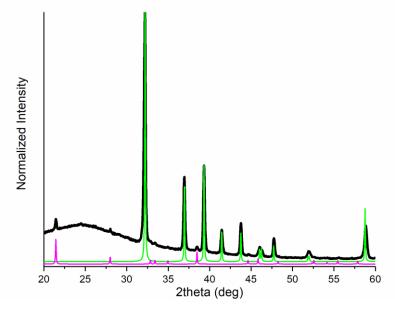


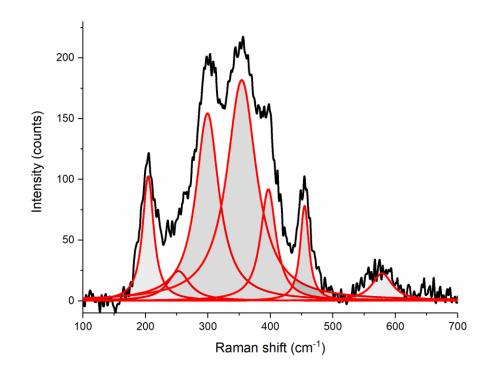


# SUPPLEMENTARY MATERIALS

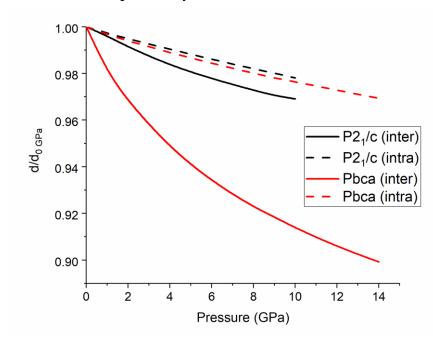

# The Jahn-Teller Distortion at High Pressure: The Case of Copper Difluoride

# Dominik Kurzydłowski

| 1. Ambient-pressure X-Ray diffraction                                                      | 2 |
|--------------------------------------------------------------------------------------------|---|
| 2. Deconvolution of the Raman spectrum of CuF <sub>2</sub> at 19.6 GPa                     | 2 |
| 3. Inter-sheet vs. intra-sheet compressibility of $P2_1/c$ and $Pbca$                      | 3 |
| 4. Comparison of Raman-active modes of ZnF2 and CuF2                                       | 3 |
| 5. Spin density in <i>Pbca</i> at 30 GPa and <i>Pnma</i> at 100 GPa                        | 5 |
| 6. Relative enthalpies of the cotunnite and HP-PdF <sub>2</sub> phases of ZnF <sub>2</sub> | 5 |


#### 1. Ambient-Pressure X-Ray Diffraction

The crystallinity and purity of CuF<sub>2</sub> was investigated with the use of powder X-ray diffraction. Figure S1 shows a powder diffractogram obtained with the X'Pert Pro diffractometer (Panalytical, Almeo, Holand) using a cobalt X-ray source ( $I(CoK_{\alpha 1})/I(CoK_{\alpha 2}) = 2$ ; angle range from 10° to 60°; acquisition time 5 h). As can be clearly seen the sample is manly composed of CuF<sub>2</sub> with only a minor contamination (less than 7 vol%) identified as hydrated copper difluoride (CuF<sub>2</sub>·2H<sub>2</sub>O).




**Figure S1** The experimental powder X-ray diffraction pattern of a sample of CuF<sub>2</sub> (black line) together with patterns simulated for the CuF<sub>2</sub> crystal (green) and CuF<sub>2</sub>·2H<sub>2</sub>O (magenta).

## 2. Deconvolution of the Raman Spectrum of CuF2 at 19.6 GPa



**Figure S2** The experimental Raman spectrum of CuF<sub>2</sub> (black line) together with the deconvolution into Lorentzian profiles (red lines).



#### 3. Inter-Sheet vs. Intra-Sheet Compressibility of P21/c and Pbca

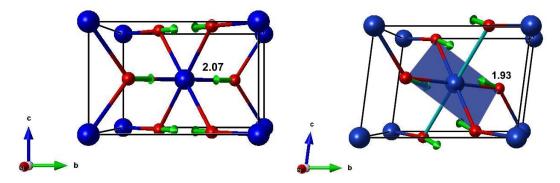
**Figure S3** Comparison of the compressibility of inter-sheet (full lines) and intra-sheet (dashed lines) Ag-Ag distances in *P*2<sub>1</sub>/*c* (black) and *Pbca* (red).

Note that from Figure S3 it is evident that *Pbca* exhibits much softer behavior of the inter-sheet contacts compared with  $P2_1/c$ , which is in line with its smaller bulk modulus.

#### 4. Comparison of Raman-Active Modes of ZnF2 and CuF2

Zinc difluoride (ZnF<sub>2</sub>) adopts the undistorted rutile structure ( $P4_2/mnm$ ) which exhibits four Raman-active modes: B<sub>1g</sub>, E<sub>g</sub>, A<sub>1g</sub>, and B<sub>2g</sub> (Table S1). Upon the symmetry lowering to the  $P2_1/c$  space group (adopted by CuF<sub>2</sub>) the E<sub>g</sub> mode splits into two non-degenerate modes (B<sub>g</sub> and A<sub>g</sub>), while the silent A<sub>2g</sub> mode transforms to a Raman-active B<sub>g</sub> mode (Table S1). As a result CuF<sub>2</sub> exhibits six Raman-active modes.

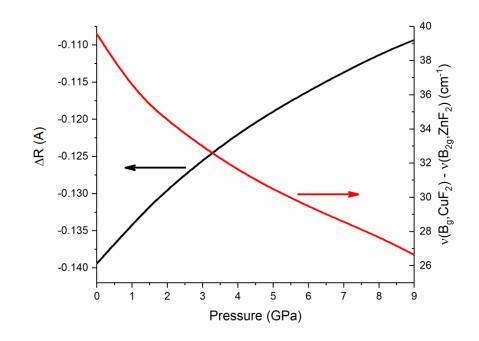
| ZnF <sub>2</sub>  |                              | CuF <sub>2</sub> |          |      |
|-------------------|------------------------------|------------------|----------|------|
| $\omega_{0^1}$    | Symmetry                     |                  | Symmetry | ω0   |
| 69                | B <sub>1g</sub>              | $\rightarrow$    | Ag       | n.d. |
| 240               | Eg                           | $\rightarrow$    | $B_{g}$  | 221  |
|                   |                              | $\rightarrow$    | $A_g$    | 254  |
| n.d. <sup>2</sup> | A <sub>2g</sub> <sup>2</sup> | $\rightarrow$    | $B_{g}$  | 293  |
| 347               | A <sub>1g</sub>              | $\rightarrow$    | $A_g$    | 355  |
| 523               | B <sub>2g</sub>              | $\rightarrow$    | $B_{g}$  | 566  |


**Table S1.** Comparison of  $\Gamma$ -point Raman-active modes of ZnF<sub>2</sub> and CuF<sub>2</sub>. Experimental frequencies obtained at ambient pressure ( $\omega_0$ ) are given in cm<sup>-1</sup>.

<sup>1</sup> Data from ref [24]; <sup>2</sup> silent mode.

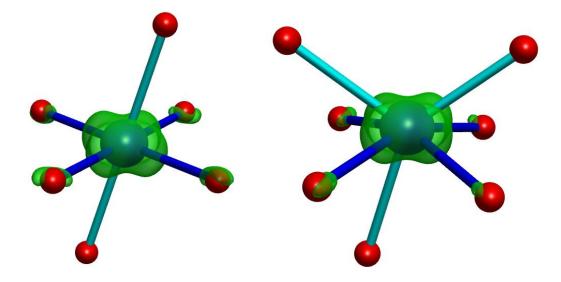
The largest differences between frequency of symmetry-related modes is found for the highest energy  $B_g$  mode of CuF<sub>2</sub> which is shifted up by 43 cm<sup>-1</sup> compared to the  $B_{2g}$  mode of ZnF<sub>2</sub>. One might speculate that this difference is a result of the JT distortion of the Cu<sup>2+</sup> octahedron.

The comparison of the two modes indicates that the both involve stretching of a pair of Zn-F/Cu-F bonds (Figure S4). For the CuF<sub>2</sub> this is a pair of equatorial bonds which are JT-shortened compared


to analogous bonds found in  $ZnF_2$  by about 0.14 Å at ambient pressure. Thus, as expected, the higher frequency of the  $B_g$  mode stems from the distortion induced by the JT effect.

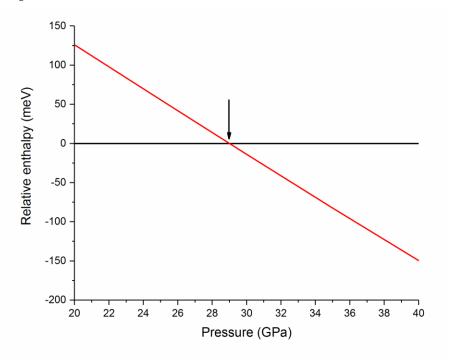


**Figure S4** Comparison of the eigenvectors of the B<sub>2g</sub> mode of ZnF<sub>2</sub> (**left**), and the symmetry-related B<sub>g</sub> mode of CuF<sub>2</sub> (**right**). The calculated distances of the Zn-F/Cu-F bonds which undergo stretching along these modes are given in Å.


Comparison of the calculated pressure evolution of the abovementioned bonds indicates that upon compression the difference between these bonds decreases to about 0.11 Å at 9 GPa (Figure S5). This is in line with the reduction of the JT effect in the  $P2_1/c$  structure of CuF<sub>2</sub> at higher pressure (see Figure 7a).

This reduction should lead to a decrease in the difference between the frequencies of the  $B_g$  and  $B_{2g}$  modes. Unfortunately the pressure dependence of the  $B_{2g}$  mode of  $ZnF_2$  has not been established experimentally, therefore, we compared those calculated theoretically (Figure S5). As can be seen the difference becomes smaller upon compression (40 cm<sup>-1</sup> at 0 GPa to 27 cm<sup>-1</sup> at 9 GPa).




**Figure S5** Calculated pressure evolution of the difference between the Zn-F/Cu-F bonds highlighted in Figure S4 (black line) together with the predicted differences in the frequencies of the highest  $B_g$ mode of CuF<sub>2</sub> and the  $B_{2g}$  mode of ZnF<sub>2</sub> (red line).

## 5. Spin Density in Pbca at 30 GPa and Pnma at 100 GPa



**Figure S6** Comparison of the spin-density (green surface) calculated for *Pbca* at 30 GPa (**left**) and *Pnma* at 100 GPa (**right**). The isosurface is drawn at 0.2 Å<sup>-3</sup>.

## 6. Relative Enthalpies of the Cotunnite and HP-PdF2 Phases of ZnF2



**Figure S7** The pressure dependence of the relative enthalpy of the cotunnite phase of  $ZnF_2$  (red line) referenced to that of the HP-PdF<sub>2</sub> phase (black line). The arrow marks a predicted phase transition at 29 GPa.



© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).