biological macromolecule
structure analysis and protein–substrate interactions, requires relatively large and well-diffracting
crystals. However, the major stumbling stone in X-ray diffraction analysis of protein crystals is
the lack of a recipe (or definite indications) for growing crystals of newly expressed proteins. The
issue is finding conditions that make the homogeneously scattered protein molecules in a solution
form stable crystal nuclei; once nucleated, the crystals continue growing spontaneously. Evidently,
nucleation is the crucial step that determines the difference between success and failure in protein
crystallization trials. Regardless of the numerous auxiliary crystallization tools employed, such as
automation and miniaturization of crystallization trials by means of robots, Dynamic Light Scattering,
crystallization screening kits, etc., it is researchers’ creativeness and acumen that remain indispensable.
Even with state-of-the-art tools, it is exceptionally challenging to probe the nucleation processes in
real time. Only most recently, this problem has been addressed successfully by Van Driessche et al. [1].
Nevertheless, some of the most intimate moments of molecule-by-molecule assembly to form crystal
nuclei are still elusive and require further elucidation.

Following the fundamental notion of a kink position (Halbkristalllage in German) introduced
by Kossel [2] and Stranski [3], the Bulgarian scientists Stranski and Kaischew [4–6] were the first
to apply a molecular kinetic (and energetic) approach to crystal nucleation. They proposed the
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so-called mean work of separation (MWS) method. To calculate the MWS value, all of the different
kinds of bonds (between the first, second and third neighboring crystal-building blocks) are counted
separately, and each number is multiplied by the corresponding bonding energy. Then, the products
are summed up, and the result is divided by the total number of blocks in the corresponding crystal
element (crystal face, cluster edge). It has been argued that for vapor phase crystallization MWS
value is equal to the chemical potential, taken with a negative sign, plus a substance and temperature
dependent constant [7]. To calculate the work required (energy barrier) for nucleus formation, crystal
bond energies are used as well. They are calculated by summing up the number of all intra-crystal
bonds, the breaking of which is needed to totally disintegrate a crystal into all its constituting
molecules. The same approach is used in the present study. Applying the MWS method to the so-called
Kossel-crystal (a crystal build by small cubes held together by equal forces in a cubic primitive crystal
lattice) allows the equilibrium crystal shapes to be determined.

A big advantage of the MWS method is its simplicity. It uses the relative bond energies between
separate crystal building units instead of the absolute bond energy values, which frequently are
unknown. However, the MWS method has two major drawbacks: it is applicable only to the
Kossel-crystal model (existing extremely rarely in nature) and considers solely enthalpic effects.
Perhaps it is for these very reasons that the MWS method is used rarely nowadays, even though it
enables semi-quantitative studies of crystal nucleation and growth.

To find the critical nucleus size, Garcia-Ruiz established the balance between the cohesive energy
(∆Gv), which maintains the integrity of a crystalline cluster, and the sum of destructive energies (∆Gs),
which tend to tear up the crystal, i.e.,−∆Gv + ∆Gs = 0 [8]. Using a cubic primitive crystal lattice formed
by spheres, the author equilibrated the number of bonds shared by the crystal building units with the
number of dangling bonds at the crystal surface, pointing toward the solution. This corresponds to the
classical nucleation theory where ∆Gv is proportional to the crystal volume while ∆Gs is proportional
to its surface, and the critical nucleus size is determined from the compensation of the large surface
energy, which is inherent for the undercritical molecule clusters, by the faster volume energy increase
resulting from the rising crystal size. Garcia-Ruiz’s intuitive approach accounts for the water molecules
acting on the apexes and edges that exist on the polyhedral crystal nuclei but are absent on the droplets.
His model shows that at the crystal vertices, water molecules pull protein molecules towards the
solution from three (perpendicular) directions, at the crystal edges from two directions, and at the
crystal face from one direction only.

Recently, Garcia-Ruiz’s brilliant idea was been further elaborated [9]. When the system is
undersaturated, i.e., crystallization is impossible, the protein ‘affinity’ to water molecules prevails
over the crystallization propensity. Therefore, to evoke crystallization, it is necessary to impose
supersaturation and the higher the latter, the more thermodynamically stable the crystal is, with respect
to the solution. Thus, it is feasible to assume that the imposed supersaturation decreases the
protein-to-water affinity, i.e., supersaturation diminishes the destructive energy (ψd) per bond.
This means that the tendency to tear up the crystal depends on the degree of supersaturation in
contrast to the cohesive energy per bond in the crystal lattice (ψb) which is supersaturation independent.
This means that any supersaturation increase will lead to an increase in ψb/ψd ratio. On this basis,
the critical nucleus size dependence on supersaturation has been determined (from the balance between
the sum of all intra-crystal bonds and the sum of surface destructive energies) for the Kossel-crystal
model [9].

The objective of the present work is to shed additional light on the thermodynamic and molecular
aspects of the homogeneous nucleation of non-Kossel crystals, such as nucleation of protein crystals in
solution. To determine the supersaturation dependent critical nucleus size, the crystal bond energy
and the sum of supersaturation dependent surface destructive energies are equilibrated (referred to
as EBDE) and compared to the MWS method. In view of the nature of lattice binding forces among
huge biomolecules, only the first nearest neighbor interactions are considered. For simplicity purposes,
equal bond energy interactions throughout the whole crystal are assumed. The consequences of the
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highly anisotropic and multivalent interactions of proteins during crystal nucleation were considered
elsewhere [10]. However, specifics of protein and small molecule crystal nucleation are kept in
mind [11].

2. Equilibration of Crystal Bond Energy with Surface Destructive Energies (EBDE)

2.1. Thermodynamic Basis of EBDE and Definition of Protein-to-Water Affinity

In [9], ψd was loosely defined as accounting for entropy, including the sum of all nucleation
disfavoring entropic contributions. All entropy increasing components (favoring crystal nucleation)
were included in ψb. A more rigorous definition of protein-to-water ‘affinity’ which uses both
nucleation process enthalpy and entropy is provided below.

Thermodynamics stipulates that enthalpy and entropy govern phase transition. In contrast to
crystal nucleation from vapors, protein crystal nucleation evokes a simultaneous entropy change
in both solutions and crystals [12]. Rearrangement and/or release of some associated water or
trapping of even more water molecules occurs when protein molecules get together to form a new
solid phase. Therefore, entropy accounts for the change in the number of molecules in both protein
crystals and solutes. Many water molecules are released in the solution for each protein molecule
bound into the crystal lattice. In the disordered bulk solvent, these water molecules have six degrees
of freedom and increase the entropy of the whole crystallizing system, thus leading to a decrease
in the Gibbs free energy of phase transition. Sometimes, the entropy gain resulting from the said
water transfer is the main component in the driving energy for protein crystal nucleation. However,
it is not only the release of water molecules from the contacting patches (during crystalline bonds
formation) that affects crystallization thermodynamics. Being immobilized in the crystal lattice, protein
molecules lose entropy due to the highly constrained translational and rotational degrees of freedom.
In turn, protein molecule ordering (crystal nuclei formation) is stimulated by an entropy gain due
to the newly acquired vibrational degrees of freedom that arise upon molecule attachment to the
crystal. Together with the high crystallization enthalpy, entropy changes ensure the negative values of
Gibbs free energy required for spontaneous crystallization are attained (for more details see [12,13]).
The conformational entropy of residues involved in crystal contact has been recently reconsidered [14].
Simultaneously, study of hydrogen bonds, van der Waals contacts and electrostatic interactions has
shown that hydrogen-mediated van der Waals interactions are the dominant force that maintains
protein crystal lattice integrity. Unfortunately, however, non-Kossel crystal lattice analysis remains
a theoretical challenge [13].

The relation between ψd and supersaturation (∆µ) is derived via the protein-to-water ‘affinity’
(α) noting that the lesser the value of α, the lesser the crystal solubility (ce). As a first approximation,
proportionality with a constant κ is assumed:

α = κce. (1)

Also noted is the equal probability of crystal nuclei formation and dissolution. This means that the
nucleation process can be regarded as a reversible chemical reaction characterized by the equilibrium
constant for crystallization (Keq). Combining the standard Gibbs free energy (∆Go) for crystals,

∆Go = ∆Ho − T∆So, (2)

where ∆Ho is the standard enthalpy change, and ∆So is the change in entropy of the nucleation process.
T is the absolute temperature. The Gibbs free energy isotherm equation is

∆Go = −RTlnKeq,
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and by denoting the universal gas constant as R, the following is obtained:

lnKeq = −(∆Ho/RT) + (∆So/R). (3)

Considering the approximation suggested by Sleutel et al. [15] and assuming an ideal solution
(i.e., the activity coefficient is a unit), the crystallization equilibrium constant (Keq) can be represented
as Keq ≈ (ce/co)−1, which gives

ln(ce/co) = (∆Ho/RT) − (∆So/R). (4)

where co = 1 mol L−1 is the solution’s concentration in the standard state. Thus, solubility,
ce, is expressed in terms of the change in the entropy and enthalpy of the nucleation process:

ce = coexp[(∆Ho/RT) − (∆So/R)], and (5)

α = κcoexp[(∆Ho/RT) − (∆So/R)]. (6)

The protein crystal solubility, ce (and hence, protein-to-water affinity, α), depends on the solution’s
composition, mainly the precipitant type and concentration, pH, and temperature. (Isothermal protein
crystal nucleation is considered here.) The lesser the solubility (affinity), the larger the supersaturation
at the same solution concentration, c:

∆µ = kBTln(c/ce) = kBTln{c exp[(∆So/R) − (∆Ho/RT)]/co)} = kBTln(κc/α), (7)

where kB is the Boltzmann constant.
It has been known for a long time that the disordered solvent phase fills the void between

molecules in the protein crystal lattice [16]. The role of water included in protein crystals acting like
an ‘additional glue’ to hold protein molecules together has been considered elsewhere [17] and is not
within the scope of this paper.

2.2. Energetics of Protein Crystal Nucleation

From energetic point of view, it is evident why 3D nuclei are preferred over 2D nuclei built by the
same number of molecules. A (forth) molecule arriving from solution bulk prefers to start forming
a second layer (B) rather than attaching itself to the periphery of an already existing layer (A) (Figure 1).
The reason is that by sitting in the hole between the three molecules of layer A, this molecule bonds to
the others using energy 3ψb. If it is to remain in layer A, it will acquire two bonds only, so it jumps and
forms layer B (Figure 2). For the same reason, it is highly probable that a fifth molecule will attach
itself to the opposite side of the molecule triplet (Figure 1). That is how the cluster of bond energy 9ψb,
arises, instead of the planar configuration of energy 7ψb.
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Typical 3D protein crystals are polyhedral, which is why crystal nuclei are assumed to have
polyhedral shapes. The thermodynamic definition of protein-to-water affinity presented above assumes
that crystals are stable entities, even though molecules at crystal vertexes and edges are connected
more loosely than those at the crystal face. In view of the rather high supersaturations needed for
protein crystal nucleation, this assumption is quite reasonable (and can be regarded as a justification
for EBDE application).

Keeping in mind Garcia-Ruiz’s postulate about water molecules pulling protein molecules at
crystal vertexes towards the solution more strongly (from three different directions) than those at
crystal faces, we notice that small molecule clusters, comprised of up to six molecules, have all of their
molecules sitting at crystal vertexes. From the EBDE perspective, such small molecule clusters can
be critical nuclei only provided supersaturation is very high. Table 1 shows the ψb/ψd ratio for the
number (n) of molecules in a cluster; note that the supersaturation is decreasing from left to right.
A 3D cluster formed by four molecules does not predetermine the lattice type—hexagonal closest
packed (HCP) or face centered cubic (FCC)—of the growing crystal, while a 3D cluster, comprised of
five molecules (three in layer A and one on each side, i.e., in two layers B), results in an HCP crystal
lattice. A FCC structure requires larger clusters of at least six molecules. However, it is not only the
energetic aspect that determines the crystal lattice type. Wukovitz and Yeates [18] have pointed out
that an appropriate symmetry is mandatory for the crystallization of biological macromolecules.

Table 1. The ψb/ψd ratio for the number (n) of molecules in a cluster.

n 2 3 4(in 3D) 5(HCP) 6(FCC)
ψb/ψd 6 3 2 ≈1.7 ≈1.6

Using the MWS method, Kaischew [19] showed that homogeneously formed crystal nuclei are
larger than heterogeneous nuclei. The reason for this is that the volume of a heterogeneous nucleus
decreases to a degree that depends on the substrate’s nucleation activity (see Figure 3). Energetically
preferred 3D HCP (Figure 4) and 3D FCC crystals arise by adding three molecules in the (corresponding)
holes at the top, and another three molecules at the bottom of an initial layer A of spheres arranged in
the shape of a hexagon; all of the tetrahedral holes are covered in the HCP structure, and all of the
octahedral holes are covered in the FCC crystals. The result is a three-fold rise in bond energy, up to
36ψb, compared with 12ψb in the planar configuration, and the ψb/ψd ratio is calculated by EBDE
(see Table 2, in which the supersaturation is decreasing from left to right).

The EBDE method benefits from crystallographic computer programs rendering the sums of
bond energies (∆Gv

3) of arbitrary sized 3D crystals and the number (Ns) of surface atoms exposed
to water destructive action. The advantage of crystallographic computer programs is that they are
applicable to diverse crystal structures. Given as an example here are HCP crystals with <0100> edge
lengths determined by the numbers (L) of the molecules in them. The ATOMS (Version 5.0.4, 1999)
computer program is used to calculate ∆Gv

3 and Ns for the crystals of a truncated bipyramidal shape.
These crystals are geometrical homologues to the crystal (shown in Figure 5), with L = 3 (the three blue
balls), in which the number of molecules (Nt) in the topmost and correspondingly, in the bottommost,
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{0001} faces depend on L (so that for the differently sized crystals, Nt = 3 for L = 2 (Figure 4); Nt = 7 for
L = 3 (Figure 5); Nt = 12 for L = 4; Nt = 19 for L = 5; Nt = 27 for L = 6, etc.).
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The plot of ∆Gv
3/∆Gs vs. L is shown in Figure 6. The reason for this plotting is that the energy

balance (−∆Gv + ∆Gs = 0) means ∆Gv/∆Gs = 1, so the reciprocal of the ordinate value in Figure 6
(giving the corresponding ψb/ψd values) shows the decrease in supersaturation with an increase in L
(Table 2). Here Garcia-Ruiz’s postulate (that the molecules at the crystal vertexes are pulled towards
the solution from three different directions, the molecules in the crystal edges are pulled from two
directions, and the molecules in the crystal faces are pulled from one direction only) is also taken
into account since it should apply to any crystal structure—water molecules are ‘negligent’ of the
crystal lattice type. It is worth noting that the larger nucleus stands in equilibrium under the actual
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However, only crystals of modest size are of interest because though feasible from an energetic
point of view, larger crystal nuclei are less likely to appear. There are kinetic reasons for this—bringing
together a vast number of molecules via molecule-by-molecule assembly into a crystal nucleus involves
very large fluctuations which in turn requires very long waiting times. For the same reason, the simplest
crystal shapes are considered—any additional nuclei faces require a substantial increase in crystal size.

The discrete character of cluster-size alteration has been considered by Stoyanov, Milchev and
Kaischew [20–23]. They established a step-wise, instead of a continuous, relationship between nucleus
size and supersaturation, and a supersaturation interval instead of a fixed level of supersaturation
corresponding to each critical nucleus.

3. MWS Method Application to Closest-Packed 3D Crystals; Comparison of EBDE and MWS

Crystallographic computer programs provide crystal lattice images and numerical data, in contrast
to the classical MWS method which uses analytical expressions. Simple models of modestly sized
3D crystals with complete shapes were used to calculate the MWSs of faces forming the habitus
of non-Kossel crystal nuclei, the reason being that incomplete crystalline clusters would have sites
for subsequent attachment and formation of minimum surface free energy clusters. Considered
herein are the closest-packed (HCP and FCC) crystals. To prepare such models, closest-packed
monomolecular layers were stacked consecutively onto both sides of a basic A-layer. Three-layered
(Figure 7), five-layered (Figure 5), etc. homologous HCP crystal nuclei with L = 3, 4, etc. were created.
(It is worth noting that heaping 7 and more close-packed layers need larger foundations, i.e. larger
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L values. As already mentioned however, a nucleus size limit is inevitable.) In contrast, to calculate
the MWS of a {0001} crystal face, a whole upper mono-layer was stripped-off from the rest of the
crystal. Then the layer disintegrated completely into its constituent molecules. The results made
it obvious that MWS value calculations introduced uncertainty, caused by the alternatively stacked
hexagonal and ditrigonal layers in the HCP crystals. This is why two different MWS values (but not
one like by the Kossel-crystal) were calculated for the closest-packed surface layers. Oddly enough,
depending on the type of surface layer to be disintegrated, the crystal stood in equilibrium with two
different supersaturations.Crystals 2018, 8, x FOR PEER REVIEW  8 of 11 
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Figure 7. Top view of a three-layered HCP truncated dihexagonal dipyramid crystal (the bottom layer
is unseen). The crystal is built by stacking the closest packed layers of spheres (the red balls) onto the
single A layer (the blue balls, arranged into the shape of a complete hexagon with L = 3).

Well-known crystallography equations were applied for the MWS value calculations. Since each
molecule in the closest-packed surface layer (regardless whether hexagonal or ditrigonal) is related to
three molecules beneath it, the work (energy) needed for striping-off one such layer is always three
times the number (z) of molecules in the layer. By denoting the number of molecules in the edge of
a hexagonal layer by λ, we obtain

z = 3λ(λ − 1) + 1, (8)

which gives z = 7, 19, 37, 61, 91, 127 ... for λ = 2, 3, 4, 5, 6, 7 ... respectively.
In addition, for the number (Z′) of molecules in the ditrigonal layer, which is situated onto

a hexagonal layer:
Z′ = 3(λ − 1)2, (9)

which gives Z′ = 3, 12, 27, 48, . . . for λ = 2, 3, 4, 5 ... respectively.
A complete disintegration of the hexagonal and ditrigonal layers into their constituent molecules

requires different amounts of work (∆Gv
2) which, in turn, implies two different MWS values.

Though disintegration can be done in various ways, the result must be one and the same.
Here, the crystallographic formula concerning the number of bonds in the hexagonal crystal layer
is used:

∆Gv
2 = (3λ − 3)(3λ − 2). (10)

Thus, the MWS value (W) for HCP crystals with hexagonal {0001} surface layers is

W = 3ψb + (3λ − 3)(3λ − 2)ψb/[3λ(λ − 1) + 1] = 3ψb + [9λ2 − 15λ + 6]ψb/[3λ2 − 3λ + 1]. (11)

Neglecting (for L→∞) all numbers smaller than the quadratic terms in Equation (11) gives
W→6ψb, i.e., the bonding energy of the molecule in a kink position.
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The formula for ∆Gv
2 of ditrigonal layers is

∆Gv
2 = (3λ − 5)(3λ − 3), (12)

and the MWS value (W) for HCP crystals with ditrigonal {0001} surface lattice planes is

W = 3ψb + (3λ − 5)(3λ − 3)ψb/3(λ − 1)2 = 3ψb + [9λ2 − 24λ + 15]ψb/[3λ2 − 6λ − 3]. (13)

Here, again, all numbers smaller than the quadratic terms in Equation (13) can be neglected for
L→∞, and again, W→6ψb.

Relevant to the application of the MWS method to FCC crystals is the cubo-octahedron crystal
shown in Figure 8 (which is composed by five layers, BCABC, and has eight equal octahedral faces of
triangular shape, all of them containing six molecules). The EBDE method shows that this crystal can be
a critical nucleus under supersaturation, which is determined from the ratio ψb/ψd ≈ 0.42. It is almost
equal to the ψb/ψd ratio for the HCP crystal shown in Figure 5 (ψb/ψd ≈ 0.43, see Table 2). Note that
the FCC crystal is comprised of 55 molecules, while the HCP crystal has two additional molecules.
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Figure 8. Top view of a five-layered face centered cubic (FCC) lattice crystal. It is formed on the closest
packed single layer of A spheres (the blue balls) arranged in the shape of a complete hexagon with
L = 3.

By applying the MWS method, we see that the stripping-off of the whole upper triangular layer
{111} (containing green balls, Figure 8) requires work (energy) amounting to 18ψb, while each layer
here has a bond energy of 9ψb. This gives a MWS value of 4.5ψb. The cubic faces {100} are built from
nine molecules of bond energy 12ψb, and the bond energy of the front cubic face in Figure 8 to the
layer beneath it is 32ψb. This gives a MSW value ≈ 4.9ψb. The different MWSs of the {111} and {100}
faces indicate that, according to the MSW method, this crystal does not have an equilibrium shape.

The difficulties encountered with the highly symmetrical HPC and FCC crystals indicate that the
MWS method has low applicability to less-symmetrical crystals. This notwithstanding, historically,
the classical MWS method has played an important role in the crystal growth theory, regardless
of being demonstrated merely on the Kossel-crystal model [24]. Markedly, present-day computer
programs are capable of elucidating at least one of the basic notions used in the classical MWS
method, namely the meaning of an ‘infinitely’ large crystal. The latter is used as a benchmark in
Stranski-Kaischew’s molecular kinetic theory. Figure 9 shows how the ‘infinitely’ large crystal size
is approached asymptotically. Here, the Nb/Na ratio (where Nb is the total number of bonds in the
crystal and Na is the number of molecules in the truncated HCP bipyramid) is plotted versus the
crystal edge length, L. It is well-known that the Nb/Na for a 12-coordinated molecule is six, and the
bond energy of a molecule in the kink position is 6ψb.
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Figure 9. Plot of Nb/Na ratio (where Nb is the total number of bonds in the crystal and Na is the
number of molecules in the truncated HCP bipyramid), which shows the influence of crystal vertexes
and edges fading away with crystal enlargement. With L→∞ (L is the crystal edge length), the Nb/Na

ratio gradually approaches 6. Geometrical homologues to the HCP crystals like those in Figure 5 and
in Figure 7 are considered.

4. Difference between Equilibrium and Growth Crystal Shapes

The nucleation stage predetermines the polymorphic crystal form (i.e., crystal lattice type) but not
the habitus of a growing crystal (i.e., the type of faces on it). Crystal habitus depends on the growth
rates of faces in normal directions. Historically, Stranski and Kaischew [25] were the first to recognize
that the adsorption energy of a molecule at the middle of a crystal face can be used to characterize
its growth rate. Later, Hartman and Bennema [26] proved that although dependent on the growth
mechanism (via two-dimensional nucleation or spiral growth) and system conditions, face growth rate
always increases with the increase in attachment energy per molecule on this crystal face. For instance,
{110} faces grow faster than {100} and {111} faces because the steady-state growth shapes are determined
by the number of their dangling bonds. The latter are five for {110} faces, four for {100} faces and
three for {111} faces. In fact, ferritin crystals with the largest {111} faces have been observed most
frequently—an indication that this is the slowest growing type of face in the normal direction and
hence, the most morphologically important crystal face [27]. Using Atomic Force Microscopy, Yau and
Vekilov [28] observed that near-critical-size apoferritin crystallites grow by attachment of molecules to
the side {110} faces, thus forming a large {111} face. Growth of an apoferritin microcrystal consisting of
three {111} layers of about 60 molecules in each was also detected. These nearly-critical crystallites
were of quasi-planar (raft-like) shapes which is rather unusual for the FCC crystals.

5. Conclusions

An advantage of the EBDE method is that coupled with adequate computer programs, it can
predict the nucleation of crystals of diverse lattice structures. As exemplified here with HCP crystals,
modern computer programs (such as ATOMS) enable calculations considered unimaginable at the
time of Stranski and Kaischew, over 80 years ago. Just as an example, the ordinate for L = 10 in Figure 9
is calculated for a HPC bipyramid crystal having Na = 2859 atoms and Nb = 15588 bonds.
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