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Abstract: For direct phasing of protein crystals, a method based on the hybrid-input-output (HIO)
algorithm has been proposed and tested on a variety of structures. So far, however, the diffraction
data have been limited to high-resolution ones, i.e., higher than 2 Å. In principle, the methodology
can be applied to data of lower resolutions, which might be particularly useful for phasing membrane
protein crystals. For resolutions higher than 3.5 Å, it seems the atomic structure is solvable. For data
of lower resolutions, information of the secondary structures and the protein boundary can still
be obtained. Examples are given to support the conclusions. Real experimental data are used.
Two aspects of the observed data have been discussed: removal of the measured low-resolution
reflections and involvement of the unmeasured high-resolution reflections. The ab initio phasing
employs histogram matching for density modification. A question arises whether the reference
histogram used should match the resolution of the diffraction data or not. It seems that there is an
optimal histogram which is good to use for data at various resolutions.

Keywords: resolution dependence; hybrid input-output; iterative projection algorithm; ab initio
phasing; membrane protein; X-ray crystallography

1. Introduction

Despite the existence of good physical methods for phasing the X-ray reflections of a protein
crystal, direct phasing remains a challenging theoretical problem. Iterative projection algorithms have
been widely used for phase retrieval [1–17].

For crystals with high solvent content or with adequate non-crystallographic symmetry (NCS),
it has been demonstrated that direct phasing is possible [10,12,13]. Completely ab initio phasing
using an iterative algorithm has been reported [13]. A crucial component of the algorithm is the
hybrid-input-output (HIO) scheme employed in enforcing the solvent constraint [1–3]. Instead
of requiring the solvent density to be strictly constant, the HIO method uses a negative feedback
mechanism to gradually modify the solvent density so that it tends to become more constant.

It has been argued that for HIO to work properly, oversampling is required [5]. For a given
number of protein atoms, availability of higher resolution data would therefore seem more favorable.
It turns out that the oversampling condition is independent of the resolution and depends only on
the structural redundancy [5,11,13], i.e., the low- and medium-resolution data are sufficient for the
determination of the corresponding phases as long as there is enough redundancy (high solvent
content or NCS).

Ab initio phasing at very low resolution has been reported with a generalized likelihood based
approach [18,19]. In this paper, we describe a series of trial calculations using the HIO algorithm
involving data at various resolutions (from 2.85 Å to 7 Å). At each resolution, the HIO method is
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capable of yielding useful structural information. As expected, only 3.5 Å or higher resolution data can
lead to atomic modeling. In addition, at lower resolution partial information such as the secondary
structures or the protein boundary can still be obtained.

Membrane protein crystals usually have large solvent content and do not diffract to high
resolution. It could be challenging to retrieve the phase using conventional methods [20]. The results
of our trial calculations indicate a potential new phasing approach for membrane proteins.

When collecting the experimental data, some low-resolution reflections are missing due to the
beam stop. Those measured low-resolution reflections with very small diffraction angles are usually
not accurate and deviate a lot from their expected values. They should be replaced by the calculated
values during the phasing process. At the same time, we find the HIO phasing method benefits from
including some unmeasured high-resolution reflections [21–24]. This is because using the calculated
values of those reflections makes the computed density in real space more smooth.

Another resolution dependence of the direct phasing method is histogram matching. A reference
histogram is well-known to be very helpful for density modification inside the protein region [25,26].
It is also very much resolution dependent. It would seem only natural that the resolution of the
reference histogram should match that of the diffraction data. However, trial calculations show that is
not always the case.

It is well-known that the density histogram is universal, i.e., independent of detailed structures.
A question naturally arises, namely, what exactly does the histogram encode? Is that the average
density of the protein or something else? Although this question is not directly related to the resolution
dependence, we find this to be an interesting question to look at.

2. Ab Initio Phasing at Various Resolutions

Ab initio phasing using the HIO method has been described in previous articles [13–15,27,28]. In this
paper, we made 200 independent runs for each trial calculation and each run has 10,000 iterations.
Each iteration consists of density modification in real space and using measured amplitudes in forward
Fourier transform to improve phase values in reciprocal space. Before presenting the results of our trial
calculations, let us briefly review the HIO phasing algorithm.

At the beginning of each iteration, data weighting [12,15] is used to speed up the convergence
of the iterations and to increase the success rate. We give the diffraction data a weight defined
in Equation (1) where σ1 varies with the iteration number. Sh is the reciprocal of the resolution
(wavelength) of that reflection. The weighted data defined in Equation (2) are used in the phasing
process and updated at the beginning of each iteration. In the first iteration, σ1 starts from a value
of around 1.0 Å. The weight of high-resolution reflections are close to zero and only low- and
medium-resolution reflections are involved in the phasing process. Due to a lower number of reflections
involved, it helps the calculated protein boundary evolve to the correct shape which speeds up the
phasing process and increases the success rate. Then σ1 decreases smoothly in the following iterations
which allows equal number of higher-resolution reflections be incorporated into the phasing procedure
at each iteration until all reflections are involved at the 8000th iteration. Finally, σ1 drops smoothly
to zero from the 8000th to the 9000th iteration, so that observed reflections recover their original
magnitudes. More details about how σ1 varies have been described in our previous article [15].

w1(Sh) = e−2(πσ1Sh)
2

(1)

|Fobs
w (h)| = w1|Fobs(h)| (2)

Missing reflections need to be filled with the calculated ones in each iteration. The beam stop
used in the diffraction experiment often results in unmeasured reflections at very low resolution.
The magnitudes of the missing reflections are replaced by the calculated values according to
Equation (3). This replacement is required in order to obtain a good electron density map in real space.
About 1% of the observed data were randomly chosen and set aside as a test data set, T, while the
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remainder were used as a work data set, W [29]. The reflections in the test data set should also be
treated as missing reflections and replaced by the calculated values according to Equation (3).

|Fmiss(h)| = ∑h∈W |Fobs
w (h)|

∑h∈W |Fcal(h)|
|Fcal(h)| (3)

The electron density in a unit cell is defined on a grid. The grid size is chosen to be half of the
high resolution limit of the phasing data. For example, the grid size is 1.43 Å for phasing 2.85 Å data,
and 3.5 Å for phasing 7 Å data. Apparently, a bigger grid size leads to less computing time. However,
a proper grid size is necessary in order to make sure all reflections to a given resolution have been
involved in the computation. INTEL forward and backward discrete fast Fourier transform [30] is
used to compute the electron density on each grid point in real space and the structure factors in
reciprocal space.

The first iteration starts from random electron density in real space. A backward fast Fourier
transform is performed to get the calculated structure factors in reciprocal space. The calculated
magnitude of each reflection is replaced by the weighted observed magnitude defined in Equation (2).
The missing reflections are substituted with the calculated ones according to Equation (3). The new
magnitudes and the calculated phases are assembled to form new structure factors. A forward fast
Fourier transform is performed to get the calculated electron density ρ(n) in real space. The superscript
n denotes the nth iteration.

In order to locate the protein boundary, a weighted average density on each grid point is
calculated. Positive density constraint is applied during the calculation of the weighted average
density, i.e., negative density is replaced by zero in the averaging. The density weighting function is
defined in Equation (4) [7].

w2(dij) = exp

(
−

d2
ij

2σ2
2

)
(4)

The subscript i or j represents a grid point in the asymmetric unit. dij is the distance between
the two grid points. The parameter σ2 measures the width of a Gaussian function which can be
used to control the convergence of the solvent region. σ2 is chosen to be 4.0 Å at the first iteration
and it decreases linearly in the following iterations. At the 9000th iteration, σ2 is reduced to 2.5 Å,
and it keeps that value when solvent flattening is applied during the last 1000 iterations. In practice,
the weighted average density is calculated in reciprocal space according to the convolution theorem.
More information about the calculation of the weighted average density can be found in our previous
articles [13,14].

A cutoff value of the weighted average density is used to divide the asymmetric unit into the
protein region and solvent region. The cutoff value can be found by adjusting it such that the calculated
solvent content agrees with the expected solvent fraction. Since the average density of the protein is
greater than the average density of the solvent, if a grid point has a weighted average density greater
than the cutoff value, it is assumed to be inside the protein region. Otherwise, it is assumed to be part
of the solvent.

After the protein boundary is determined, different density-modification techniques are employed
to modify the calculated density in the solvent region and in the protein region, separately. In the solvent
region, hybrid input-output introduces a negative feedback density according to Equation (5) [1,2].

g(n) =

{
ρ(n) in the protein region;
g(n−1) − ερ(n) in the solvent region.

(5)

g(n) denotes the modified density of the nth iteration. ρ(n) is the density of the nth iteration
before modification. ε is a feedback parameter which can be used to optimize the convergence of the
algorithm. Empirically, ε is chosen to be 0.7. HIO does not change the calculated density of the protein
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region. Instead, a standard histogram-matching method is applied to make the calculated density in the
protein region satisfy the density distribution of a reference histogram. After the density modification
in real space, a backward fast Fourier transform is performed to get the calculated structure factors for
the next iteration.

Since the HIO-modified density does not satisfy the solvent constraint, solvent flattening [31–34]
is applied in real space during the last 1000 iterations according to Equation (6).

g(n) =

{
ρ(n) in the protein region;
0 in the solvent region.

(6)

Having reviewed the HIO phasing algorithm, we now proceed to describe the results of our
trial calculations carried out for a membrane protein structure (PDB code 2JLN [35]). 2JLN is
a nucleobase-cation-symport-1 benzylhydantoin transporter which is an essential component of
salvage pathways for nucleobases and related metabolites. The space group is P212121. The cell
dimensions are a = 79.70, b = 109.14, and c = 113.82 Å. The sequence includes 501 amino acids. Only
464 amino acids have been identified in the refined model. There are 3571 non-hydrogen atoms in the
asymmetric unit. The crystal diffracts to 2.85 Å, with a low resolution cutoff at 29 Å. The completeness
of the measured data is 88%. The overall R value after model refinement is about 0.24.

A proper value of solvent content is important for HIO phasing. The solvent content listed in
PDB is 69% for 2JLN. After checking the model with sfcheck [36] in CCP4 [37], the volume not occupied
by model is 68%. In our trial calculations, we have tested several values for the solvent content from
62% to 72%. Although all of them lead to successfully phasing, 68% turns out to be an optimal value
with a high success rate and a low phase error.

For histogram matching, a protein structure (PDB code 4W6V [38] of similar size is selected for
the computation of a reference density histogram. 4W6V is a peptide transporter which mediates
the cellular uptake of di- and tripeptides, and of peptidomimetic drugs. There are about 500 amino
acids in the structure. Reference histograms from other structures of similar size also work. Since the
histogram of a protein structure depends highly on the average temperature factor of the atomic model,
the average B-factor of the reference structure should be rescaled to match the Wilson B-factor computed
directly from the measured data of 2JLN. The reference histogram is computed at 2 Å resolution.

Several quantities are defined in Equations (7)–(10) to monitor the progress of the iterative
phasing procedure. R f ree and Rwork measure the discrepancy between the calculated magnitudes and
the observed magnitudes of the reflections in the test data set and the work data set, respectively.
Since the phases of an unknown structure are not available, R f ree and Rwork should be used to identify
whether good phases have been achieved. ∆φ is a measure of the difference between the calculated
phases and the true phases which are computed from the PDB deposited model with bulk solvent
correction. The correlation coefficient, CC, is a measure of both calculated magnitudes and phases.
The value of CC is close to one when good phases are achieved. Otherwise, it stays around zero.

R f ree =
∑h∈T ||Fobs(h)| − |Fcal(h)||

∑h∈T |Fobs(h)|
(7)

Rwork =
∑h∈W ||Fobs(h)| − |Fcal(h)||

∑h∈W |Fobs(h)|
(8)

∆φ =
∑h∈W arccos

{
cos
[
φtrue(h)− φcal(h)

]}
∑h∈W 1

(9)

CC =
∑h∈W |Fobs(h)||Fcal(h)|cos

[
φtrue(h)− φcal(h)

]
[

∑h∈W |Fobs(h)|2 ∑h∈W |Fcal(h)|2
]1/2 (10)
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Figure 1 shows the evolution of the error metrics defined in Equations (7)–(10). One typical
failed run and six typical successful runs are presented. Initially, the phases are random and ∆φ is
about 90◦. CC is close to zero. In a failed run, the phase error almost does not change significantly.
The value of CC is close to zero. However, in a successful run, the phase error develops a sudden
drop when good phases are achieved. The value of CC exhibits a sudden increase. For all runs,
when the iterations proceed both Rwork and R f ree slowly decrease due to the progressively uniform
data weighting. When solvent flattening is applied in the last 1000 iterations, the phase error further
drops by several degrees and the CC value further increases. R f ree also decreases but it can not
discriminate between the failed and the successful runs due to the intermediate resolution of the
measured data. However, Rwork reached an obviously smaller value for those successful runs as shown
in Figures 1d and 2a. Therefore, Rwork is still a good indicator when the resolution of the measured
data is intermediate.

Figure 1. The evolution of (a) ∆φ, (b) R f ree, (c) CC, and (d) Rwork for the ab initio phasing of 2JLN using
2.85 Å observed data. For clarity, one typical failed run and six successful runs are presented.

In order to identify those successful runs, we sorted Rwork of the 200 runs in ascending order.
We checked those runs with low Rwork (less than 0.125 in Figure 2a) and found that all of those runs
are successful runs with small phase errors. We also found the lower the value of Rwork, generally
the smaller the phase error. On the other hand, those runs with high Rwork correspond to failed runs
with phase errors around 90◦. There is a clear gap on the distribution of Rwork in Figure 2a which
separates the failed group from the successful group. Rwork of the failed group are not exactly the same.
Some failed runs still contain some correct information about the protein boundary.

The successful runs form a set of low Rwork (Figure 2a) and they all correspond to a mean phase
error around 54◦. Since they started from different random phases, they approached the true phases
from various directions. In other words, they are not identical due to statistical fluctuations. It is well
known that averaging can reduce the fluctuations. As indicated in Figure 2b, the mean phase error can
be significantly reduced by averaging over those successful runs starting from the one with the lowest
Rwork and proceeding in the ascending order of Rwork. Meanwhile, the CC value apparently increases.
Therefore, averaging over those successful runs is a powerful phase improvement tool for the iterative
phasing method.
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(a) (b)

Figure 2. (a) A smaller value of Rwork indicates a successful run. (b) After averaging over those
successful runs, the phase error further decreases by about 10◦ and the CC value increases by about 0.1.

The calculated protein boundary of a typical successful run is shown in Figure 3a. Evolving
to a good boundary is crucial for the HIO method. If the protein density was not protected by
a good boundary, HIO would destroy the calculated protein density during density modification
and good phases would not be reached. A good comparison of the averaged density with the PDB
deposited model is shown in Figure 3b. Only one major helix of 2JLN is shown for clarity. The atomic
model is well traced on the contour map of the averaged density. A model reconstructed from the
averaged density using ARP/wARP [39] and AutoBuild [40] in PHENIX [41] is shown in Figure 3c.
The reconstructed model is quite close to the deposited model. About 81% of the 501 amino acids are
positioned in the model. Further refinement is possible.

(a)

(b) (c)

Figure 3. (a) The calculated protein boundary, (b) density map, and (c) reconstructed model (shown
as blue sticks) of 2JLN using 2.85 Å observed data. The PDB deposited model is superimposed and
shown as cartoons in (a) and as red sticks in (b,c). Only one major helix is shown in (b,c) for clarity.

As the high-resolution data are not always available, ab initio phasing of the medium- and
low-resolution data is quite useful. In addition to the 2.85 Å data, we have also tried HIO phasing on
the 3, 3.5, 4, 5, 6, and 7 Å data. For example, when phasing the 3 Å data, we pretend the measured
data are limited to 3 Å. The evolution of the phase errors are displayed in Figure 4. When phasing
low-resolution data such as the 7 Å data, the expected density in the solvent region deviates a lot
from a constant which weakens the power of the HIO method. As a result, a very low success rate
is expected. A sudden drop of the phase error is no longer expected for those successful runs. If the
resolution of the data goes much lower, such as 8 Å, it becomes difficult for the HIO method to achieve
good phases for 2JLN.
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Figure 4. The evolution of the phase errors of 2JLN using the 3, 3.5, 4, 5, 6, and 7 Å observed data.
For clarity, one failed run and six successful runs are presented. The total number of successful runs
are listed in Table 1.

Like the 2.85 Å data, phase averaging over those successful runs can significantly improve the
calculated phases of the medium- and low-resolution data as shown in Figure 5. For the 3, 3.5, 4,
and 5 Å data, there are around 50 successful runs among 200. After averaging over about 10 successful
runs, the phase error becomes flat. It implies that less than 200 runs are needed in order to get the best
phases. For the 6 and 7 Å data, since the success rate is low, more than 200 runs should be carried out.
In fact, when averaging over more successful runs, better phases are obtained for the 6 and 7 Å data.
On the other hand, averaging over too many runs may not be beneficial. In Figure 5, the phase error of
the 5 Å data slightly increases after averaging over too many runs.

3 3.5 4

5 6 7

Figure 5. After averaging over those successful runs presented in Figure 4, the phase errors further
decrease by about 10◦ and the CC values further increase by about 0.1.

The calculated protein boundaries of typical successful runs for data of various resolutions are
displayed in Figure 6. For the 3, 3.5, 4, and 5 Å data, the reconstructed boundaries are smooth and well
match the protein region. For the 6 and 7 Å data, small parts of some side chains get located outside of
the calculated boundaries. The surfaces of the boundaries are rough due to the large grid size.

The averaged densities of those successful runs for data of various resolutions are shown in
Figure 7. The PDB deposited model is superimposed as a reference. Side chains can be traced on the
density maps of the 3 and 3.5 Å data. For the 4 Å data, side chains are not very interpretable but the
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secondary structures are clearly visible. For the 5 and 6 Å data, secondary structures can be traced.
For the 7 Å data, only partial secondary structures can be traced.

3 3.5 4

5 6 7

Figure 6. The calculated protein boundaries of 2JLN using the 3, 3.5, 4, 5, 6, and 7 Å observed data.
The PDB deposited model is displayed as cartoons.

3 3.5 4

5 6 7

Figure 7. The calculated density maps of 2JLN using the 3, 3.5, 4, 5, 6, and 7 Å observed data. One major
helix is presented for clarity. The PDB deposited model is displayed as red sticks.

The reconstructed models of the averaged densities for data of various resolutions are displayed
in Figure 8. Side chains can be rebuilt for the 3 and 3.5 Å data using ARP/wARP [39]. Secondary
structures can be clearly traced for the 4 Å data. They can be located for the 5 and 6 Å data, but not
completely. For the 7 Å data, only partial helix can be traced.
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3 3.5 4

5 6 7

Figure 8. The reconstructed models of 2JLN using the calculated phases of the 3, 3.5, 4, 5, 6, and 7 Å
observed data. One major helix is presented for clarity. The PDB deposited model is displayed as red
sticks. The reconstructed model is colored in blue.

In summary, Table 1 lists the success rate, the final phase error, the final CC value, and the
completeness of the reconstructed models for data of various resolutions. For the 2.85, 3, 3.5, 4, and 5 Å
data, the number of successful runs are around 55 among 200. For the 6 and 7 Å data, the success rates
decrease a lot. Overall, the final phase errors are less than 50◦ and the final CC values are above 0.8.
The completeness of the reconstructed model declines when the resolution of the data decreases, as the
expected density in the solvent region is not flat for low-resolution data, which is not favorable to the
HIO method. For the 8 Å data, no successful runs have been reached. The 3 Å data seems better than
the 2.85 Å data in rebuilding the model. That is probably because the measured data in the resolution
shell from 2.85 to 3 Å contain more errors which can be seen in Figure 9a.
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Table 1. The success rate, error metrics, and completeness of the reconstructed model for the ab initio
phasing of 2JLN using data at various resolutions.

Data ( Å) Successful Runs in 200 Final Phase Error Final CC Value Model Completeness %

2.85 55 43 0.89 81
3.0 52 40 0.90 84
3.5 57 36 0.89 74
4.0 58 38 0.88 56
5.0 56 48 0.83 34
6.0 13 44 0.87 34
7.0 6 49 0.81 24
8.0 0 na na na

(a) (b)

Figure 9. (a) R value between |Fobs| and |Fmodel|. |Fobs| are the diffraction data of 2JLN measured down
to 29 Å. |Fmodel| are the synthetic data of 2JLN calculated from the PDB deposited model with bulk
solvent correction. (b) Removal of very low resolution data is necessary for 2JLN in order to increase
the success rate. When the measured low-resolution reflections are ignored up to 14 Å, a lower phase
error can be achieved.

3. Removal of Very Low Resolution Data

In an actual diffraction data set, there are always missing reflections at very low resolution
due to the beam stop. They have to be calculated from Equation (3). For those very low resolution
reflections which have been measured, the errors usually are larger than those of the intermediate
or high resolutions (Figure 9a). R value indicates the agreement between the measured data and the
expected data computed from the deposited model with bulk solvent correction. Measured reflections
with a R-value less than 0.3 are assumed to be very good. If a measured reflection has a R-value greater
than 0.59, it deviates too much from the expected value. In Figure 9a, the measured data lower than
18 Å have a R-value around 0.59. Inclusion of those measured reflections into the HIO iteration will
compromise the accuracy of the calculation. When including the measured data lower than 24 Å,
no successful runs are reached among 200 attempts. Therefore, it is actually advantageous to ignore
the corresponding data. As shown in Figure 9b, when removing the measured data lower than 18 Å,
we get the highest success rate with 82 successful runs among 200. Removing diffraction data of
2JLN up to 14 Å actually further reduces the phase error. On the other hand, if too many measured
reflections are removed, it becomes difficult to find proper values for all of them during the calculation.
The success rate goes to zero when the measured data lower than 8 Å are ignored.

Empirically, when the measured data have a high resolution limit such as 2 Å, the very low
resolution reflections usually contain less errors. Removing the measured data up to 20 Å or 18 Å is
a proper choice. When the measured data have an intermediate resolution such as 2.85 Å, removing
the measured data up to 16 Å is good. In our trial calculations on 2JLN, the measured data up to 16 Å
were ignored and they were filled with the calculated values according to Equation (3).
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4. Inclusion of the Unmeasured High-Resolution Reflections

The diffraction data of 2JLN are measured up to 2.85 Å. The expected density in the solvent region
is not flat at 2.85 Å resolution. The calculated data at high resolution need to be incorporated into the
HIO phasing iterations. It has been reported that it is possible to improve the phases by extrapolating
to a high resolution that was not actually measured [21–24]. Figure 10 indicates the phase error and
the success rate when more and more unmeasured high-resolution reflections are involved. The phase
error obviously decreases when more unmeasured reflections are involved and becomes stable after
including up to 2.0 Å reflections. At the same time, the success rate slightly decreases due to more
unmeasured reflections to be filled. As a result, filling the unmeasured reflections up to 2.0 Å seems to
be a proper choice when phasing the 2.85 Å data of 2JLN.

Figure 10. The diffraction data of 2JLN are measured up to 2.85 Å. When some unmeasured high-resolution
reflections are involved into the HIO phasing, a lower phase error can be achieved with a slightly decreased
success rate.

There is an alternative method to include the unmeasured high-resolution reflections. In order to
include all 2.0 Å reflections, the size of the grid in real space has to be at least 1.0 Å. When the grid
size in real space is very small, it is time-consuming to compute the densities and the corresponding
structure factors during thousands of iterations. Hence a bigger size of grid is always preferred. We find
a grid size of 1.43 Å works well for phasing the 2.85 Å data. Instead of including the unmeasured
reflections up to a certain resolution such as 2 Å, we include all unmeasured reflections on the grid in
reciprocal space with a certain grid size. When the grid size is 1.43 Å, some reflections up to 1.7 Å are
already incorporated in reciprocal space. The resultant phase error is about 54◦ which is quite close to
the one we obtained by including the unmeasured reflections up to 2.0 Å.

In our trial calculations, the grid size in real space is chosen to be half of the high resolution limit
of the data. For example, when phasing 7 Å data, we choose a grid size of 3.5 Å. All unmeasured
reflections on the reciprocal grid are considered in the phasing procedure. Although the expected
density in solvent is still not a constant, the HIO method is quite capable of automatically adjusting the
calculated magnitudes of those floating reflections to offset this effect. In other words, the HIO method
needs to have a way to absorb the side effect caused by measurement errors, uneven solvent density,
missing reflections, and so on. The existence of those floating reflections provides such a means.

5. Optimal Resolution of the Reference Histogram

As mentioned in the introduction, when solving for a diffraction data set at a certain resolution,
a reference histogram of the same resolution is not always the optimal one. Instead of 4W6V,
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the histogram of 2JLN itself is used in this section. It helps to make the conclusions clear and
straightforward. In order to find an optimal reference histogram, histograms of 2JLN computed at 2.0,
2.85, 3.0, 3.5, 4.0, 5.0, 6.0, and 7.0 Å resolutions have been tested. For example, the histogram at 2.0 Å
resolution is calculated from 2.0 Å diffraction data and true phases of 2JLN. The optimal histogram
should lead to a low phase error and a high success rate.

The protein density histograms of 2JLN at various resolutions are illustrated in Figure 11 and the
area under each curve equals one. All histograms are calculated from the deposited atomic model with
bulk solvent correction. The average density in the solvent region is zero which can be achieved by
adjusting |F000|. Since the deposited model of 2JLN has an average temperature factor of 60 Å2, density
histograms with a resolution higher than 2 Å vary little which are not displayed in Figure 11. When the
resolution goes from 2 to 7 Å, the density distribution becomes less and less positively skewed. At the
same time, the maximum density in the protein region decreases. When the resolution is lower than
7 Å, the density histogram gets close to a Gaussian distribution. Since the average density of those
histograms in Figure 11 are the same, when a histogram gets less positively skewed, the position of its
peak moves close to its average density.

Figure 11. The density histograms of 2JLN computed from the atomic model with bulk-solvent
correction, at various resolutions. For clarity, each histogram is displayed as a curve. The area under
each curve equals one. All histograms have the same average density.

In order to find an optimal reference histogram for phasing data at various resolutions, the histograms
shown in Figure 11 will be tested on both measured and synthetic diffraction data at various resolutions
in the following two subsections.

5.1. Optimal Resolution of the Reference Histogram Tested on the Observed Data

Firstly, the reference histograms shown in Figure 11 are tested on the observed diffraction data at
various resolutions. The phase error and the success rate have been displayed in Figure 12. It can be
seen in Figure 12 that the resolution of the optimal histogram does not need to match the resolution of
the phasing data. In conclusion, the 2 Å histogram generally leads to a lower phase error and a higher
success rate for any resolution data of 2JLN.
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(a) (b)

Figure 12. (a) The phase error and (b) the number of successful runs of 2JLN when the reference
histograms in Figure 11 are tested on the observed data at various resolutions.

5.2. Optimal Resolution of the Reference Histogram Tested on the Synthetic Data

Since the measured data always include errors which could make the previous conclusion
untenable. Testing those histograms shown in Figure 11 on a synthetic data set is necessary. The synthetic
data are computed from the atomic model of 2JLN with bulk solvent correction. We suppose the
synthetic reflections with a resolution lower than 18 Å are missing due to the beam stop. The phase
error and the success rate have been displayed in Figure 13. It is clear from Figure 13 that for ideal data
of 2JLN the reference histogram of 2 Å is the optimal one to use for data at any resolution.

(a) (b)

Figure 13. (a) The phase error and (b) the number of successful runs of 2JLN when the reference
histograms in Figure 11 are tested on the synthetic data at various resolutions.

5.3. Reference Histogram Encodes the Information about Atomic Distance

The reference histogram at 2 Å in Figure 11 exhibits peculiar features such as a steep peak near
the solvent density together with a long tail at high density. To better understand those features,
we magnified the atomic distances by a certain factor and recalculated the histograms at 2 Å. As shown
in Figure 14, the new histograms are significantly less positively skewed than the original one,
indicating that the actual bond distances are encoded in the original density histogram. When the
atomic distances are magnified by 1.5 times, atoms are greatly separated and the densities of two
neighbor atoms have a less overlap. The overall density histogram looks like a Gaussian distribution.
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Figure 14. The density histogram of 2JLN at 2 Å is positively skewed (shown as a black line). When the
atomic distances are magnified by certain times, the density histograms become less and less positively
skewed. The difference between histograms reflects the change of atomic distances. All histograms are
calculated from the 2 Å synthetic data of a structure with magnified atomic distances.

6. Discussion

The HIO phasing algorithm has been successfully demonstrated for high-resolution
structures [13–15]. However, it is not entirely clear that it will yield anything useful when the effective
resolution is less than 3 Å.

As we have shown in this paper, the structure can still be solved with the 3 Å data, and even at
5 Å useful information such as the secondary structures and the protein boundary can still be extracted
from the data. Such results extend the usefulness of the HIO phasing algorithm. Since membrane
protein crystals often have high solvent content and diffract to moderate resolution, HIO phasing
algorithm is a potentially useful alternative approach for solving those structures.

Along the way, we have discussed several important extensions of the algorithm. First, the average
density of a number of successful runs can significantly reduce the phase error. This could make a crucial
difference in the solution of a new structure. Secondly, the removal of less accurate low-resolution
reflections could also improve the success rate and the accuracy of the results. Thirdly, filling unmeasured
high-resolution reflections with calculated values has similar effects. This is somewhat surprising in view
of the fact that the degrees of freedom are increased but the data set stays the same, i.e., effectively the
redundancy is reduced, yet the phase error is also reduced. Finally, we have shown that the 2 Å reference
histogram seems to be optimal for data of various resolutions of 2JLN. All those small enhancements when
taken together, could constitute a substantial methodological improvement over the previous version of
the HIO phasing. Source code is available from the authors upon request.

The variable data resolution offers an alternate approach to a difficult structure. A high resolution
structure may not be straightforwardly solvable. In that case, it might be better to truncate the data to
obtain the protein boundary and the secondary structures first, and then gradually extending them to
high resolution structures by including more data [42]. This resembles the variable weighting scheme
we have proposed [15].

7. Conclusions

The HIO phasing method proposed previously for direct phasing of high-solvent protein crystals
is employed to solve protein structures with data at intermediate and low resolutions. In the previous
paper, we mainly focused on phasing high-resolution data (around 2 Å). In this paper, we further
exploit the phasing method with data ranging from 2.85 Å to 7 Å resolutions. Real experimental data
were used during the test and the calculated phases were directly used for model building. The atomic
model can be automatically reconstructed from the calculated phases when the resolution of the data
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is greater than 3.5 Å. When the resolution of the data drops below 4 Å, the protein boundary and the
secondary structures can be retrieved. As the data goes to lower resolution (8 Å), fewer reflections
are involved and the phase retrieval using HIO becomes difficult. In addition, we also presented
four approaches to improve the calculated phases including averaging the calculated density over
a number of successful runs, removing very low resolution reflections, including some unmeasured
high-resolution reflections, and choosing an optimal reference histogram. The results of our trial
calculations show that the HIO phasing method is still a very good choice for crystallographers even
though high-resolution data are not available.
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