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Abstract: Molecular complexation is a strategy used to modify the physicochemical or
biopharmaceutical properties of an active pharmaceutical ingredient. Solvent assisted grinding
is a common method used to obtain solid complexes in the form of cocrystals. Lidocaine is a drug
used as an anesthetic and for the treatment of chronic pain, which bears in its chemical structure an
amide functional group able to form hydrogen bonds. Polyphenols are used as cocrystal coformers
due to their ability to form O–H···X (X = O, N) hydrogen bond interactions. The objective of this
study was to exploit the ability of phloroglucinol to form molecular complexes with lidocaine by
liquid assisted grinding. The formation of the complex was confirmed by the shift of the O–H
and C=O stretching bands in the IR spectra of the polycrystalline ground powders, suggesting the
formation of O–H···O=C hydrogen bonds. Hydration of the complexes also was confirmed by IR
spectroscopy and by powder X-ray diffraction. The molecular structure was determined by single
crystal X-ray diffraction.
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1. Introduction

Drug formulation studies are performed with the aim of modifying the physicochemical and
biopharmaceutical properties of an active pharmaceutical ingredient (API) to: improve its delivery its
release in the target tissue, ensure the stability of the product, offer a comfortable use to patients, and
make easier the production of the dosage forms [1]. Active pharmaceutical ingredients can contain
solvents in the crystal structure. If the solvent is water, it is called hydrate. The ability of water to act as
donor and acceptor of hydrogen bond interactions favors the incorporation of water into the crystalline
lattice of APIs, reordering the intermolecular hydrogen bond pattern, obtaining hydrated complexes.
Therefore, hydration studies in APIs are important because the presence of water in the crystalline
lattice can affect the physicochemical and biopharmaceutical properties of the active pharmaceutical
ingredient [2].

Molecular complexation is a strategy used to modify the physicochemical or biopharmaceutical
properties of an API [3]. Molecular complexes, or host–guest complexes, are molecular species formed
by two or more molecules that are associated by noncovalent interactions. Formation of molecular
complexes involves molecular recognition between the functional groups of the molecules [4].
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Lidocaine (2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide) (LID) is a drug used as an
anesthetic and for the treatment of chronic pain [5]. The LID base is poorly soluble in water, and thus is
formulated as its chlorhydrate salt, which is water soluble [6]. Molecular structure of LID has an amide
functional group able to form hydrogen bond interactions, and an aromatic ring to form π-interactions.
Molecular complexes of LID in the form of inclusion complexes [7], cocrystals [8] and eutectics [9]
have been developed in order to mask the bitter taste [10] and prolong the anesthetic effect [11].

Polyphenols (di-hydroxy or tri-hydroxy benzenes) have been exploited as supramolecular bulding
blocks [12,13] and as pharmaceutical cocrystals coformers [14–16], due to their ability to form O–H···X
(X = O, N) hydrogen bond interactions.

Mechanochemistry is concerned with chemical transformations induced by mechanical means, such as
compression, shear, or friction [17]. It is a low cost and green chemistry method employed in the
pharmaceutical industry to obtain new solid phases of APIs such as cocrystals, salts, solvates and
polymorphs. Solvent assisted grinding is a commonly used mechanochemical method to obtain solid
new solid forms of APIs, and the advantages of this method are that it does not depend on the solubility
of the compounds and the time reduction in the synthesis process [18–20].

The objective of this study was to exploit the ability of phloroglucinol (PLG) (1,3,5-benzenetriol)
to form a molecular complex with lidocaine (Figure 1) by liquid assisted grinding. The complex was
characterized by infrared spectroscopy, powder X-ray diffraction and X-ray single crystal diffraction.
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2. Materials and Methods

2.1. Mechanochemical Synthesis and Crystallization

Lidocaine (98.0%) and phloroglucinol (99.0%) were purchased from Aldrich (St. Louis, MO, USA).
Methanol (ACS grade), dichloromethane (ACS grade) and distillated water were purchased from
Química Meyer, (Mexico City, Mexico). All the reagents and solvents were used as received.

Mixtures in 1:1 molar ratio of LID (0.400 g, 1.7 mmol) and PLG (0.214 g, 1.7 mmol) were ground in
a mortar with a pestle for 3 min. Before starting the grinding, 0.5 mL of dichloromethane was added.
After 3 min of grinding, the polycrystalline powder LID-PLG(CH2Cl2) was collected. The cycle of
adding dichloromethane (0.5 mL) and grinding for 3 min was repeated three times until 12 min of
grinding was complete.

The hydration study was performed grinding 1:1 mixtures of LID (0.400 g, 1.7 mmol) and PLG
(0.214 g, 1.7 mmol) for 5 min. Before starting the grinding, 0.5 mL of distillated water was added.
After 5 min of grinding, a polycrystalline powder LID-PLG(H2O) was obtained.

The LID-PLG(CH2Cl2) polycrystalline powder was dissolved in methanol. After the slow
evaporation of the solvent at room temperature, colorless single crystals (LID-PLG(cryst)) suitable for
diffraction were obtained.

2.2. IR Spectroscopy

Infrared spectra of the starting products (LID and PLG), the ground mixtures LID-PLG(CH2Cl2)
and LID-PLG(H2O), and the single crystal LID-PLG(cryst) were acquired using a Bruker Tensor-27
spectrophotometer (Ettlingen, Germany) equipped with an attenuated total reflection (ATR) system
accessory (16 scans, spectral range 600–4000 cm−1, resolution 4 cm−1).
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2.3. X-Ray Diffraction

X-ray powder diffraction patterns of LID, PLG and LID-PLG(CH2Cl2) polycrystalline solids were
obtained in a PANalytical X’Pert PRO diffractometer (Almelo, The Netherlands) with Cu Kα1 radiation
(λ = 1.5405 Å, 45 kV, 40 mA) from 2.02◦ to 49.93◦ in 2θ.

The LID-PLG crystal structure was performed in a Bruker D8 QUEST (Karlsruhe, Germany)
diffractometer. A summary of collection and refinement of LID-PLG(cryst) is listed in Table 1. The cell
refinement and data reduction were carried out with the SAINT V8.34A (Bruker, Madison, WI,
USA) [21] and SORTAV (University of Glasgow, Scotland) [22] software. The structure was solved by
direct methods using SHELXL97 (University of Göttingen, Germany) [23]. H atoms on C and N were
positioned geometrically and treated as riding atoms, with CH = 0.95–0.99 Å and Uiso(H) = 1.5 Ueq(C)
for methyl H atoms or 1.2Ueq(C) otherwise, and N–H = 0.88 Å and Uiso(H) = 1.2Ueq(N). Mercury
software (The Cambridge Crystallographic Data Centre, Cambridge, UK) [24] was used to prepare
the material for publication. CCDC 1822957 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.
html (or from the CCDC, Cambridge, UK).

Table 1. Crystallographic data and refinement for LID-PLG(cryst).

LID-PLG(Cryst)

CCDC 1,822,957

Molecular formula C20H30N2O5

Mr 378.46

Crystal system Triclinic

Space group P-1

a, b, c (Å) 8.0942 (4), 11.0731 (7), 11.9535 (8)

α, β, γ (◦) 74.538 (2), 71.071 (2), 83.527 (2)

V (Å3) 976.35 (10)

Z 2

Radiation type Mo Kα

µ (mm−1) 0.09

T (K) 163

Crystal size (mm) 0.3 × 0.2 × 0.1

Tmin, Tmax 0.619, 0.745

No. of measured, independent and observed [I > 2σ(I)] reflections 7404, 3725, 2578

Rint 0.030

(sin θ/λ)max (Å−1) 0.611

R[F2 > 2σ(F2)], wR(F2), S 0.04, 0.101, 0.97

No. of reflections 3725

No. of parameters 272

H-atom treatment H atoms treated by a mixture of
independent and constrained refinement

3. Results and Discussion

3.1. Infrared Spectroscopy

Infrared spectroscopy (IR) is a tool that allows identification of the formation of hydrogen bond
interactions, by the shift of the bands of the functional groups involved in the formation of the
hydrogen bonds in the infrared spectra. In the IR spectra of LID-PLG(CH2Cl2), the phenolic hydroxyl

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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(O–H) and the amide carbonyl (C=O) bands were shifted with respect to the starting products
(Figure 2), suggesting the formation of the microcrystalline complex via C=O···H–O hydrogen bond
interactions. LID free base is not hygroscopic [25]; however, PLG can absorb water up to 32% of relative
humidity [26]. Hydration study was performed in order to evaluate the effect of water on the formation
of the complexes. In this study, LID and PLG were ground with water. Unexpectedly, the IR spectrum
of LID-PLG(H2O) and the IR spectrum of the single crystal were similar to the LID-PLG(CH2Cl2),
indicating that the latter incorporated water from the environment into the crystalline lattice. The O–H
stretching frequency was shifted (Table 2) with ∆νO–H = −28 cm−1, +207 cm−1 and +290 cm−1;
meanwhile, the C=O frequency was shifted with a ∆νC=O of−28 cm−1. These shifts are a consequence
of the rearrangement of the hydrogen bond patterns with respect to the noncomplexed forms,
and are in agreement with previous reports about lidocaine complexes, and dihydroxybenzenes
with phenylenebis(methylene)dicarbamates and phenyldioxalamates [7,8,27,28]. The N–H stretching
frequency showed a small shift (∆νN–H =−2 cm−1, which is out of the spectral resolution), suggesting
that the N–H group is not involved in the formation of the complex.
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Table 2. O–H, C=O and N–H stretching frequencies (cm−1) of the starting products and the complex.

Compound Frequency (cm−1)

vOH ∆(vOH) vC=O ∆(vC=O) vNH ∆(NH)

LID - - 1662 - 3246 -
PLG 3217 - - - - -

LID-PLG(CH2Cl2) 3190, 3423, 3507 −27, 206, 290 1623 −39 3244 −2 *
LID-PLG(H2O) 3189, 3424, 3507 −28, 207, 290 1621 −41 3246 0
LID-PLG(cryst) 3189, 3424, 3507 −28, 207, 290 1621 −41 3244 −2 *

* Out of the spectral resolution.

3.2. X-Ray Diffraction

The powder X-ray diffraction pattern of LID-PLG(CH2Cl2) was different with respect to starting
products LID and PLG, indicating the formation of a new polycrystalline phase, belonging to
the complex.

The powder X-ray diffraction pattern of LID-PLG(CH2Cl2) showed a good match with the powder
pattern of LID-PLG(H2O), and with the simulated powder X-ray diffraction pattern (obtained with
Mercury) of LID-PLG(cryst) (Figure 3). This indicates an adequate structural homogeneity, and the



Crystals 2018, 8, 130 5 of 9

incorporation of water into the crystalline lattice of the polycrystalline powders obtained by solvent
assisted grinding.

The crystal structure of LID-PLG (triclinic, P-1) confirmed the incorporation of water into
the crystalline lattice (Figure 4). In the crystal structure of LID-PLG(cryst), PLG adopts the Cs

conformation [25]. The amide group of LID is twisted out from the plane of the aromatic ring
by −72.1(2) (torsion angle C12–C11–N17–C18), and the nitrogen atoms adopt a syn conformation
with respect to the N17–C18–C19–N20 torsion angle forming the N17–H17···N20 intramolecular S(5)
hydrogen bond. From 26 crystal structures of LID reported in the Cambridge Crystallographic Data
Centre Access Structures website, 22 adopt the anti conformation, and 4 adopt de syn conformation [29].
In the crystal structure of PLG dihydrate [26], each phenolic O–H is hydrogen bonded to a water
molecule. Meanwhile, in LID-PLG(cryst), two phenolic O–H groups are hydrogen bonded—each one
to a molecule of LID, and the remaining O–H group is hydrogen bonded to a water molecule.
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numbering scheme and the association of LID and PLG molecules with water by the O5–H5···O18
and O3–H3···O28 hydrogen bonds (dashed lines). Displacement ellipsoids are drawn at 50% of the
probability level.

In the asymmetric unit of LID-PLG(cryst), PLG is linked to LID via the O1–H1···O18 hydrogen
bond interaction, and with water by the O3–H3···O28 hydrogen bond interaction (Figure 4)
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(hydrogen bond details and symmetry codes are given in Table 3), forming a heterotrimer. The first
dimensional supramolecular array (Figure 5) is given by the propagation of the heterotrimer
forming a supramolecular tape along the a-axis by the O5–H8···O18i, the O28–H28A···O5iii and
the O28–H28B···O3ii hydrogen bond interactions, depicting the R4

3 (12) (O1–H1···O18···H5–O5 three
centered hydrogen bond), R4

4 (8) and R4
4 (16) ring motifs. In this arrangement, a PLG-water-PLG

corrugated supramolecular layer (similar to the PLG dihydrate [26]) is formed and the LID molecules
are located above and below the layer (Figure 6). The second dimension supramolecular (2D) array is
extended by the C6–H6···O1iv soft interaction (R2

2 (8) motif), depicting a supramolecular tape along
the (0 12 12) direction (Figure 7). In this array, a PLG-water-PLG layer with the form of a cascade
was depicted.
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Table 3. Hydrogen bond geometry (Å, ◦) for LID-PLG(cryst).

D–H···A D–H H···A D···A D–H···A
N17–H17···20 0.87(2) 2.15(2) 2.6517(2) 116(2)
O1–H1···O18 0.89(2) 1.92(2) 2.7974(2) 171(2)
O3–H3···O28 0.86(3) 1.84(3) 2.6829(2) 171(2)

O5–H5····O18i 0.90(2) 1.89(2) 2.7578(2) 163(2)
O28–H28B···O3ii 0.90(2) 2.05(2) 2.8888(2) 155(2)
O28–H28A···O5iii 0.88(2) 1.97(2) 2.8288(2) 163(2)

C6–H6···O1iv 0.95 2.58 3.5144 167.0

Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, −y, 1 − z; (iii) −1 + x, y, z; (iv) 2 − x, 1 − y, −z.

The supramolecular architecture of free LID changed as consequence of the complexation.
In the crystal structure of free LID (Refcode: LIDCAN10) [21], a supramolecular column
driven by C=O···H–N hydrogen bond interactions forming C(4) chains is observed. Meanwhile,
in LID-PLG(cryst), LID forms C=O···H–O interactions leading to the formation of a R4

3 (12) motif.

4. Conclusions

The LID-PLG complex was obtained by the solvent assisted grinding method. Infrared
spectroscopy allowed for determining the formation of the complex by the shifts of the O–H and C=O
stretching bands. Hydration of the complex as a consequence of the incorporation of water from the
environment also was confirmed by infrared spectroscopy and X-ray powder diffraction because the IR
spectra and the powder diffraction patterns of LID-PLG(CH2Cl2), LID-PLG(H2O) and LID-PLG(cryst)
were similar. The molecular structure of the LID-PLG hydrate complex was determined by X-ray single
crystal diffraction, showing the incorporation of water into the crystalline lattice. The supramolecular
architecture of LID-PLG(cryst) is driven by C=O···H–O, H–O···H–O and C=O···H–C interactions
depicting R4

3 (12), R4
4 (8), R4

4 (16) and R2
2 (8) hydrogen bond motifs.
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