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Abstract: The polymyxin colistin is known as a “last resort” antibacterial drug toward
pandrug-resistant enterobacteria. The recently discovered plasmid-encoded mcr-1 gene spreads
rapidly across pathogenic strains and confers resistance to colistin, which has emerged as a global
threat. The mcr-1 gene encodes a phosphoethanolamine transferase (MCR-1) that catalyzes the
transference of phosphoethanolamine to lipid A moiety of lipopolysaccharide, resulting in resistance
to colistin. Development of effective MCR-1 inhibitors is crucial for combating MCR-1-mediated
colistin resistance. In this study, MCR-1 catalytic domain (namely cMCR-1) was expressed and
co-crystallized together with D-xylose. X-ray crystallographic study at a resolution of 1.8 A found that
cMCR-1-D-xylose co-crystals fell under space group P2;2,2;, with unit-cell parameters a = 51.6 A,
b=731 A, c=822A, a=90° B =90°, v =90°. The asymmetric unit contained a single cMCR-1
molecule complexed with D-xylose and had a solvent content of 29.13%. The structural model of
cMCR-1-D-xylose complex showed that a D-xylose molecule bound in the putative lipid A-binding
pocket of cMCR-1, which might provide a clue for MCR-1 inhibitor development.
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1. Introduction

Antimicrobial resistance among Gram-negative bacteria, especially the multidrug-resistant
enterobacteria which are the leading cause of human clinical infections, is a global healthcare
concern [1]. The carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CRE), such as
Klebsiella pneumoniae strains expressing the KPC-2 enzyme and Enterobacteriaceae strains expressing the
NDM-1 enzyme, are of special clinical importance [1].

Polymyxin is often employed as the final therapeutic option to treat CRE-caused clinical infections
because of its low resistance and high efficiency among CRE [2]. Polymyxins (colistin, polymyxin B)
are cationic polypeptides which could bind the lipid A moiety of bacterial lipopolysaccharide and
disrupt the bacterial cytomembrane subsequently [2]. Bacterial polymyxin resistance was considered
to be very low and primarily caused by genomic mutations associated with specific two-component
regulatory systems, which either modify lipid A or lead to complete loss of the lipopolysaccharide [2].

Recently, a novel mobile colistin resistance mechanism, led by a protein named MCR-1
(a phosphoethanolamine (PEA) transferase that confers colistin resistance by catalyzing the transference
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of phosphoethanolamine to lipid A moiety of lipopolysaccharide), has been discovered [3]. The gene
encoding MCR-1 (mcr-1) has been shown plasmid-located and self-transmittable between various
bacterial strains [2]. Until now, mcr-1 has already been detected within a broad range of pathogenic
isolates from humans and animals worldwide, which poses a huge threat to the sustaining effectiveness
of colistin against CRE-caused clinical infections [2]. Development of effective MCR-1 inhibitors
might be the only way to extend the usage of colistin as a reserved antibacterial drug to treat CRE
infections [4].

Although several structures of MCR-1 catalytic domain (namely ¢MCR-1) have been
determined [5-8], few effective inhibitors for MCR-1 are known. A recent co-crystallization study [9]
showed that two substrate analogues of MCR-1, ethanolamine and D-glucose, could specifically bind to
cMCR-1. Here, the crystallization and primary structure analysis of cMCR-1 complexed with D-xylose
is reported. The structure determined showed that a D-xylose molecule bound in the putative lipid
A-binding pocket of cMCR-1, which might provide a clue for MCR-1 inhibitor development.

2. Materials and Methods

2.1. Recombinant cMCR-1 Production

The sequence of mcr-1 gene is available in GenBank (GenBank accession no. KY685070). Based on
the secondary structure predictions, the MCR-1 catalytic domain (namely cMCR-1) includes 326 amino
acids, from Pro216 to Arg541. The partial mcr-1 gene sequence encoding cMCR-1 with Ncol/Xhol
restriction sites incorporated at the 5’ /3’ ends was commercially synthesized and cloned into Ncol/ Xhol
restriction sites of the expression vector pET-28a(+) (Novagen), creating pET-28a(+)-mcr-1. In construct
pET-28a(+)-mcr-1, a histidine tag (HHHHHH) was fused to the C-terminus of cMCR-1 (Table 1).

Table 1. Production specifics for cMCR-1.

Source Escherichia coli
DNA Synthesized DNA
Forward primer ! 5'-CATGCCATGGCCAAAAGATACCATTTATCAC-3/
Reverse primer 2 5'-CCCTCGAGGCGGATGAATGCGGTGCGGTC-3
Expression vector pET-28a(+)
Host E. coli BL21(DE3)pLysS

MGPKDTIYHAKDAVQATKPDMRKPRLV VF
VVGETARADHVSFNGYERDTFPQLAKIDGVTNF
SNVTSCGTSTAYSVPCMFSYLGADEYDVDTAK
YQENVLDTLDRLGVSILWRDNNSDSKGVMDKLPKA
3 QFADYKSATNNAICNTNPYNECRDVGMLVGLDDFV
AANNGKDMLIMLHOMGNHGPAYFKRYDEKFAKFT
PVCEGNELAKCEHQSLINAYDNALLATDDFIAQSIQ
WLQTHSNAYDVSMLYVSDHGESLGENGVYLHGMP
NAFAPKEQRSVPAFFWTDKQTGITPMATDTVLTHD
AITPTLLKLFDVTADKVKDRTAFIRLEHHHHHH

1 The Ncol site noted. 2 The Xhol site noted.  The cloning artifacts are underlined.

Recombinant protein sequence

Escherichia coli BL21(DE3)pLysS was transformed with pET-28a(+)-mcr-1 and grown at 310 K,
200 rpm rotation in LB liquid medium containing 50 pg mL~! kanamycin for cMCR-1 expression.
Confluent cultures (ODggg~0.6) were then treated with 0.3 mM (final concentration) IPTG at 298 K
with shaking (180 rpm) for 20 h. Cells were collected by 20 min of centrifugation (4500 g, 277 K) and
pellets were kept at 193 K for subsequent use.

The cell pellets were lysed with 10 mM Tris-HCI pH 8.0, 200 mM NaCl, 5% (v/v) glycerol, 0.3%
(v/v) Triton X-100, 1 mM DTT, and 0.1 mM PMSF in a French press. Cell wastes were excluded by
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centrifuging the lysates at 12,000 g for 30 min at 277 K, and the supernatant was clarified using a
0.45 pm filter and then passed through a pre-equilibrated Ni-NTA affinity column (GE Healthcare).
The affinity column was washed thoroughly using 10 mM Tris-HCl pH 8.0 containing 50 mM imidazole
to remove the miscellaneous proteins. The target proteins were eluted using 10 mM Tris-HC1 pH 8.0
containing 200 mM imidazole. Concentrated protein was then loaded onto a MonoQ 5/50 GL anion
exchange column (GE Healthcare) and chromatographed at 1 mL min~! using a linear NaCl gradient
generated with 10 mM Tris-HCl pH 8.0 (buffer A) and 10 mM Tris-HCI pH 8.0, 1 M NaCl (buffer B). Peak
fractions were pooled and run through a Superdex 200 10/300 GL column (GE Healthcare) equilibrated
with buffer A at a flow rate of 1 mL min~!. Peak fractions were recovered and concentrated to 10 mg
mL ! for crystallization. The purity of the final protein ((MCR-1) was checked by SDS-PAGE. All
specifics for recombinant cMCR-1 production are present in Table 1.

2.2. Crystallization

The cMCR-1 was crystallized at 277 K using the sitting-drop vapor-diffusion method as described
by Wei et al. [9]. The 0.5 uL sitting drops consisting of 0.25 uL. cMCR-1 solution and 0.25 pL
reservoir solution were equilibrated against 30 pL reservoir solution in 96-well MRC plates (Molecular
Dimensions). The best crystals were achieved in 10% (w/v) PEG 1000, 5% (w/v) PEG 8000.

2.3. Data Collection, Structure Solution, and Refinement

The cMCR-1 crystals were incubated in mother liquor containing 100 mM D-xylose for 10 s
to form the cMCR-1-D-xylose complex. The cMCR-1-D-xylose co-crystals used for diffraction data
collection were incubated in cryoprotectant (mother liquor containing 20% (v/v) glycerol) for 10 s
before flash cooling in streams of liquid nitrogen. Data for cMCR-1-D-xylose complex were acquired at
100 K using an ADSC Q315r detector at beamline BL17U1 of Shanghai Synchrotron Radiation Facility
(SSRF), China; 360 frames were taken with 1.0° oscillations. The data were indexed, integrated, and
scaled using HKL-2000 (HKL Research, Inc., Charlottesville, VA, USA) [10] and iMosflm programs [11].
The structure was solved by molecular replacement with Phaser [12] using a single monomer of cMCR-1
(PDB entry 5GRR [7]) as the search model. The structure model was constructed using alternating
manual building in Coot [13] and restrained refinement in PHENIX [14]. The final model was optimized
on PDB_REDO web server [15] and validated by MolProbity [16]. All figures were prepared by PyMOL
(Schrodinger). Table 2 summarizes data-collection and crystallographic statistics of cMCR-1-D-xylose
complex. Coordinates and structure factors of the cMCR-1-D-xylose complex have been deposited in
the Protein Data Bank (PDB) under accession code 5ZJV.
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Table 2. Data-collection and crystallographic statistics of cMCR-1-D-xylose complex.

Diffraction Source BL17U1, SSRF
Wavelength (A) 0.9792
Temperature (K) 100

Detector ADSC Q315r
Crystal-to-detector distance (mm) 350
Total rotation range (°) 360
Rotation range per image (°) 1.0
Exposure time per image (s) 0.5
Space group P21212¢
a,b,c(A) 51.6,73.1,82.2
a, B,y (°) 90, 90, 90
Resolution range (A) 43.71-1.82 (1.88-1.82) !
Total number of reflections 56014 (5514)
Number of unique reflections 28258 (2789)
Mosaicity (°) 0.5
Multiplicity 2.0 (2.0
Completeness (%) 99.0 (99.0)
Mean I/o(I) 10.61 (4.94)
Rmerge (%) 35(11.1)
CCi2 0.997 (0.949)
Wilson plot overall B factor (A?) 13.74
Reflection number, working set 28223 (2785)
Reflection number, test set 1997 (196)
Ruork 0.139
Riree 0.178
Ramachandran favored region (%) 98
Ramachandran allowed region (%) 1.75
Ramachandran outliers (%) 0.25
Rotamer outliers (%) 0.65
R.m.s.d. bond lengths (A) 0.006
R.m.s.d. bond angles (°) 0.86
Average B factor (A?) 17.55

I Outer shell values.

3. Results and Discussion

As stated in the Introduction, development of effective MCR-1 inhibitors is crucial for combating
the threat of colistin resistance mediated by MCR-1. A recent co-crystallization study [9] showed that
two substrate analogues of MCR-1 (ethanolamine and D-glucose) could specifically bind to MCR-1
catalytic domain (cMCR-1). Both D-glucose and lipid A are hexacyclic compounds. Thus, we tried
many other hexacyclic compounds for co-crystallization with cMCR-1 (unpublished). The only other
co-crystal structure was that obtained for the complex formed between cMCR-1 and D-xylose at a
resolution of 1.8 A.

MCR-1 belongs to the phosphoethanolamine (PEA) transferase family. It contains 541 amino acids
with an N-terminal five-helix transmembrane domain (amino acid residues 1-215) and a C-terminal
periplasmic catalytic domain (amino acid residues 216-541) [9]. In order to investigate the potential
interactions between D-xylose (and other hexacyclic compounds) and MCR-1, cMCR-1 (MCR-1 catalytic
domain) was expressed and purified using a combine of affinity, anion exchange and gel filtration
chromatography (Figure 1a), as stated in Section 2.1. The purity of the purified cMCR-1 was confirmed
with SDS-PAGE (Figure 1b) and subsequent Western blot analysis (Figure 1c). The cMCR-1 was
effectively crystallized using the sitting-drop vapor-diffusion method as described by Wei et al. [9],
which generated diffraction-quality crystals with a longest dimension of 0.2 mm (Figure 2). SDS-PAGE
showed that the obtained crystals were protein crystals and had the same molecular weight as the
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purified cMCR-1 protein (Figure 1b). The cMCR-1 crystals were incubated in the mother liquor
supplemented with 100 mM D-xylose for 10 s to form the cMCR-1-D-xylose complex.
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Figure 1. Purification and purity analysis of cMCR-1. (a) Gel filtration chromatography of cMCR-1.
(b) SDS-PAGE of the final purified cMCR-1 and cMCR-1 crystals. Molecular-weight markers (lane M,
labelled in kDa), purified ~35 kDa cMCR-1 protein (lane 1) and cMCR-1 crystals (lane 2) are shown.
(c) Western blot analysis of the final purified cMCR-1 and cMCR-1 crystals using an anti-6 x His antibody.
Purified ~35 kDa cMCR-1 protein (lane 1) and cMCR-1 crystals (lane 2) are shown.

Figure 2. Crystals of cMCR-1.

Diffraction data for the cMCR-1-D-xylose complex was collected to 1.8 A resolution (Figure 3)
and on its basis, the cMCR-1-D-xylose co-crystals fell under space group P2;2;21, possessing unit-cell
parameters a = 51.6 Ab=731A,c=822A,a=90°, B =90°, v =90°. The asymmetric unit contained a
single cMCR-1 molecule complexed with D-xylose. The data set of X-ray diffraction had a resolution
range from 43.71 A t0 1.82 A with 3.5% Rmerge and 99.0% completeness. To elucidate the structure of
cMCR-1-D-xylose complex, we employed molecular replacement method using cMCR-1 monomer
(PDB entry 5GRR [7]) as a search model and obtained a clear solution. We confirmed the occurrence of
a single protein molecule in the asymmetric unit by cross-rotation and translation-function calculations;
the corresponding solvent content was 29.13%. Initial structure refinement using PHENIX [14] yielded
a model (Figure 4a) with an Ry, of 13.9% and an Ryee of 17.8%.
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D-glucose

Figure 4. Structure of the cMCR-1-D-xylose complex. (a) The ribbon diagram showing the overall
structure of cMCR-1. (b) The Fo-Fc electron-density map contoured at 3.0 o depicting the D-xylose
molecule. The map was calculated using the model omitting the D-xylose molecule after rounds of
refinement. (c) The 2Fo-Fc electron-density map contoured at 1.0 o depicting the D-xylose molecule.
(d) Interaction between cMCR-1 and the D-xylose molecule. (e) Interaction between cMCR-1 and the
D-glucose molecule. (f) Superposition of cMCR-1-D-xylose (cyan) and cMCR-1-D-glucose (magenta).
(g) Superposition of cMCR-1-D-xylose (cyan) and EptA (yellow). All figures were prepared using
PyMOL (Schrodinger).

As shown in the Fo-Fc map (contoured at 3.0 o level) (Figure 4b) and 2Fo-Fc map (contoured at
1.0 o level) (Figure 4c), a D-xylose molecule bound in the putative lipid A-binding pocket of cMCR-1.
According to the PDB structure validation report, real space correlation coefficient (RSCC) and real
space r-value (RSR) are 0.94 and 0.13, respectively, for the ligand D-xylose. The D-xylose, Pro481, and
Tyr287 formed a sandwich structure with the D-xylose molecule in the middle (Figure 4d). Obviously,
the hydrophobic stacking interaction played a crucial role in D-xylose recognition.

The structure of cMCR-1-D-xylose complex is similar with that of cMCR-1-D-glucose complex
(PDB entry 5YLF [9]). Meanwhile, there are still many differences between the two structures.
First, alignment of the two structures (Figure 4f) showed that both D-xylose and D-glucose
bound to the same pocket of cMCR-1 and formed a 7m-m-conjugated interaction with Pro481
and Tyr287 of ¢cMCR-1, but the skeletons of D-xylose and D-glucose were in the opposite
positions. Next, we analyzed the cMCR-1-D-xylose and cMCR-1-D-glucose interactions by using
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PISA server (http://www.ebi.ac.uk/pdbe/pisa). The accessible surface area (ASA) = 269.67 A2,
buried surface area (BSA) = 194.27 A2, solvation energy effect (A'G) = —2.37 kcal/mol between
D-xylose and cMCR-1, and the ASA =303.17 A2, BSA = 204.82 A2, AIG = —2.97 kcal/mol between
D-glucose and cMCR-1. It suggested that the interaction between D-glucose and cMCR-1 is greater
than that between D-xylose and cMCR-1. The D-xylose and D-glucose molecules also bound to
c¢MCR-1 through a large number of hydrogen bonds. The O1, O2, O3, and O4 atoms of D-xylose
hydrogen-bonded to Ser284 OG, Thr283 OG1, N/Ser284 N, OG, Thr283 OG1, N, and Asn482 N,
respectively (Figure 4d). The O1, 02, O3, and O4 atoms of D-glucose hydrogen-bonded to Asn482 N,
Thr283 N, Ser284 N, OG/Thr283 OG1, and Ser284 OG, respectively (Figure 4e).

We also conducted a comparison of cMCR-1-D-xylose complex with phosphoethanolamine
transferase A (EptA) from Neisseria meningitides (PDB entry 5FGN [17]), the only structure of a
full-length phosphoethanolamine transferase so far. The structure of cMCR-1-D-xylose complex can be
well superimposed with the structure of EptA catalytic domain, with a Cx root-mean-square deviation
of 2.0 A as revealed by Dali server (http://ekhidna.biocenter.helsinki.fi/dali_server/start) [18]
(Figure 4g). Anandan et al. [17] have shown that detergent dodecyl-p3-D-maltoside (DDM) could bind
in a substrate pocket of EptA, and the pocket bound by DDM was probably the phosphoethanolamine
(PEA) binding pocket near the putative lipid A-binding pocket.

In conclusion, our finding that D-xylose could bind in the putative lipid A-binding pocket of
cMCR-1 is interesting, which might provide a clue for MCR-1 inhibitor development. In vitro inhibitory
assay is currently in progress to confirm if D-xylose could inhibit colistin resistance mediated by MCR-1.
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