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Abstract: Structural, mechanical, and transport properties of amorphous Li2CO3 were studied using
molecular dynamics (MD) simulations and a hybrid MD-Monte Carlo (MC) scheme. A many-body
polarizable force field (APPLE&P) was employed in all simulations. Dynamic and mechanical
properties of Dilithium carbonate, Li2CO3, in amorphous liquid and glassy phases were calculated
over a wide temperature range. At higher temperatures, both anion and cation diffusion coefficients
showed similar temperature dependence. However, below the glass transition temperature (T < 450 K)
the anions formed a glassy matrix, while Li+ continued to be mobile, showing decoupling of cation
and anion diffusion. The conductivity of Li+ at room temperature was estimated to be on the order
of 10−6 S/cm. Mechanical analysis revealed that at room temperature the amorphous phase had a
shear modulus of about 8 GPa, which was high enough to suppress Li metal dendrite growth on an
electrode surface.
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1. Introduction

Advancement in alternative energy technologies (solar, wind, etc.) and environmental concerns
with utilization of limited fossil resources bring a growing demand for the improvement of energy
storage for power grid, automotive, and portable electronic device applications [1]. Lithium ion
(Li-ion) batteries have been widely used in many technologies, from hybrid and electrical vehicles, to
laptops and cellphones [2]. These various applications of Li-ion batteries necessitate improvements
in their safety, durability, and efficiency, which in turn depend on designing stable and efficient
electrodes [3], requiring understanding of electrode-electrolyte interfaces to enable better engineering
of these interfaces [4,5].

Dilithium carbonate, Li2CO3, is an ionic material which plays an important role in defining the
performance in Li-ion batteries. It is one of the main components in the solid electrolyte interphase
(SEI), an ionically conducting and electronically insulating layer typically formed on the anode surface
via carbonate-based electrolyte decomposition during several initial charging cycles. SEI films are
known to preserve the anode and improve its cycling properties by protecting the electrolyte from
further redox decomposition reactions [2,3,6]. Yet, the SEI also creates additional resistance for Li-ion
transport to/from anode during cycling. Typically, the SEIs formed on graphite, Si, and Li metal
anodes in contact with carbonate-based electrolytes are thought to consist of inner and outer layers, in
which the inner layer principally includes crystalline domains of the fully reduced compounds such
as Li2CO3, Li2O, and LiF, [4,7,8] while the outer layer is comprised of much softer and more porous
phases of dilithium alkyldicarbonates. Li2CO3 is one of the electrochemically stable and lowest energy
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products of carbonate based electrolytes’ reductive decomposition and has been reported to be in
SEI films formed on both cathode and anode surfaces [9–11]. Although recent ab initio simulations
demonstrated that thermodynamically it can be unstable at Li metal and Si interfaces [12], it is
believed that the presence of Li2CO3 favors the formation of a more compact and ionically conductive
SEI [13–15]. Iddir et al. believed that the formation of a thin layer of polydomain Li2CO3 on the anode
with an appropriate orientation of crystalline domains would offer good ionic conductivity coupled
with an improved stability of the battery [2].

In addition to SEI, Li2CO3 blends with other oxides have been considered as potential materials
for solid electrolytes. For example, glassy amorphous films of Li2CO3-Li3BO3 formed by atomic layer
deposition showed great potential as solid electrolytes demonstrating ionic conductivity on the order
of 10−6 S/cm [16]. Sulaiman et al. [17] used sol-gel synthesis to fabricate Li2CO3-Al2O3 composite
solid electrolytes in which substantial fraction of Li2CO3 was found to be in the amorphous glassy
phase, even when the Li2CO3 comprised the majority of the composite.

Understanding correlations between the underlying molecular structure and Li+ ion transport in
Li2CO3 solid phases can provide an important molecular scale insight helping in the design of more
efficient solid electrolytes and SEIs. So far, there have only been a few theoretical studies of Li2CO3,
most of which focused on the crystalline phase. Shi et al. used Density Functional Theory (DFT)
calculations to compute defect thermodynamics associated with Li ion in monoclinic Li2CO3 system
and analyzed diffusion of charge carriers at different voltages. They reported a possible diffusion
mechanism for Li+ and its vacancies and suggested that the Li+ ion transport in crystalline Li2CO3 can
be increased by increasing diffusion carriers’ concentration. According to this study, as the diffusion
carriers’ concentration strongly depends on voltage, using different dopants for electrode materials
may improve Li+ conductivity through Li2CO3 [1]. In another study done by Shang et al., where lattice
dynamics and elastic properties of monoclinic Li2CO3 have been studied using DFT calculations, it was
suggested that the reason why Li+ can easily diffuse in Li2CO3 is due to the weak bonding between
Li+ and other atoms [18].

While the Li2CO3 crystal phase has been studied in several simulations, to the best of our
knowledge, no theoretical studies of amorphous Li2CO3 have been reported. From the thermodynamic
point of view, Li2CO3 should be crystalline at any temperatures relevant to Li-ion battery operation
(Tm is ~870 K [19]) However, taking into account the kinetics of assembly of redox products at
electrode surface, as well as polydomain structure of inner SEI [20], it is quite likely that some regions
of amorphous Li2CO3 are also present, particularly in between the boundaries of crystalline domains.
Moreover, as was demonstrated in recent works on solid electrolytes, glassy amorphous Li2CO3 with
high ionic conductivity can be stabilized by adding relatively small fractions of other oxides and using
atomic layer deposition or sol-gel synthesis. [17]

In this paper, by using classical atomistic molecular dynamics (MD) simulations and a polarizable
force field, we specifically focus on the properties of amorphous Li2CO3 phase and predict structural,
dynamical, and mechanical properties of Li2CO3 as a function of temperature.

2. Materials and Methods

In this study, we investigate model SEI systems of bulk amorphous Li2CO3 comprised of 600
carbonate anions and 1200 Li+ cations. Initially, each system was set up at low density with random
distribution of ions in a large simulation cell (300 Å). Then it was condensed to approximately
correct dimensions over 10ps at 900 K. An equilibration run for 5 ns was conducted at 900 K and
atmospheric pressure using an NPT ensemble simulation to obtain the corresponding liquid phase.
Ten independent configurations were created this way. Then, each system was cooled down to
300 K in 50 K steps followed by a 5 ns equilibration run at each temperature (i.e., 850, 800, 750, . . .
300 K). The coordinates of amorphous Li2CO3 systems equilibrated at 900, 600, and 300 K are given
in the Supplementary Materials. Subsequently, each configuration (at each temperature) was further
equilibrated over 10−70 ns in the NPT ensemble. Simulations have been conducted using a revised
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version of the many-body polarizable force field (APPLE&P) force field [21]. The APPLE&P force field
has been extensively used to predict ion dynamics in various electrolytes and model SEI systems [22].
Ewald summation was employed for the long-range electrostatic interactions (charge−charge and
charge−induced dipoles), with a cutoff radius of 12 Å for non-bonded van der Waals interactions
and the real part of Ewald summation. Induced dipole−induced dipole interactions were computed
directly in the cutoff range and screened out using a reaction field approach beyond the defined cutoff
radius. Simulations were done with a multiple time step approach [23]: a 0.5 fs time step was used for
integrating valence degrees of freedom (bonds, bends, and out-of-plane deformations), a 1.5 fs time
step for consideration of short-range (within a 7 Å range cutoff) non-bonded interactions and dihedral
potentials, and a 3 fs time step for integration of the remaining non-bonded interactions within the
cutoff radius, calculation of induced dipoles and interactions between them, and the reciprocal part of
the Ewald summation for electrostatic interactions. Production that ran between 15 and 100 ns were
conducted depending on temperature.

To sample the mechanical properties of the investigated amorphous phase, we also conducted
combined MD−MC simulations [24–26]. In this method, the system evolution was accomplished
using standard MD simulations, with fixed shape/dimensions of the simulation box (i.e., in the
NVT ensemble). This evolution was periodically (every 1ps) interrupted with a number of MC
attempts (10) to arbitrarily perturb both the simulation cell lattice vector lengths and the angles
between them, relative to the current simulation cell. If the MC attempt to change box dimension was
accepted according to Metropolis criterion, it was followed by rescaling the center-of-mass projection
of each molecule within the cell to fit the new cell geometry. In comparison to regular flexible-cell
MD simulation in the NPT ensemble, this MD-MC approach provides a more effective sampling of
distributions of simulation cell dimensions, as has been confirmed in our earlier studies of other SEI
systems. [4,24]

3. Results and Discussion

3.1. Structural Properties

3.1.1. Density

For most amorphous systems, the cooling down from 900 K to lower temperatures and then the
subsequent long-time sampling at those temperatures preserved the amorphous structure of the system.
However, in two systems at 550 K, after run times of approximately 15 ns, we observed a formation of
an ordered, crystal-like phase with an enthalpy about –2.2 kcal per mol of Li2CO3 lower than in the
amorphous phase. The snapshots of amorphous and ordered phases at 550 K are shown in Figure 1.
None of the system at 600 K and higher temperatures showed such behavior, nor did the systems at
lower temperatures. This indicates that at 550 K there was the right balance between thermodynamic
driving forces that favor the crystal phase at this temperature (experimental Tm for Li2CO3 was
around 1000 K) and dynamic fluctuations in the system, creating favorable conditions for nucleation
and growth of the crystal phase on time and length scales accessible to MD simulations. At higher
temperatures, nuclei are forming but are not stable due to large thermodynamic fluctuations. Therefore,
in order to create a stable crystal phase nucleus, it might require a larger system or longer simulation
times. At lower temperatures, the dynamics becomes too slow for the system to generate nuclei on the
time scale of simulation. It is important to note that simulations in which we initially started from a
well-defined crystal cell observed a stable bulk crystal phase in the 300–800 K temperature range in the
MD-MC simulations. Only T = 900 K showed melting on the time scale of our simulations.
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Figure 1. Snapshots of (a) the chemical structure of lithium carbonate, (b) the amorphous phase of
Li2CO3 at 550 K, and (c) the ordered phase of Li2CO3 that formed in two realizations at 550 K (see text
for discussion).

Figure 2 shows the resulting temperature dependence of average (over 10 independent systems)
density for the amorphous phase as obtained from MD simulations. At 550 K, we report two
density values: one averaged from systems that remained amorphous during entire simulation
and another from two systems that showed an apparent crystallization/ordering. These simulations
were conducted in a conventional cubic simulation cell and therefore systems that crystallized would
not be able to form the expected monoclinic structure in the entire system. Instead, a somewhat
frustrated ordered phase with an average density of 2.5% higher than amorphous phase was formed,
as illustrated in Figure 1c. In the amorphous liquid phase (>500 K), the density dependence is
almost linear and in agreement (within 2%) with available experimental data above 1000 K [27,28].
However, as the temperature decreases (below 500 K), we observe a change in the slope (decreasing)
for the density-temperature dependence. Such behavior is consistent with the glass transition of
the amorphous phase with an approximate glass transition temperature (Tg) of 470 K. Moreover,
at 300 K, the density of glassy state predicted by MD simulations is about 1% denser than the
reported experimental value for the crystal phase [29]. However, this is consistent with the systematic
overestimation of density from simulations seen at higher temperatures. If one assumes the same
temperature dependence for amorphous phase as obtained from simulations for experimental data,
then expected glassy density would be about 1% lower than in the crystal (see dotted line extrapolating
experimental liquid densities to lower temperatures in Figure 2).
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Figure 2. Temperature dependence of density obtained from molecular dynamics (MD) simulation
of amorphous Li2CO3. Also shown are available experimental data for liquid and crystal phases,
density of the ordered phase obtained in some systems from MD simulations at 550 K, and anticipated
extrapolation of experimental density (thin dotted line) for amorphous phase assuming temperature
dependence as in MD simulations. Error bars are smaller than the symbol size.

3.1.2. Radial Distribution Functions

Next, we analyzed the Li+ cation coordination by calculating the radial distribution functions
((g(r)) at temperatures ranging between 500 and 700 K. Figure 3a shows Li+ and carbonate oxygen
and carbon atoms of CO3

2− correlations. There was a sharp peak at about 2.0 Å in the gLi−O(r),
showing a strong preference for the Li-O interaction, which was expected because of a relatively high
negative partial charge (~–0.85) on carbonate oxygen atoms. The minimum of the mentioned peak
(2.8 Å) was used to define the first coordination shell of Li+. The Li−Li pair correlation shows a
peak at 3 Å. The values of the g(r) peaks and their location for Li-Li, Li-O, and Li-C g(r)s agree with
previous works [30–32]. The g(r)s obtained at various temperatures indicate that the pair correlations
are unaffected by the temperature, showing that the local coordination of a Li+ is mostly independent
of temperature. Figure 3b shows the corresponding coordination numbers.
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Figure 3. Radial distribution functions (RDFs) obtained from MD simulations of (a) amorphous Li2CO3

as a function of temperature. (b) Coordination numbers (CN) obtained from integration of g(r)s from
panel (a).

3.2. Dynamical Properties

Next, we analyzed dynamic and transport properties in our systems, mainly focusing on the
Li+ transport.

3.2.1. Mean Squared Displacements

First, we considered the mean squared displacements (MSDs) analysis of Li+ and CO3
2− ions as

shown in Figure 4a,b, respectively. At higher temperatures, both ions showed large displacements on a
time scale of a few nanoseconds, although the mobility of CO3

2− anions was about a factor of 8 smaller
than that of Li+. The MSD(t) clearly reach the expected linear dependence and hence the standard
Einstein relation can be used to reliably extract self-diffusion coefficients (Di) of the species. However,
at lower temperatures (<500 K), statistics were not sufficient for MSD(t) to reach a diffusive regime,
precluding direct application of the Einstein relation for reliable extractions of Di. To estimate Di at
these lower temperatures, we used a scaling approach described previously [19]. In this approach,
we assumed that MSD(t) for each species at different temperatures could be superimposed onto each
other by scaling the time axis. Then the Di could be estimated using this scaling factor ai(T) and the
converged values of self-diffusion coefficient at higher temperature (e.g., 800 K):

Di (T) = Di (at 800 K)/ai(T) (1)

This approach is illustrated in Figure 4c where each MSD(t) curve from Figure 4a was shifted
along the time axis to match the MSD = 1 Å2 value at T = 800 K. As can be seen, the assumed
time−temperature superposition principle works very well in this system.
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3.2.2. Self-Diffusion Coefficients

Figure 6 shows the self-diffusion coefficients for each component obtained from the analysis of
MSD(t), as described above. The examination of the temperature dependence for Li+ diffusion in
Figure 6 shows that at higher temperatures, the Li+ diffusion is about an order of magnitude higher
than diffusion of the CO3

2−, which is consistent with the ratios of MSDs shown in Figure 5. We can
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also see that diffusion of Li+ at elevated temperatures qualitatively follows the same temperature
dependence as for anion. However, as the temperature decreases to 500 K, a noticeable difference in
the self-diffusion of anions and cations can be observed. The anion dependence shows a divergent
behavior that can be well described by the Vogel−Fulcher (VF) equation:

log (1/D) = A + B/(T − T0) (2)

which is usually used to describe the divergence of relaxation times in glassy systems. The obtained
VF fit describes the available data for anions very well. The T0 value extracted from the fit, which
is typically somewhat lower than the true glass transition temperature, is 370 K. The temperature
dependence for Li+ diffusion in Figure 6 shows that at elevated temperatures it is qualitatively
similar to that of the anions (i.e., it shows slowing down with decreasing temperature). However,
below 500 K it shifts to an Arrhenius dependence instead of following the VF-type dependence
observed for the anions. As a result, at lower temperatures, the diffusion of Li+ is decoupling from
the anion motion, which is consistent with observations in Figure 5. This mechanism is similar to
our previous observations in modeling of Li2EDC and Li2BDC SEI phases [4] and indicates that at
lower temperatures the anions are forming a glassy matrix through which Li+ ions can still diffuse,
leading to the Arrhenius temperature dependence. The activation energy for Li+ diffusion in this
glassy amorphous Li2CO3 phase is 26.38 kcal/mol. For comparison, we also show previously reported
Li+ diffusion data in crystalline Li2CO3 as obtained from atomistic MD simulations [32]. Taking into
account the possible uncertainty of low temperature diffusion data, the Li+ diffusion in crystalline
phase and in amorphous phases appear to be comparable at low temperatures.
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a function of inverse temperature as obtained from MD simulations. Also shown are the data from
atomistic MD simulations of crystalline Li2CO3 from ref. [32].

3.2.3. Ionic Conductivities

Figure 6b shows the ionic conductivities for Li+ extracted from MD simulations of amorphous
Li2CO3 and obtained using the Nernst-Einstein equation:

σ =
NAe2z2CDLi

kBT
(3)

where DLi is the Li+ diffusion coefficient, z = 1.0 is the charge, C is the concentration of Li+, kB is the
Boltzmann constant, e is elementary charge and NA is Avogadro’s number. The estimated conductivity
at 300 K is on the order of 10−6 S/cm which is in very good agreement with experimental data obtained
in composite solid electrolytes where majority of electrolyte was amorphous Li2CO3 [16].
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3.3. Mechanical Properties

Lastly, we investigate the mechanical properties of amorphous Li2CO3 as a function of
temperature. The mechanical properties of a simulated system can be obtained by considering
fluctuations of the simulation cell dimensions during simulation [33]. Those changes in dimensions
offer a spontaneous expression of instantaneous strain for a simulation cell, and it can be associated
with the compliance tensor of the material at equilibrium as

Ŝijkl = <ε̄ij ¯εkl> V/kBT (4)

where ε̄ij and ¯εkl are the instantaneous components of the second rank strain tensor. If the contracted
stress/strain vectors are chosen properly [34], the rank 4 compliance tensor Ŝijkl in Equation (4) may
be precisely expressed in Voigt notation, which leads to a rank 2 tensor that is the matrix inverse of
the elastic stiffness tensor. This provides calculation of standard elastic constants (Cij), in addition
to the Voigt [35] and Reuss [36] approximations [37] of the total bulk (K) and shear (G) moduli of
the material. Elastic stiffness calculations of the simulation cell necessitate effectively sampling the
fluctuations of strain vectors for an equilibrated or stationary system. The strain vectors used to
composite the compliance matrix in Equation (4) may be taken from the spontaneous thermodynamic
fluctuations of the simulation box in MD-MC simulations [4]. However, investigating dynamically
slow-moving or glassy systems with amorphous structure, such as those in this study, leads to the need
for excessive simulation times to allow for full expression of the equilibrium variations in the sample
cell’s lattice vectors. To overcome this concern, we employed the methodology utilized previously [4]
and simulated and analyzed several (up to 10) independent system realizations, using the combination
of limited fluctuations about a set of configurations distributed within the thermodynamic phase space
as an approximation for a single set of fluctuations taken from a single configuration which traverses
the entire phase space. Initial configurations for each system were obtained from a long trajectory at
high temperature (900 K) using regular MD simulation and separated from each other by 5 ns time
intervals.

Figure 7 shows temperature dependence of bulk (K) and shear (G) moduli calculated using Voigt
(v) and Reuss (r) approximations. Consistent with the temperature dependence of structural and
dynamic properties, we observed a strong temperature dependence of both moduli in the glassy state
(T < 500 K). The bulk modulus dropped from about 27 GPa at room temperature to approximately
6 GPa at 500 K and then changed slightly as the temperature increased further. The shear modulus
decreased from about 8 GPa to 0 over the same temperature range. Above 550 K, the system behaved
as an overcooled liquid and thus its shear modulus was expected to be much lower than in the glassy
state. According to the Newman and Monroe model [38], an SEI with shear modulus of larger than
7.0 GPa is necessary to prevent Li dendrite growth on electrodes surfaces. Our data show that SEIs
formed out of glassy Li2CO3 already have high enough shear modulus to provide sufficient mechanical
strength to prevent dendrite growth based only on consideration of mechanical properties. While
crystalline Li2CO3 is expected to have even higher shear modulus, the relatively high Li+ conductivity
observed in the amorphous phase makes the latter more desirable for obtaining SEI with optimal
mechanical and transport properties.
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different temperatures.

4. Conclusions

Using classical atomistic MD simulations that employ polarizable force field, the structural,
dynamic, and mechanical properties of amorphous Li2CO3 material were investigated. Our simulations
demonstrated that the amorphous glassy state of Li2CO3 forms at temperatures below 450 K. In this
phase, the anions formed a frozen matrix, yet Li+ cations still showed substantial diffusion through
this matrix. The observed decoupling of cation and anion motion at low temperatures coupled with
good mechanical properties (shear modulus around 8 GPa) makes glassy Li2CO3 a desired material in
Li-ion battery applications. Specifically, its high conductivity allows for consideration of glassy Li2CO3

as a solid electrolyte, particularly when it is blended with other oxides to prevent crystallization. In
addition, depending on charging conditions, glassy Li2CO3 might be present in the inner SEI layers
forming on graphite, Li, and Si electrodes. While in real battery, bulk Li2CO3 phase is forming through
self-assembly reduction products and the crystal phase of Li2CO3 is believed to be dominant in the
inner SEI regions, the glassy phase investigated here might be present at the grain boundaries or in
the regions contaminated with other SEI species (e.g., LiF or Li2O). Moreover, if the rate of double
reduction of carbonate molecules at the electrode surface is high (i.e., Li2CO3 is generated at high
rate) it is possible that large glassy domains of Li2CO3 could form without sufficient time to allow for
crystallization. Based on properties reported here from our simulations, such glassy Li2CO3 would be
desirable for efficient SEI.
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