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Abstract: The synthesis and characterization by single-crystal X-ray diffraction (XRD) studies of two
new zinc(II) hexaborate(2−) complexes, [Zn(en){B6O7(OH)6}]·2H2O (en = 1,2-diaminoethane) (1)
and [Zn(pn){B6O7(OH)6}]·1.5H2O (pn = 1,2-diaminopropane) (2), are reported. These complexes
crystallize from aqueous solutions containing 10:1 ratios of B(OH)3 and the appropriate Zn(II) amine
complexes ([Zn(en)3][OH]2 or [Zn(pn)3][OH]2) through self-assembly processes. The hexaborate(2−)
anions in 1 and 2 are coordinated to two Zn(II) centers and form one-dimensional (1-D) polymeric
coordination chains. R2

2(8) and R2
2(6) inter-chain H-bond interactions play an important role in these

self-assembly processes and are discussed.

Keywords: coordination polymer (1-D); H-bond; hexaborate(2−); oxidoborate; polyborate; self-assembly;
X-ray structure; zinc(II) complex

1. Introduction

Anionic boron species are commonly referred to as borates. Hydroxyoxidopolyborates
(“oxidoborates” or “borates”) are a class of anionic boron derivatives that contain boron atoms bound
only to hydroxyl oxygen atoms, or oxygen atoms that bridge boron centers. The boron centers may
be three- or four-coordinate, and it is the latter (or occasionally deprotonated hydroxyl groups) that
formally house the negative charges. Polyborates are readily synthesized from the addition of B(OH)3

to a basic aqueous solution containing templating cations or by solvothermal methods [1]. Compounds
are formed through self-assembly processes involving a dynamic combinatorial library (DCL) [2,3] of
polyborate anions that are present in the aqueous reactant solution. The DCL of polyborate anions arise
since dissolution of B(OH)3 in aqueous solution at moderate pH results in numerous polyborate anions
in fast-exchange equilibria [4,5]. The polyborate salts obtained from aqueous solution are usually
comprised of discrete, insular anions, partnered by the templating cations. Crystalline products are
formed, often in high yield, since they are self-engineered through energetically favorable solid-state
interactions such as electrostatic charges, ligand–metal coordination bonds, steric effects, H-bonding
interactions, and crystal packing forces [6,7]. Products often contain the pentaborate(1−) anion since
this anion is well adapted to forming a wide variety of crystalline lattices that are held together
by strong H-bond interactions [8–11]. Polyborates prepared via solvothermal methods are often
more condensed with polymeric one-dimensional (1-D) anionic chains, two-dimensional (2-D) planes,
or three-dimensional (3-D) nets [1,12]. In an attempt to encourage the formation of new polyborate
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anions, we recently adopted a strategy of using more highly charged (>+1) inert transition-metal
complexes [13] as templating cations. In addition, cations that specifically could form many H-bond
donor interactions with polyborate anions were chosen. This strategy was successful and we recently
reported two such novel isolated polyborate anions: heptaborate(3−) [14] and octaborate(2−) [15].

Our work with templating Zn(II) complexes led us to prepare [(H3NCH2CH2)Zn{B12O18(OH)6}
Zn(en)(NH2CH2CH2NH3)]·8H2O containing an isolated dodececaborate(6−) anion coordinated to
two Zn(II) atoms in monodentate and tridentate modes [16]. Zn(II) amine complexes are labile,
with rapid ligand dissociation and substitution reactions [13]; therefore, they form their own DCL
of potentially templating cations. Polyborate/Zn((II) chemistry is quite well represented in the
literature as either salts of isolated polyborates [17,18] or as polyborates coordinated to Zn(II)
sites [17–24]. Additionally, coordinated polyborates may be “isolated” [17,19] or “condensed” [20–24].
The complex Zn[B3O4(OH)3], which contains infinite polyborate chains coordinated to a tetrahedral
Zn(II) center [25], is an industrially important polymer additive and preservative in wood composites.

In this manuscript, we describe the synthesis and X-ray diffraction (XRD) structures of two new
zinc(II) hexaborate(2−) complexes, [Zn(en){B6O7(OH)6}·2H2O (1) and [Zn(pn){B6O7(OH)6}]·1.5H2O
(2) (pn = NH2CH2CHMeNH2), which are templated from B(OH)3 and the Zn(II) amine complexes
[Zn(en)3][OH]2 and [Zn(pn)3][OH]2, respectively. A schematic diagram of the hexaborate(2−) anion
found in 1 and 2 is shown in Figure 1. The hexaborate(2−) anions in these complexes are coordinated to
two Zn(II) centers and form 1-D polymeric coordination chains. Novel inter-chain H-bond interactions
are described and discussed in this manuscript.
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obtained (KBr pellets) on a Perkin-Elmer 100 FTIR spectrometer (Perkin Elmer, Seer Green, UK). 
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis (in air) were 
undertaken on an SDT Q600 V4.1 Build 59 instrument (New Castle, DE, USA) using Al2O3 crucibles, 
between 10 and 800 °C (ramp temperature rate of 10 °C·min−1). NMR spectra were recorded on a 
Bruker Avance 400 spectrometer (Bruker, Coventry, UK) in D2O and data are reported in ppm with 
positive chemical shifts (δ) to high frequency (downfield) of tetramethylsilane (TMS) (1H, 13C) and 
BF3.OEt2 (11B). Carbon/hydrogen/nitrogen (CHN) analyses were obtained from OEA laboratories Ltd. 
in Callington, Cornwall, UK. 
  

Figure 1. Schematic drawing of the hexaborate(2−) anion, [B6O7(OH)6]2−. The three four-coordinate
boron centers have formal charges of −1 and the three-coordinate O center has a formal charge of
+1, resulting in a di-anion. The three hydroxyl oxygen atoms on the four-coordinate boron atoms
are ideally positioned to function as a tridentate ligand. The other three hydroxyl oxygen atoms are
peripheral and point radially out from the O+ center.

2. Materials and Methods

2.1. General

All chemicals were obtained commercially. Fourier-transform infrared (FTIR) spectra were
obtained (KBr pellets) on a Perkin-Elmer 100 FTIR spectrometer (Perkin Elmer, Seer Green, UK).
Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis (in air) were
undertaken on an SDT Q600 V4.1 Build 59 instrument (New Castle, DE, USA) using Al2O3 crucibles,
between 10 and 800 ◦C (ramp temperature rate of 10 ◦C·min−1). NMR spectra were recorded on
a Bruker Avance 400 spectrometer (Bruker, Coventry, UK) in D2O and data are reported in ppm with
positive chemical shifts (δ) to high frequency (downfield) of tetramethylsilane (TMS) (1H, 13C) and
BF3·OEt2 (11B). Carbon/hydrogen/nitrogen (CHN) analyses were obtained from OEA laboratories
Ltd. in Callington, Cornwall, UK.
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2.2. Synthesis, Spectroscopic, Analytical, and Crystallographic Data for Complex 1

A slight excess of ethylenediamine (en) (2.33 mL, 70% aq., 24.45 mmol) was added to a solution of
ZnSO4·H2O (1.46 g, 8.15 mmol) in H2O (10 mL). Ba(OH)2·8H2O (2.57 g, 8.15 mmol) in H2O (35 mL)
was added to this solution which was rapidly stirred at room temperature for 10 min. The white
precipitate of BaSO4 was removed by filtration, and B(OH)3 (5.04 g, 81.5 mmol) was added to the
filtrate. After stirring for 30 min, the volume of the solution was reduced to 5 mL by gentle evaporation
on a warm water bath. The concentrated solution was left for 10 days in NMR tubes for crystallization,
and yielded colourless crystals of [Zn(en){B6O7(OH)6}]·2H2O (1) (1.2 g, 33%). Melting point (m.p.)
≥300 ◦C. Analytical calculations: C = 5.4%, H = 4.1%, N = 6.3%. Found: C = 5.2%, H = 4.0%, N = 6.6%.
NMR, 1H (400 MHz)/ppm: 2.86 (s, 4H), 4.79 (s, NH2, H2O, OH); 13C (100 MHz)/ppm: 39.36.
11B (128 MHz)/ppm: 16.1. IR (KBr/cm−1): 3441(s), 2926(m), 1645(m), 1442(s), 1356(s), 1254(m),
1117(s), 1075(m), 1036(m), 952(m), 863(m), 800(m). TGA: 100–180 ◦C, loss of two interstitial H2O
7.2% (8.2% calculated); 180–320 ◦C, condensation of polyborate with loss of three further H2O
21.7% (20.5% calculated); 320–470 ◦C, oxidation of ethylenediamine ligand 33.9% (34.1% calculated);
residual ZnB6O10 66.1% (65.9% calculated). Magnetic susceptibility: χm = −390 × 10−6 cm3·mol−1.
Crystallographic data: C2H18B6N2O15Zn, Mr = 440.41, triclinic, P-1 (No. 2), a = 7.3635(2) Å, b = 8.1262(2)
Å, c = 13.1817(2) Å, α = 96.991(2)◦, β = 94.610(2)◦, γ = 104.375(2)◦, V = 753.35(3) Å3, T = 100(2) K, Z = 2,
Z' = 1, µ(MoKα) = 1.715; 33,638 reflections measured, 3453 unique (Rint = 0.0237) which were used in
all calculations. The final wR2 was 0.0536 (all data) and R1 was 0.0191 (I > 2(I)).

2.3. Synthesis, Spectroscopic, Analytical, and Crystallographic Data for Complex 2

A solution of 1,2-propanediamine (pn) (2.56 mL, 30 mmol) in H2O (3 mL) was added to a solution
of ZnSO4·H2O monohydrate (1.79 g, 10 mmol) in H2O (10 mL). The reaction mixture was stirred at room
temperature for 60 min, and then a solution of Ba(OH)2·8H2O (3.15 g, 10 mmol) in H2O (20 mL) was
added. The reaction mixture was stirred for a further 30 minutes and then filtered to remove the white
precipitate of BaSO4. To the filtrate was added B(OH)3 (6.18 g, 100 mmol), and the mixture was then
stirred at room temperature for a further three hours. The volume of the resulting solution was reduced
to 20 mL using a rotary evaporator. The solution was distributed over a few small vials and left for
10 days and yielded colourless crystals of [Zn(pn){B6O7(OH)6}]·1.5H2O (2) (1.7 g, 38%); m.p. >300 ◦C
(decomposes.). Analytical calculations: C = 8.1%, H = 4.3%, N = 6.3%. Found: C = 7.9%, H = 4.5%,
N = 6.2%. NMR, 1H (400 MHz)/ppm: 1.1 (d, 3H), 2.3 (t, 1H, CH), 2.8 (m, 1H), 3.0 (m, 1H), 4.8 (s, NH2,
OH, H2O); 13C (100 MHz)/ppm: 19.16 (CH3), 44.98 (CH2), and 46.65 (CH). 11B (128 MHz)/ppm:
16.6. IR (KBr/cm−1): 3351(s), 3295(s), 1600(m), 1417(s), 1363(s), 1268(m), 1191(m), 1104(s), 1044(s),
1022(s), 956(m), 902(m), 849(m), 808(s), 703(m). TGA: 100–190 ◦C, loss of 1.5 interstitial H2O 7.9%
(6.1% calculated); 190–280 ◦C, condensation of polyborate with loss of three further H2O 17% (18.2%
calculated); 250–650 ◦C, oxidation of organic content 36.1% (34.8% calculated); residual ZnB6O10 63.9%
(65.2% calculated). Magnetic susceptibility: χm = −260 × 10−6 cm3 mol−1. Crystallographic data:
C3H19B6N2O14.5Zn, Mr = 445.43, triclinic, P-1 (No. 2), a = 7.5169(3) Å, b = 8.1310(3) Å, c = 13.1409(4)
Å, α = 96.203(3)◦, β = 94.121(3)◦, γ = 103.277(3)◦, V = 773.23(5) Å3, T = 100(2) K, Z = 2, Z′ = 1,
µ(MoKα) = 1.670; 19,362 reflections measured, 3522 unique (Rint = 0.0308) which were used in all
calculations. The final wR2 was 0.0648 (all data) and R1 was 0.0256 (I > 2(I)).

2.4. X-Ray Crystallography

Single-crystal X-ray crystallography was undertaken at the Engineering and Physical Sciences
Research Council (EPSRC) National Crystallography Service at the University of Southampton
(Southampton, UK). Suitable crystals of 1 and 2 were selected and mounted on a MITIGEN
holder in perfluoroether oil on a Rigaku FRE+ equipped with either HF Varimax confocal mirrors
and an AFC12 goniometer and HG Saturn 724+ detector (1) or VHF Varimax confocal mirrors
and an AFC12 goniometer and HyPix 6000 detector (2). The crystals were kept at T = 100(2)
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K during data collection. Using Olex2 [26], the structures were solved with ShelXT [27] and
refined with ShelXL [28] (version 2014/7 for 1 and version 2018/3 for 2) using least-squares
minimization. Cambridge Crystallographic Data Centre (CCDC) 1879895 (1) and 1879894 (2) contain
the supplementary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

3. Results and Discussion

3.1. Synthesis and Characterization

The two new Zn(II) hexaborate(2−) complexes 1 and 2 were prepared as crystalline solids.
These solids crystallized after a few days from solutions that originally contained B(OH)3 and either
[Zn(en)3][OH]2 or [Zn(pn)3][OH]2, respectively. The amine complexes were prepared in situ from the
corresponding zinc(II) sulfate salts by addition of Ba(OH)2 prior to reaction with boric acid (Scheme 1).
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Scheme 1. Synthesis of Zn(II) hexaborate(2−) complexes 1 and 2; (a) en = 1,2-diaminoethane,
(b) pn = 1,2-diaminopropane.

Products 1 and 2 were obtained through self-assembly processes in moderate yields (33%
and 38%, respectively) and were characterized by single-crystal diffraction analysis (see below),
as well as thermal (TGA/DSC) and spectroscopic (IR, NMR) studies. Elemental analyses data were
consistent with their single-crystal formulations as neutral coordination compounds with either
two or 1.5 additional waters of crystallization. TGA data on the bulk materials supported these
formulations, and both compounds resulted in glassy residues with masses consistent with the
formation of the anhydrous borate, ZnB6O10. Thermal decomposition data for 1 and 2 were also in
agreement with multistep processes involving initial loss of interstitial H2O, then condensation of
hexaborate(2−) ligands with loss of more H2O, and finally oxidation of the organic ligands. Similar
decomposition processes were observed for other polyborate compounds containing transition-metal
complexes [29–31]. Compounds 1 and 2 were soluble in H2O, but dissolution led to their decomposition
with 1H and 13C spectra consistent with diamine ligands, and 11B spectra of 1 and 2 both showing
only one peak of approximately −16 ppm. This single peak results from rapid B(OH)3/[B(OH)4]−

equilibria [4,5], but these chemical shifts are slightly more downfield than expected for a hexaborate(2−)
anion (~14 ppm) for a B/charge ratio of three [10]. IR spectra, obtained as KBr pellets, showed
numerous strong B–O stretches in the range 1500–800 cm−1 and, as tabulated by Li et al. [32],
have medium/strong bands at ~810 cm−1 and ~958 cm−1 diagnostic of the hexaborate(2−) anion.

3.2. X-Ray Crystallography of Compounds 1 and 2

Compounds 1 and 2 are structurally very similar, but subtle differences in their structural
parameters are apparent under detailed analysis. In summary, compounds 1 and 2 both contain
the hexaborate(2−) anion (Figure 1) coordinated in a tridentate facial manner to a distorted octahedral
Zn(II) center by hydroxyl oxygen atoms (κ3O,O′,O′′). Both compounds also contain a bidentate (cis)
1,2-diaminoalkane (κ2N,N′) ligand. The sixth donor atom is from a peripheral hydroxyl oxygen

http://www.ccdc.cam.ac.uk/conts/retrieving.html
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(κ1O*′′′) from an “adjacent” hexaborate(2−) unit. Thus, 1-D polymer chains are set up with each
hexaborate(2−) ligand bridging two zinc(II) centers in alternating tridentate and mondentate modes.

A displacement ellipsoid [26] drawing of 1 is shown in Figure 2. The hexaborate(2−) ligand
is tridentate to a distorted octahedral Zn(II) metal center with Zn1–O11, Zn1–O12, and Zn1–O13
distances of 2.3874(9) Å, 2.0790(9) Å, and 2.0196(9) Å, respectively. The Zn-donor atom distances
associated with the 1,2-diaminoethane ligand are Zn1–N1, 2.1345(11)Å and Zn1–N2, 2.0753(11) Å.
A coordinate O donor bond involving an “adjacent” hexaborate(2−) unit, Zn1–O10* 2.2320(9) Å,
completes the octahedral coordination geometry around the Zn(II) atom. This latter interaction
is not shown in Figure 2. O10* is trans to O11 (O10–Zn1–O11 = 170.18(3)). A view of the
coordination polymer chain in 1 is shown in Figure 3. The B–O distances and angles within the
hexaborate(2−) anion of 1 are not significantly different from those observed in related B–O systems
with three- and four-coordinate boron centers in general [33–35] and, more specifically, to other
reported hexaborate(2−) complexes such as [Cu(Me2NCH2CH2NMe2){B6O7(OH)6}]·6H2O [36],
[Me2NHCH2CH2NHMe2][Zn{B6O7(OH)6}2]·2H2O [37], and [C4N2H12][Co{B6O7(OH)6}2]·6H2O [38].
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Figure 2. Crystal structure of the repeating unit [Zn(en){B6O7(OH)6}].2H2O (1), with ellipsoids at 
50%. 

 
Figure 3. A segment of the infinite coordination polymer chain observed in [Zn(en){B6O7(OH)6}·2H2O
(1), highlighting the O10–Zn1–O11 linkage.
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There are 10 potential H-bond donors in the neutral monomeric unit “Zn(en){B6O7(OH)6}” of 1
and 14 potential donor sites, when including interstitial H2O, which lead to a complex set of H-bond
arrangements. Reciprocal R2

2(8) (Etter nomenclature [39]) pairs emanate from hydrogens on O8, O10,
and O13. The hydrogen atom on O11 is an H-bond donor to a water molecule (O21), whilst hydrogens
on O9, O11, and O12 all partake in unusual R2

2(6) ring interactions. These interactions both include Zn1
and either amino-hydrogens on N1 or N2. The R2

2(6) involving N1H1A is a cyclic donor arrangement
involving a neighboring hexaborate(2−) hydroxyl, O9*H9*, as the second donor. The R2

2(6) interaction
involving N2H2B is a pincer H-bond interaction originating from O12H12 and N2H2B to a neighboring
hexaborate(2−) acceptor at O8*. These two interactions are shown in Figure 4. Full details of these and
other H-bond interactions are in the Supplementary Materials. The reciprocal R2

2(8) interaction was
calculated to be strong [10] and the R2

2(6) are likely to have comparable H-bond strength. These R2
2(8)

and R2
2(6) interactions are all inter-chain and they stabilize the solid-state structure through linking

together hexaborate(2−) ligands of adjacent 1-D coordination polymer chains. There are no intra-chain
H-bond interactions. These inter-chain H-bond interactions, in association with formation of Zn–O
coordinate bonds, have a strong influence in stabilizing the templated self-assembled structure of 1.
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Figure 4. View of 1 showing focusing on the metal coordination center and the two unusual R2
2(6)

rings in 1. O9*H9* from a neighboring hexaborate(2−) unit is an H-bond donor to O11. O8* (from
a different neighboring hexaborate(2−) unit) is an H-bond acceptor from both N2H2B and O12H12
which “chelate” O8*. The full neighboring hexaborates are not shown for clarity.

A displacement ellipsoid [26] drawing of 2 is shown in Figure 5. As noted in the caption to Figure 5,
there is disorder in the structure of compound 2. In particular, there are two Zn(II) positions (Zn1, Zn1A;
site occupation factor (s.o.f.) 0.8:0.2) that matches up with the pn ligand disorder. The overall geometry
around both Zn(II) centers is, similarly to 1, (distorted) octahedral.

The hexaborate(2−) ligand is tridentate to the Zn(II) metal center with Zn1–O11, Zn1–O12,
and Zn1–O13 distances of 2.071(2), 2.017(2), and 2.648(1) Å, respectively. The corresponding distances
involving Zn1A are 2.063(8), 2.033(8) and 2.309(7) Å. Representative Zn-donor atom distances
associated with the 1,2-diaminopropane ligand are Zn1–N1, 2.081(2)Å and Zn1–N2, 2.131(2) Å.
Full bond distances and bond angles are available in the Supplementary Materials. A Zn1–O9*
(and Zn1A–O9*) interaction from an “adjacent” hexaborate(2−) at 2.1762(17) Å (and 2.521(1)) Å)
completes the coordination geometry around the Zn(II) atom. These axial interactions are present but
not shown in Figure 5. The B–O distances and angles at B and O within the hexaborate(2−) anion of 2
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are not significantly different from those of 1 or other reported structures [36–38]. The structure of 2
displays numerous structure-directing H-bond interactions, in a similar manner to those observable
in 1. In particular, R2

2(8) interactions involving hydrogens on O9, O10, and O12 link together the
polymeric chains, the amino-H atoms engage in in the both types of R2

2(6) rings, and the hydrogen
on O13 H-bonds to an acceptor water molecule (O21). Full details of these H-bond interactions are
available in the Supplementary Materials.
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Figure 5. Crystal structure of the repeating unit [Zn(pn){B6O7(OH)6]·1.5H2O (2), with ellipsoids at 50%.
The Zn(II) center and 1,2-diamonopropane ligand are disordered over two sites with site occupation
factor (s.o.f.) of 0.8:0.2 each. Axial interaction from O9* (neighboring hexaborate) not shown.

4. Conclusions

The 1-D coordination chain polymers 1 and 2 arise through self-assembled processes and
crystallize from aqueous solution containing dynamic combinatorial libraries of borate and zinc(II)
amine complexes. Their structures display numerous well-known reciprocal R2

2(8) and novel R2
2(6)

inter-chain H-bond interactions which link together hexaborate(2−) moieties in adjacent coordination
polymer chains. The novel R2

2(6) interactions are unusual in that they both involve Zn(II) centers
within their six-membered rings and amino-hydrogens of their coordinated diamine ligands as H-bond
donors. One R2

2(6) ring has a cyclic H-bond arrangement, whereas the other has a pincer H-bond
arrangement. These H-bond interactions, together with formation of Zn–O coordinate bonds, stabilize
the solid-state structures of 1 and 2 and help facilitate these self-assembly processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/12/470/s1:
TGA and single-crystal XRD data.
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