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Abstract: New supramolecular structures were designed in this work using large-sized polyoxometalates
(POMs) and crown-ether-based supramolecular cations selected as building blocks. Two novel
supramolecular inorganic–organic hybrids [(3-F-4-MeAnis)([18]crown-6)]2[SMo12O40]•CH3CN (1) and
[(4-IAnis)([18]crown-6)]3[PMo12O40]•4CH3CN (2) (3-F-4-MeAnis = 3-fluoro-4-methylanilinium and
4-IAnis = 4-iodoanilinium) were synthesized. Crystals 1 and 2 have been characterized by infrared
spectroscopy (IR) and elemental analysis (EA). Based on X-ray diffraction analysis, Crystals 1 and 2
were constructed through noncovalent bonding interactions and belong to different space groups
due to the difference of the building blocks used. Supramolecular cations formed due to strong
N–H···O hydrogen bonding interactions between the six oxygen atoms of [18]crown-6 molecules
and nitrogen atoms of anilinium derivatives. Crystal 1 has two different supramolecular cations with
an anti-paralleled arrangement that forms a dimer through weak hydrogen bonding interactions between
adjacent [18]crown-6 molecules. Crystal 2 has three independent supramolecular cations that fill large
spaces between the [PMo12O40] polyoxoanions forming a rhombus-shape packing arrangement in
the ac plane. Crystals 1 and 2 are unstable at room temperature.
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1. Introduction

Crystal engineering, to create desired functional materials, involves the design of versatile crystal
architectures based on molecular building blocks via a self-assembly process [1–3]. Over the past
several decades, crystal engineering has attracted much attention not only because of the versatile
structures but also due to the far ranging applications such as those in nonlinear optical, magnetic,
and catalytic fields [4–7].

Supramolecular crystal structures in crystal engineering can be utilized in the construction of
molecular machines and ferroelectric domains [8–10]. The first and key step in making functional
materials is to design a desired versatile supramolecular structure. Supramolecular crystal structures
are constructed through noncovalent bonding interactions. The hydrogen bonding interaction is
a significant force that can connect building blocks in different forms and affect the crystal structure [11].
In addition, the molecular packing can be adjusted by changing crystal building blocks to control
the strength of intermolecular hydrogen bonding interactions [12,13]. Furthermore, electrostatic
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interaction is another type of noncovalent interaction that can help to modify the molecular packing
mode by changing the charge of the building blocks [14,15].

Supramolecular inorganic–organic hybrid materials have been of great interest due to their
architecture and potential physicochemical applications. One unique advantage of constructing such
a supramolecular structure is combining the structural features of inorganic and organic building
blocks. Polyoxometalates (POMs) composed of discrete early transition metal-oxide cluster anions
possess many structural advantages for constructing supramolecular structures. First, POMs contain
numerous exposed oxygen atoms which can act as potential hydrogen bonding interaction sites [16–18].
Lindqvist [Mo6O19] polyoxoanions, for example, contain three types of oxygen atoms: the exposed
terminal oxygen Ot, the bridging oxygen Ob, and the central oxygen Oc. The exposed oxygen
atoms (Ot and Ob) are potential hydrogen bonding interaction sites. Moreover, the charge of POMs
can be modified by a chemical method to change the electrostatic interactions with an organic cation,
resulting in the desired molecular assembled structures [19]. In addition, POMs with a large diameter
can form an extended void space for embedding large organic cations [20]. Many supramolecular
inorganic–organic hybrids based on POMs have been designed due to the structural advantages
of POMs. The typical organic cations are tetrathiafulvalene and ferrocenyl derivatives [21–25].
Recently, the Nakamura group used large-sized crown ethers as organic building blocks and
designed supramolecular inorganic–organic hybrids with POMs [26–28]. Crown ethers are excellent
supramolecular building blocks due to their structural advantages. First, crown ethers with a large
cavity can capture anilinium derivatives to form supramolecular cations through N–H···O hydrogen
bonding interactions [29,30]. Second, crown ethers are composed of carbon, oxygen, or nitrogen atoms
that are exposed and can act as potential hydrogen bonding interaction sites [15].

Based on the structural advantages of POMs and crown ethers, in this study, we designed two novel
supramolecular structural inorganic–organic hybrids [(3-F-4-MeAnis)([18]crown-6)]2[SMo12O40]•CH3CN
(1) and [(4-IAnis)([18]crown-6)]3[PMo12O40]•4CH3CN (2) based on Keggin POMs and crown ethers
(Scheme 1). The detailed structural characteristics of Crystals 1 and 2 will be discussed in this paper.
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Scheme 1. The structure of (3-F-4-MeAnis+), (3-IAnis+), [18]crown-6 molecule, [SMo12O40]2−, and
[PMo12O40]3−.

2. Experimental Section

2.1. Materials and Measurements

[18]Crown-6, (3-F-4-MeAnis), and (3-IAnis) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., LTD and were used without further purification. (3-F-4-MeAnis) and (3-IAnis),
[TBA]2[SMo12O40], and [TBA]3[PMo12O40] salts were prepared using procedures similar to those
reported previously [19,31,32]. IR (400–7800 cm−1) spectra were measured using a Thermo Scientific
Nicolet 6700 FT-IR spectrometer. Elemental analyses of C, H, and N were carried out on a CARLO ERBA
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1106 analyzer. Crystallographic data of Crystal 1 were collected using R-AXIS RAPID diffractometer
with Mo Kα radiation (λ = 0.071073 nm) with a graphite monochromator at 173 K. Crystal 2 was studied
using R-AXIS RAPID diffractometer with Cu Kα radiation (l = 0.154187 nm) with a multi-layer mirror
monochromator at 173 K. The structures were solved by direct methods (SIR 2004) and expanded
using Fourier procedure, and refined on F2 by the full-matrix least-squares method (SHELXL 97).
The structures were refined using anisotropic temperature factors, except for the hydrogen atoms which
were refined using the riding model with a fixed C–H bond distance of 0.095 nm. The crystallographic
data of Crystals 1 and 2 are summarized in Table 1.

Table 1. Crystallographic parameters for 1 and 2.

Crystal 1 2

Formula C40H69F2Mo12N3O52S C62H105I3Mo12N7O58P
Formula weight 2645.32 3439.48

T/K 173 173
Crystal system Triclinic Monoclinic

Space group Pı̄ P21/n
a/Å 14.928(3) 14.3880(3)
b/Å 15.358(3) 31.1929(6)
c/Å 17.008(3) 23.1485(4)
α/◦ 85.46(3) 90
β/◦ 81.86(3) 96.685(7)
γ/◦ 80.65(3) 90

V/Å3 3802.5(13) 10318.5(4)
Z 2 4

dcalc/g cm−3 2.310 2.214
µ/mm−1 2.045 19.602
GoF on F2 1.223 1.141

R1 [I > 2σ(I)] 0.0482 0.0512
wR2 [I > 2σ(I)] 0.1268 0.1305

R1 = [Σ|Fo| − |Fc|]/[Σ|Fc|] and wR2 = {[Σw(Fo
2 − Fc

2)2]/[Σw(Fo
2)2]}1/2.

2.2. [(3-F-4-MeAnis)([18]crown-6)]2[SMo12O40]•CH3CN (1)

Crystal 1 was synthesized using the standard diffusion method in an H-shape cell. Fifteen milliliters
of saturated [TBA]2[SMo12O40] CH3CN solution was added into the left side of H-shape cell, and 15 mL
of acetonitrile solution with (3-F-4-MeAnis)(BF4) (40 mg, 0.20 mmol) and [18]crown-6 (52 mg, 0.20 mmol)
were placed into the right side of the H-shape cell. The cell was then slowly filled with acetonitrile.
After two weeks, black block crystals (1) were obtained. Anal. Calcd. for C40H69F2Mo12N3O52S (%):
C 18.15, H 2.61, N 1.97; Found (%): C 18.08, H 2.65, N 2.02. IR (KBr pellet, cm–1): 1160(m); 1115(s); 1060(m);
975(s); 880(m); 790(s).

2.3. [(3-IAnis)([18]crown-6)]3[PMo12O40]•4CH3CN (2)

Crystal 2 was obtained by using the traditional solvent evaporation method. Ten milliliters
of acetonitrile solution with (4-IAnis)(BF4) (3 mg) and [18]crown-6 (3 mg) were slowly added into
the 10 mL [TBA]3[PMo12O40] (20 mg) acetonitrile solution. After 15 min of stirring, the solution turned
green and was then placed in a dark quiet place at room temperature. Green block crystals (2) were
obtained about one week later. Anal. Calcd. for C62H105I3Mo12N7O58P (%): C 21.63, H 3.05, N 2.85;
Found (%): C 21.58, H 2.98, N 2.82. IR (KBr pellet, cm−1): 1160(m), 1065(s), 970(s), 870(s), 790(s).
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3. Results and Discussion

3.1. Crystal Structure of [(3-F-4-MeAnis)([18]crown-6)]2[SMo12O40]•CH3CN (1)

Single crystal X-ray diffraction analysis revealed that the supramolecular Crystal 1 crystallizes in
the triclinic space group Pı̄ (Table 1). The asymmetric unit is composed of one [SMo12O40] polyoxoanion,
two (3-F-4-MeAnis) cations, two [18]crown-6 molecules, and one CH3CN molecule and contains as
many as 179 atoms. In the crystal structure, two types of supramolecular cations with anti-paralleled
arrangement can be observed as shown in Figure 1, viewed along the c-axis. This is different from
the previously reported crystal [(2-F-4-MeAnis)([18]crown-6)]2[SMo12O40]•2CH3CN [33], which has
only one type of supramolecular cation. The difference can be attributed to different crown ether and
anilinium derivative building blocks. The supramolecular cations are connected through the N–H···O
hydrogen bonding interactions between the six oxygen atoms of the [18]crown-6 molecules and
the nitrogen atoms of (3-F-4-MeAnis) cations. The average hydrogen bonding N–O distance is
2.9274 and 2.9137 Å for Supramolecular Cations 1 and 2, respectively, as shown in Table 2, which is
similar to the standard N–H···O hydrogen bonding length of 2.91 Å [34], indicating that there
exists a strong hydrogen bonding interaction between (3-F-4-MeAnis) cations and the [18]crown-6
molecule. The average N–H···O bonding length of Supramolecular Cation 2 is shorter than that
of Supramolecular Cation 1, indicating that Cation 2 has a stronger intermolecular interaction.
Weak hydrogen bonding interactions (C(21)–H···O(49) = 3.447 Å, H···O(49) = 2.58 Å, ]C–H···O
= 149◦; C(12)–H···O(51) = 3.448 Å, H···O(51) = 2.55 Å, ]C–H···O = 154◦) exist between Supramolecular
Cations 1 and 2, which construct a supramolecular cationic dimer. This is similar to the crystal
[(m-FAni+)(B[18]crown-6)]2[SMo12O40

2−] [20], which has a supramolecular dimer constructed by
a crown ether and anilinium derivatives. Two nitrogen atoms (N1 and N2) are each included in
the large cavity of [18]crown-6 molecules and located near its center. The dihedral angle between
the (3-F-4-MeAnis) cationic plane and [18]crown-6 molecular plane constructed by six oxygen atoms
is 88.489◦ and 86.524◦, respectively, which indicates that the N1–C13 and N2–C32 bonds are almost
perpendicular to the [18]crown-6 molecular planes. The distance between the N1 (or N2) atom and
the corresponding [18]crown-6 molecular plane is 0.9220 Å (or 0.9017 Å).
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Figure 1. The structure of supramolecular cations in Crystal 1. Hydrogen atoms are omitted for clarity,
and dotted cyan lines represent hydrogen bonds.

Table 2. H-Bond distances (Å) between N and O atoms in the supramolecular cation of Crystal 1.

Supramolecular Cation 1 Distance Supramolecular Cation 2 Distance

N(1)–O(41) 2.8847 N(2)–O(47) 2.9704
N(1)–O(42) 2.9782 N(2)–O(48) 2.8732
N(1)–O(43) 2.9037 N(2)–O(49) 2.9799
N(1)–O(44) 2.9757 N(2)–O(50) 2.8553
N(1)–O(45) 2.8720 N(2)–O(51) 2.9414
N(1)–O(46) 2.9503 N(2)–O(52) 2.8622

Average distance 2.9274 Average distance 2.9137
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For [SMo12O40] polyoxoanions in Crystal 1, the short O···O distance between neighboring POMs
can be observed from X-ray crystal structural analysis. In the bc plane (Figure 2a), the short O···O
distances are 3.089 Å (O(17)···O(27)), 3.077 Å (O(21)···O(23)), 2.961 Å (O(25)···O(25)), and 2.934 Å
(O(19)···O(20)) and imply that adjacent [SMo12O40] polyoxoanions have an intermolecular O···O
interaction, which plays an important role in constructing the supramolecular Crystal 1. The bc plane
reveals close packing of [SMo12O40] polyoxoanions due to the intermolecular O···O interaction as
shown in Figure 2b.
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Figure 2. (a) The details of interaction between adjacent [SMo12O40] polyoxoanions; (b) the packing
of [SMo12O40] polyoxoanions in the bc plane. (a) is the enlarged view of the dotted square fragment
shown in (b); the dotted green line represents the O···O interaction.

For Crystal 1, the [SMo12O40] polyoxoanions and supramolecular cations [(3-F-4-MeAnis)([18]crown-6)]
extend along the b-axis, as shown in Figure 3, and alternate along the a-axis. Multiple hydrogen bonding
sites of the [SMo12O40] polyoxoanions are connected through weak hydrogen bonding interactions
(C(8)–H···O(24) = 3.335 Å, H···O(24) = 2.51 Å, ]C–H···O = 143◦; C(10)–H···O(16) = 3.492 Å, H···O(16)
= 2.54 Å, ]C–H···O = 168◦) with [18]crown-6 molecule (Supramolecular Cation 1). Supramolecular Cation 2
is linked to [SMo12O40] polyoxoanions through weak hydrogen bonding interactions (C(37)–H···O(21)
= 3.312 Å, H···O(21) = 2.52 Å, ]C–H···O = 144◦) with (3-F-4-MeAnis) cation, as shown in Figure 4.
These intermolecular interactions play an important role in connecting building blocks in Crystal 1. In spite
of existing hydrogen bonding interactions, Crystal 1 is unstable at room temperature.
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Table 3. H-Bond distances (Å) between the N and O atoms in the supramolecular cation of Crystal 2.

Supramolecular Cation 1 Distance Supramolecular Cation 2 Distance Supramolecular Cation 3 Distance

N(1)–O(41) 2.8937 N(2)–O(47) 2.9218 N(3)–O(53) 2.9131
N(1)–O(42) 2.9378 N(2)–O(48) 2.9127 N(3)–O(54) 2.9691
N(1)–O(43) 2.9267 N(2)–O(49) 2.9147 N(3)–O(55) 2.9629
N(1)–O(44) 2.8978 N(2)–O(50) 2.9968 N(3)–O(56) 2.9171
N(1)–O(45) 2.8937 N(2)–O(51) 2.8158 N(3)–O(57) 2.8991
N(1)–O(46) 2.8537 N(2)–O(52) 2.8697 N(3)–O(58) 3.0802

Average distance 2.9004 Average distance 2.9053 Average distance 2.9569

In Crystal 2, the short O···O distances (4.451 Å for O(25)···O(38) and 3.974 Å O(15)···O(25))
between adjacent [PMo12O40] polyoxoanions can be seen from the X-ray crystal structure analysis,
as shown in Figure 6a, viewed along the a-axis. These results indicate that neighboring [PMo12O40]
polyoxoanions have an intermolecular O···O interaction that creates an infinite network of
the anions in the bc plane. The [PMo12O40] polyoxoanions create a rhombus-shape packing
arrangement in the ac plane and form a large void space to embed large supramolecular cations
[(4-IAnis)([18]crown-6)].

In Crystal 2, large supramolecular cations [(4-IAnis)([18]crown-6)] fill the spaces formed by
six [PMo12O40] polyoxoanions, and all adjacent [PMo12O40] polyoxoanions are embedded into
the void space constructed by the supramolecular cations [(4-IAnis)([18]crown-6)] as shown in
Figure 7. The supramolecular cation [(4-IAnis)([18]crown-6)] and polyoxoanions [PMo12O40] alternate
along the a- and b-axes. Each [PMo12O40] polyoxoanion has a weak hydrogen bonding interaction
(C(2)–H···O(30) = 3.458 Å, H···O(30) = 2.49 Å, ]C–H···O = 170◦; C(20)–H···O(18) = 3.368 Å, H···O(18)
= 2.42 Å, ]C–H···O = 165◦; C(27)–H···O(19) = 3.439 Å, H···O(19) = 2.50 Å, ]C–H···O = 162◦) with
three supramolecular cations, due to the structural characteristics of the building blocks, as shown
in Figure 8. This weak noncovalent bonding interaction is indispensable in constructing Crystal 2.
However, Crystal 2 is unstable at room temperature, which may be attributed to the large size of
the supramolecular framework.
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4. Conclusions

In summary, two novel supramolecular inorganic–organic hybrids [(3-F-4-MeAnis)
([18]crown-6)]2[SMo12O40]• CH3CN and [(4-IAnis)([18]crown-6)]3[PMo12O40]•4CH3CN have
been designed utilizing the structural advantages of the building blocks. Noncovalent bonding
interactions, like cement, play an important role in stabilizing the crystal structures. Different
structural characteristics of the two crystals were observed via X-ray structural analysis. In Crystal 1,
a dimer was constructed through weak hydrogen bonding interactions between the ([18]crown-6)
molecules, and the ([18]crown-6) molecules were anti-parallel in the dimer. In Crystal 2, trivalent
[PMo12O40] polyoxoanions were used as inorganic building blocks. Three types of different
supramolecular cations have been obtained with different arrangements. [PMo12O40] polyoxoanions,
with a rhombus-shape packing arrangement, form a large cavity, which suggests a possibility of
constructing crown-ether-based supramolecular rotors in the near future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/2/17/s1.
X-ray crystallographic files in CIF format (CCDC: Crystal 1 is 1810970, and Crystal 2 is 1810971).
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