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Abstract: The dithiooxalato-bridged iron mixed-valence complex (n-C3H7)4N[FeIIFeIII(dto)3]
(dto = dithiooxalato) undergoes a novel charge-transfer phase transition (CTPT) accompanied by
electron transfer between adjacent FeII and FeIII sites. The CTPT influences the ferromagnetic
transition temperature according to the change of spin configuration on the iron sites. To reveal
the mechanism of the CTPT, we have synthesized the series of metal-substituted complexes
(n-C3H7)4N[FeII

1-xMnII
xFeIII(dto)3] (x = 0–1) and investigated their physical properties by means of

magnetic susceptibility and dielectric constant measurements. With increasing MnII concentration, x,
MnII-substituted complexes show the disappearance of CTPT above x = 0.04, while the ferromagnetic
phase remains in the whole range of x. These results are quite different from the physical properties of
the ZnII-substituted complex, (n-C3H7)4N[FeII

1-xZnII
xFeIII(dto)3], which is attributed to the difference

of ion radius as well as the spin states of MnII and ZnII.

Keywords: charge-transfer phase transition; iron mixed-valence complex; hetero metal complex;
dithiooxalato ligand; substitution of 3d transition metal ion; ferromagnetism; dielectric response; 57Fe
Mössbauer spectroscopy

1. Introduction

Oxalate dianion (ox) is one of the most efficient building components in molecule-based magnets.
Owing to its versatile bridging modes [1–10] as well as its remarkable ability to mediate a strong
magnetic interaction between paramagnetic metal ions [11], a large number of ox-based coordination
compounds with wide ranges of structures and magnetic properties have been reported [12,13].
Among these compounds, ox-bridged bimetallic complexes [MIIMIII(ox)3]− have been a fascinating
target for materials chemistry since the discovery of ferromagnetism in the layered complexes
(n-C4H9)4N[MIICrIII(ox)3] (M = Cr, Mn, Fe, Co, Ni, Cu) [14]. These complexes are composed of
a molecular building block of trioxalato-coordinated metal anion, [MIII(ox)3]3−, and a divalent
transition metal ion, exhibiting a two-dimensional (2D) sheet or 3D network structure depending
on the size, charge and geometry of the counter cation which acts as a template of the formation
of the anionic network [13]. In particular, 2D layered complexes accommodate various functional
cations as a cation template, obtaining additional functions such as molecular magnetism [15–17],
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spin-crossover [18–21], photochromism [22], electrical or proton conduction [23–28], dielectricity [29],
and nonlinear optics [30–32] to cooperate with the magnetism of the ox-bridged bimetallic layer.

In the ox-bridged bimetallic network, the ox can be replaced by its bis-sulfur analogue,
1,2-dithiooxalate (dto), and dto-bridged anionic layered complexes [MIIMIII(dto)3]− have actually been
developed [33,34]. In this family, the iron mixed-valence complex (n-C3H7)4N[FeIIFeIII(dto)3] indicates
a reversible charge-transfer phase transition (CTPT) with thermal hysteresis at around 120 K, which is
induced by electron transfer between adjacent FeII and FeIII sites as shown in Figure 1 [35–37].
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Figure 1. Schematic representation of the charge-transfer phase transition (CTPT) in
(n-C3H7)4N[FeIIFeIII(dto)3].

In the high-temperature phase (HTP; T > 120 K), FeIII with a low-spin state (S = 1/2) is coordinated
by six S atoms, while FeII with a high-spin state (S = 2) is coordinated by six O atoms. On the
other hand, in the low-temperature phase (LTP; T < 120 K), the FeO6 and FeS6 sites change to
high-spin FeIII (S = 5/2) and diamagnetic low-spin FeII (S = 0) species, respectively, according to
the charge transfer. (n-C4H9)4N[FeIIFeIII(dto)3] also exhibits an incomplete CTPT at around 140 K,
which results in the coexistence of the HTP and LTP below the CTPT temperature. Contrary to this,
(n-CnH2n+1)4N[FeIIFeIII(dto)3] with n = 5 and 6 do not show the CTPT at ambient pressure, and remain
in the spin state corresponding to an HTP down to 2 K [38].

The occurrence or absence of the CTPT in (n-CnH2n+1)4N[FeIIFeIII(dto)3] (n = 3–6) affects the
ferromagnetic transition temperature (TC), which strongly correlates with the cation size [38,39].
The ferromagnetic transition for (n-C3H7)4N[FeIIFeIII(dto)3] occurs at 7 K in the LTP, where the spin
state of the FeII ion is diamagnetic. For (n-CnH2n+1)4N[FeIIFeIII(dto)3] (n = 5–6), the ferromagnetically
coupled FeII (S = 2) and FeIII (S = 1/2) ions contribute a higher TC of ~20 K, which is thanks to the
absence of the CTPT. Furthermore, the coexistence of the LTP and HTP in (n-C4H9)4N[FeIIFeIII(dto)3]
affords respective magnetic ordering at 7 K and 13 K. Thus, the CTPT is a quite important ingredient
for the comprehension of magnetic behavior based on the spin states of the metal ions.

Recently, we investigated the magnetic dilution effect on the ferromagnetic transition and the
CTPT behavior of (n-C3H7)4N[FeIIFeIII(dto)3] with the employment of the magnetic diluted system,
(n-C3H7)4N[FeII

1−xZnII
xFeIII(dto)3] (x = 0–1) [40,41]. Judging from the results of magnetic susceptibility

and dielectric constant measurements, the CTPT is rapidly suppressed by the substitution of a
diamagnetic ZnII for the FeII ions in the low substituted ratio x, and it is absent in x > 0.13. Such a low
critical ZnII-substituted ratio arises from the high cooperativity of the electron transfer in the CTPT.
As a result of the suppression of the CTPT, the TC was enhanced with the substituted ratio x increased
from 0.00 to 0.05. With further increasing of x, TC monotonically decreases and disappears above x =
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0.96. The introduction of nonmagnetic ZnII ions into the FeII sites of the [FeIIFeIII(dto)3]− layer causes
the disconnection of the ferromagnetic exchange pathway, which causes the decrement of TC.

Thus, nonmagnetic dilution in (n-C3H7)4N[FeIIFeIII(dto)3] simultaneously induces both a
disconnection of the ferromagnetic exchange pathway and the suppression of the CTPT; therefore,
a further experiment should be performed to elucidate metal-ion substitution effects on magnetic
properties in (n-C3H7)4N[FeIIFeIII(dto)3]. Substitution with a paramagnetic metal ion is expected to
suppress the CTPT without the disconnection of the ferromagnetic exchange pathway. From this
viewpoint, we have synthesized new MnII-substituted complexes (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3]

to investigate the effect of magnetic-ion substitution on the CTPT and the magnetic properties of
(n-C3H7)4N[FeIIFeIII(dto)3] by means of magnetic and dielectric constant measurements. Furthermore,
a magnetic phase diagram of this system is discussed.

2. Materials and Methods

2.1. Sample Preparation

Potassium dithiooxalate, K2(dto), was prepared according to reference [42,43]. The precursor
KBa[Fe(dto)3]·3H2O was also obtained in accordance with the literature [44]. Commercially available
reagents and solvents were used without further purification for raw materials.

(n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3] were prepared by a similar way to the previously reported
method [40,41], except for MnCl2·4H2O (KANTO CHAMICAL CO., INC., Tokyo, Japan) being
used instead of ZnCl2 (KANTO CHAMICAL CO., INC., Tokyo, Japan). The appropriate amount
(x equivalent to the FeIII source) of MnCl2·4H2O was used according to a reduced amount of
FeCl2·4H2O (KANTO CHAMICAL CO., INC., Tokyo, Japan) (see Table 1 in the Section 3.1.1).

2.2. Characterization

Since the molar fractions of raw materials in the reaction mixture were not directly reflected in the
substituted ratio of MnII for (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3], the composition of transition-metal

ions in (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3] was determined by energy-dispersive X-ray spectroscopy
(EDS; JEOL, EX-37001) in a field-emission scanning electron microscope (SEM; JEOL, JSM-7001F/SHL).
Energy spectra of EDS for selected samples are shown in Figure A1. The peaks of Fe Kα and Mn Kα
were used for the determination of the substituted ratio.

The powder X-ray diffraction pattern of all these complexes was measured by Rigaku, RINT2500
using Cu Kα radiation at room temperature.

2.3. Measurements of Physical Properties

The static magnetic susceptibility was measured by a superconducting quantum interference
device (SQUID) susceptometer (Quantum Design Japan, Tokyo, Japan, MPMS-5 or MPMS-XL7AC).
The measuring temperature range and static field were set to 2–300 K and 5000 Oe, respectively.
The diamagnetic contributions were corrected by the application of Pascal’s law. The magnetic
moment and the magnetic interaction were estimated by fitting the temperature dependence of the
magnetic susceptibility in a high temperature region with the Curie–Weiss law, χ = C/(T − θ). C and θ

denote the Curie constant and the Weiss temperature, respectively. The temperature dependence of
the zero-field-cooled magnetization (ZFCM) and the field-cooled magnetization (FCM) were measured
in the temperature range of 2–30 K under 30 Oe. The remnant magnetization (RM) was measured in
the same temperature range under a zero field. The ac magnetic susceptibility measurements were
performed in the temperature range of 2–40 K under an ac magnetic field of 3 Oe and frequency range
of 10–1000 Hz.

The temperature dependence of dielectric constants was measured by an impedance gain phase
analyzer (AMETEK Japan, Tokyo, Japan, Solartron 1260 equipped with a Solartron 1269). The sample
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was shaped as a pellet and contacted by thin gold wire using the two-probe method. The temperature
and the frequency range were selected as 4−300 K and 1 Hz to 1 MHz, respectively.

3. Results

3.1. Characterization

3.1.1. The Composition of Metallic Ions

The actual ratio of metallic ions was determined by EDS. Table 1 shows the preparation ratio
of raw materials and the resultant substitution ratio of x for (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3].

We often found a difference of the molar fractions between the reaction mixtures and resulting
powdered samples. The MnII-substitution ratios tend to become lower than the expected value
of the corresponding prepared starting materials. The result indicates that the MnII ion is not
efficiently incorporated into the dto layer compared with the FeII ion, while the ZnII-ion uptake
into the layer is significantly preferred to the FeII ion [40,41]. Such a MII-substitution tendency reflects
the Irving–Williams order (MnII < FeII < ZnII) of the stability for the ox ligand [45,46].

Table 1. The relation between the molar fraction of raw materials in the reaction mixture and resulting
values of x for (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] determined by EDS. EDS: energy-dispersive

X-ray spectroscopy.

Ratio of raw materials 0.00 0.01 0.07 0.05 0.28 0.50 0.80 1.00
Resulting values of x 0.00 0.01 0.02 0.04 0.09 0.31 0.77 1.00

3.1.2. Powder X-Ray Analysis

Figure 2 shows the powder X-ray diffraction patterns of (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3].

1 

 

 

Figure 2. Powder X-ray diffraction patterns of (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3] at 300 K.

The numbers hkl in Figure 2 indicate the indices of Bragg reflections, which are based on the
single crystal X-ray diffraction analysis of (n-C3H7)4N[FeIIFeIII(dto)3] [37]. Judging from the crystal
structure of the parent (n-C3H7)4N[FeIIFeIII(dto)3] in the P63 space group [38], the maximum peaks
at around 2θ of 11◦ for all complexes can be assigned to the 002 reflection from interlayer stacking of
[FeII

1−xMnII
xFeIII(dto)3]− honeycomb sheet along the c-axis. The 2θ value of this reflection is almost
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independent of the substituted ratio x, indicating that the layer distance is regulated by the size of the
intercalated cation. The smallest 2θ peaks around 10◦ are derived from the 100 reflection correlated
with the lattice length along the intralayer direction. The peaks apparently shifted to a lower angle
with the increasing of x. This finding indicates the elongation of the unit cell length of a (= b), which is
reasonable considering the order of metal-ion radii (MnII > FeII). Similarly, the 110 peak reflected in
the intralayer direction shows a tendency to shift toward a lower angle with the increasing of x.

The reflections of 10l are quite weak in some complexes, while the 11l reflections remain intense
for all measuring complexes. In layered structures, the existence of stacking faults should often be
taken into consideration, because the interlayer interaction is weak in general. The difference between
hexagonal and cubic close packing is the simple example of periodicity along the stacking layers.
In fact, ox-bridged hetero metal complexes show mixed structures between the space groups of P63

and R3c [47–51]. Indeed, (n-C3H7)4N[MnIIFeIII(ox)3] was determined as a biphasic structure of P63 and
R3c with a 20–30% faulting probability of layer stacking, judging from the simulation of the powder
X-ray diffraction pattern [52]. A high faulting probability in complexes causes the broadening of some
diffraction peaks (e.g., 11l indices) related with stacking vectors along the a + b direction.

It should be mentioned that the magnetic properties of the [FeII
1−xMnII

xFeIII(dto)3]− layer
systematically depend on the change of the substituted ratio x (see below) although the stacking
manner is different among the series of (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3].

3.2. Physical Properties for (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3]

3.2.1. Magnetism of (n-C3H7)4N[FeIIFeIII(dto)3] and a Series of Nonmagnetic Substituted Complexes

In the case of (n-C3H7)4N[FeIIFeIII(dto)3], the characteristic behavior of CTPT in magnetic
susceptibility shows the existence of a thermal hysteresis loop, which is induced by the cooperative
effect of electron transfer between FeII–FeIII sites. The CTPT also provides a lower TC for LTP with
the spin configuration of FeII(S = 0)-FeIII(S = 5/2) compared with the TC for HTP with the spin
configuration of FeII(S = 2)-FeIII(S = 1/2). The magnetic interaction in the LTP is weaker than that in
the HTP because of the diamagnetic nature of FeII [38].

Moreover, the substitution of diamagnetic ZnII for FeII indicated the following behavior. (a) The
effective magnetic moment (µeff) decreases with an increased substituted ratio, x, in the temperature
range of the paramagnetic region. (b) The CTPT is suppressed by the substitution of ZnII for FeII at a
critical substituted ratio between x = 0.05 and 0.13. (c) The TC is once enhanced in the low substituted
ratio in x < 0.05 and then decreases with the increasing of x. This peculiar substituted ratio dependence
of the TC is explained by the switching between the LTP and HTP with the small amount of substitution
with ZnII.

Based on the characteristic magnetic properties of (n-C3H7)4N[FeIIFeIII(dto)3] and its ZnII

substituted system, we have investigated the effect of the substitution of MnII for FeII on the CTPT
and ferromagnetism.

3.2.2. Magnetism of (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3]

Figure 3a shows the temperature dependence of the molar magnetic susceptibility multiplied
by temperature, χT, in the MnII-substituted system with selected substituted ratios of x = 0.00, 0.01,
0.02, 0.77 and 1.00. The χT values at 300 K fall into the range of 4.5–5.1 emu K mol−1. Upon cooling
below 50 K, the χT values for the complexes with x ≤ 0.77 increase rapidly to reach a maximum
and then decrease. This behavior is the signature of the presence of ferromagnetic ordering in these
complexes. As for x = 1.00, on the other hand, the χT value decreases slowly on cooling down to 7 K,
then increases toward a small maximum at around 5 K, and then decreases down to 2 K, which is
shown in the inset of Figure 3a. As discussed later, the dominant magnetic interaction for x = 1.00
is a ferromagnetic one; thus, the small maximum at around 5 K can be attributed to the presence of
ferromagnetic ordering. The decrease of χT with decreasing temperature, except for the maximum
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point at around 5 K, presumably arises from the orbital contribution of the FeIII ion. In connection
with this, the following should be noted. In the case of the low-spin state (t2g

5, S = 1/2) of FeIII with
a first-order orbital angular momentum in isolated octahedra, µeff(FeIII) decreases with decreasing
temperature [53,54]. In fact, µeff(FeIII) in KBa[FeIII(dto)3]·3H2O gradually drops with the temperature
decreasing below 50 K [55].
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Figure 3. Magnetic behavior of (n-C3H7)4N[FeII
1-xMnII

xFeIII(dto)3]. (a) Temperature dependence of the
molar susceptibility multiplied by temperature (χT) for (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3], (b,c) are

expanded figures for x = 0.00 to 0.04 and 0.09, respectively.

For the complexes with a quite low MnII concentration of 0.00 ≤ x ≤ 0.04, the χT curves exhibit
a thermal hysteresis owing to the CTPT at around 110 K (Figure 3b). This thermal hysteresis in χT
completely disappears for x ≥ 0.09 (Figure 3c). Furthermore, in the vicinity of the CTPT, a small drop
in the χT value is observed for x = 0.00 and 0.01, which arises from the difference in the µeff between
HTP and LTP. These results suggest that the substitution of MnII for FeII successively suppresses the
CTPT in the low MnII concentration region and completely suppresses it for x ≥ 0.09.

The application of the Curie–Weiss law to these data gives the Curie constant, C, and the
Weiss temperature, θ, for (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3]. The obtained C value ranges within

4.31–4.86 emu K mol−1, which is slightly larger than that expected for the spin-only values of
the constituent metal ions, FeII (S = 2), MnII (S = 5/2) and FeIII (S = 1/2). This difference can be
explained by the anisotropic g-value of FeII as mentioned in the previous work [38]. Figure 4 shows
the MnII-substituted ratio, with x dependent on the Weiss temperature, θ. Although the θ value tends
to decrease with increasing MnII concentration, it remains positive over the whole x range.
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In order to elucidate the ferromagnetic phase transition in this system, we investigated the
temperature dependences of the FCM, ZFCM and RM. These results are shown in Figure 5. For x =
0.00 (i.e., (n-C3H7)4N[FeIIFeIII(dto)3]), a ferromagnetic phase transition occurred at TC = 7 K, being
estimated from the bifurcation of the FCM and ZFCM curves and the vanishing point of the RM
(Figure 5a). For x = 0.01, a slight splitting between FCM and ZFCM curves in addition to non-zero RM
was observed below 12 K, while a large deviation of these curves was found below 7 K (Figure 5b).
Such a two-step transition behavior in FCM and ZFCM implies the coexistence of two ferromagnetic
phases accompanied by an incomplete CTPT. It should be noted that the diamagnetic low-spin state
of FeII in the LTP fragment is responsible for the lower TC value. A similar two-step transition also
progresses in the complexes for x = 0.02 and 0.04 ( Figure 5c,d). The TC values for the HTP fragment in
these complexes apparently increased, which are estimated to be 20 and 15 K, respectively. Meanwhile,
the lower TC values derived from the LTP fragment are supposed to be almost invariant. This implies
that the MnII substitution does not affect the magnetism of the LTP. For x≥ 0.09, the lower-temperature
transition corresponding to the LTP fragment disappears (Figure 5e–h) owing to the absence of the
CTPT. The TC values for these complexes are estimated at 12 K, 10 K, 5 K and 4 K for x = 0.09, 0.31, 0.77
and 1.00, respectively.

To further confirm the coexistence of two ferromagnetic phases and to determine TC, the ac
magnetic susceptibility measurements were performed for x = 0.00–0.04. The temperature dependences
of the in-phase signal (χ′) and out-of-phase one (χ′′) are shown in Figure 6. For x = 0.01, the χ′ peaks
were observed as broad maxima at 15 K and 7 K, together with the increased χ′′ value foreshowing a
maximum or shoulder peak, which corresponds to the development of a ferromagnetic ordered state
coming from the HTP component (Figure 6b). Similarly, we can evaluate the TCs of the HTP and LTP for
x = 0.02 and 0.04 as 16 K and 7 K, respectively (Figure 6c,d). These data clearly confirm the presence of
two ferromagnetic phases for x = 0.01, 0.02 and 0.04. The TC for the LTP fragment in these complexes are
determined to be 7 K, which is identical to the TC value for x = 0.00 (Figure 6a). Such an independence
of the TC value for the LTP fragment on the MnII-substituted ratio indicates that the vicinity of the
dopant MnII ions is no longer in the LTP spin state because of the suppression of the CTPT, and hence
the ferromagnetic phase transition in the LTP component in (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] is

unaffected by dopant MnII ions. In connection with this, it should be noted that similar behavior has
already been reported for the magnetic dilution system, (n-C3H7)4N[FeII

1−xZnII
xFeIII(dto)3] [40,41].
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the χ’ peaks were observed as broad maxima at 15 K and 7 K, together with the increased χ” value 
foreshowing a maximum or shoulder peak, which corresponds to the development of a ferromagnetic 
ordered state coming from the HTP component (Figure 6b). Similarly, we can evaluate the TCs of the 
HTP and LTP for x = 0.02 and 0.04 as 16 K and 7 K, respectively (Figures 6c and 6d). These data clearly 
confirm the presence of two ferromagnetic phases for x = 0.01, 0.02 and 0.04. The TC for the LTP 
fragment in these complexes are determined to be 7 K, which is identical to the TC value for x = 0.00 
(Figure 6a). Such an independence of the TC value for the LTP fragment on the MnII-substituted ratio 
indicates that the vicinity of the dopant MnII ions is no longer in the LTP spin state because of the 
suppression of the CTPT, and hence the ferromagnetic phase transition in the LTP component in (n-
C3H7)4N[FeII1−xMnIIxFeIII(dto)3] is unaffected by dopant MnII ions. In connection with this, it should be 
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30 Oe. (a–h) These figures correspond to the magnetization curves for x =0.00, 0.01, 0.02, 0.04, 0.09, 0.31,
0.77 and 1.00, respectively.
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3.2.3. Dielectric Constant Measurements of (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3]

The dielectric constant measurement is suitable to detect the CTPT in the series of
(n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] as well as the ZnII-substituted analogues [40,41]. Figure 7 shows

the temperature dependence of the dielectric constants (ε′) for (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3]
measured at 0.1 MHz. For the complexes with a low MnII concentration of x ≤ 0.04, an
anomalous enhancement of ε′ accompanied by a thermal hysteresis was observed at around 120
K, which corresponds to the occurrence of the CTPT in these complexes (Figure 7a–d). For the
complexes with x ≥ 0.09, such an anomaly is no longer observed (Figure 7e–h). These results confirm
that the complexes in the low MnII-substituted region (0.00 ≤ x ≤ 0.04) exhibit CTPT, whereas it is
completely suppressed for x ≥ 0.09. As a result of the dielectric constant and magnetic measurements,
we can define the critical substituted ratio for the disappearance of CTPT, estimated at around 0.09 > x
> 0.04.Crystals 2018, 8, x FOR PEER REVIEW  9 of 17 
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4. Discussion

As shown in Figure 4, the θ value for (n-C3H7)4N[FeII
1−xMnII

xFeIII(dto)3] decreases abruptly
in the low MnII concentration ratio of x and tends to decrease monotonically with increasing MnII

concentration, while θ remains positive even at x = 1.00. This result indicates the ferromagnetic
exchange coupling of the nearest neighbor MnII–FeIII pair as well as the FeII–FeIII one.

Figure 8 shows the schematic mechanism of ferromagnetic ordering for the LTP and HTP
of (n-C3H7)4N[FeIIFeIII(dto)3] and (n-C3H7)4N[MnIIFeIII(dto)3]. As mentioned in the previous
literature [38,56], the LTP contains the low-spin state of FeII (t2g

6: S = 0) and the high-spin state
of FeIII (t2g

4eg
2: S = 5/2), respectively, where the super-exchange interaction via the continuous
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bridging structure of FeIII–dto–FeII–dto–FeIII is presumably very small and antiferromagnetic if 3D
electrons are localized. In the case of the LTP of (n-C3H7)4N[FeIIFeIII(dto)3], the charge transfer
interaction between the FeII and FeIII sites gives a perturbation to the wave function of the ground
state; therefore, the wave function can be described as Ψ =

√
1− α2{ϕi(FeII(t2g

6))ϕj(FeIII(t2g
3eg

2))} +
α{ϕi(FeIII(t2g

5))ϕj(FeII(t2g
4eg

2))}, where α denotes the normalization coefficient for the component
of charge transfer interaction. Each FeIII site in LTP accepts a t2g electron with down
spin, because both of the t2g and eg orbitals in the FeIII site are half occupied. Therefore,
the perturbed term of ϕi(FeIII(t2g

5))ϕj(FeII(t2g
4eg

2)) achieves the ferromagnetic coupling between
the spin configuration of FeII and FeIII. Consequently, the coupling between the ground
configuration of ϕi(FeII(t2g

6))ϕj(FeIII(t2g
3eg

2)) and the forward charge transfer configuration of
ϕi(FeIII(t2g

5))ϕj(FeII(t2g
4eg

2)) stabilizes the ground state and therefore favors the ferromagnetic
ordering. In this way, the charge transfer between the FeII (S = 0) and FeIII (S = 5/2) sites induces the
ferromagnetic ordering in the LTP.Crystals 2018, 8, x FOR PEER REVIEW  10 of 17 
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In the case of the HTP fragment of (n-C3H7)4N[FeIIFeIII(dto)3], each FeIII site with a low-spin state
(t2g

5: S = 1/2) accepts a t2g electron with down spin from the adjacent FeII site with a high-spin state
(t2g

4eg
2: S = 2). Therefore, the hybridization between the ground state of ϕi(FeIII(t2g

5))ϕj(FeII(t2g
4eg

2))
and the forward charge transfer state of ϕi(FeII(t2g

6))ϕj(FeIII(t2g
3eg

2)) stabilizes the ground state,
which favors the ferromagnetic ordering. Furthermore, in addition to the charge transfer interaction
(JCT), there are also three potential exchange interactions (JP) causing ferromagnetic interaction due
to the orbital orthogonality and one kinetic exchange interaction (JK) causing antiferromagnetic
interaction due to the orbital overlap between the adjacent FeIIIS6 and FeIIO6 sites. The sum of JCT and
JP is considered to be stronger than JK, which is responsible for the ferromagnetic ordering with higher
TC for the HTP fragment of (n-C3H7)4N[FeIIFeIII(dto)3].

In the case of (n-C3H7)4N[MnIIFeIII(dto)3], there are four JPs and one JK. The sum of the
potential exchange interaction is considered to be stronger than the kinetic exchange interaction,
which is responsible for the ferromagnetic ordering. Actually, the ferromagnetic ordering of
(n-C3H7)4N[MnIIFeIII(dto)3] has already been reported by Carling et al. [57], in which both TC and θ

were estimated at 10 K from the analysis of 1/χ as a function of temperature.
TC as a function of x for (n-C3H7)4[FeII

1−xMnII
xFeIII(dto)3] is shown in Figure 9. An enhancement

of TC from 7 K to 20 K (x = 0.00 to 0.02) is ascribed to the appearance of the HTP fragment exhibiting
the higher TC. As with the case of (n-C3H7)4[FeII

1−xZnII
xFeIII(dto)3] [40,41], the LTP fragment is

unaffected by dopant MnII ions, and thus the LTP fragment in all these complexes possesses the same
TC value of 7 K. With the further increasing of x above 0.04, TC decreases monotonically, corresponding
to the lowering of the ferromagnetic interaction, to reach a minimum value of 4 K for x = 1.00.
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(n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] in ( ) the high-temperature phase and (#) low-temperature phase.

Inset shows the extended figure in the low MnII concentration region. The dashed lines are a guide for
the eyes.

The detection of the CTPT can be achieved by both the magnetic susceptibility and dielectric
constant measurements. From the results of magnetic susceptibility and dielectric constant
measurements, the phase diagram for (n-C3H7)4[FeII

1−xMnII
xFeIII(dto)3] is determined as shown

in Figure 10. The legends in this diagram were assigned as follows. TC(HTP or LTP): the
ferromagnetic transition temperature for the HTP or LTP, determined by the FCM, ZFCM, and RM
measurements; T↑ or T↓(CT): the upper or lower limit of the thermal hysteresis in the dielectric constant
measurement; PHTP or FHTP: paramagnetic or ferromagnetic phase with the HTP spin configuration;
Pmix or Fmix: paramagnetic or ferromagnetic phase with a mixed state of the HTP and LTP spin
configuration, respectively.
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As shown in Figure 10, the paramagnetic phase corresponding to the HTP (PHTP) appears within
the whole MnII concentration region at room temperature. The MnII-substituted complexes with the
low x values of 0.00 ≤ x ≤ 0.04 exhibit the CT phase in the temperature range between T↑(CT) and
T↓(CT). In this region, the CTPT raises the dynamic oscillation between FeII and FeIII, which is found
by µSR measurement [58,59]. Below T↓(CT), the paramagnetic phase for the complexes with 0.00 < x
≤ 0.04, which is denoted as Pmix in Figure 10, becomes the mixing state between the LTP and HTP as a
result of the partial suppression of the CTPT. The complexes in this x region undergo a ferromagnetic
phase transition within the HTP domain at TC(HTP), below which the ferromagnetic phase with
a spin state of a mixture of the LTP and HTP (Fmix) appears as already mentioned in Section 3.2.2.
The complexes with further high x region (i.e. x > 0.04) stay in the PHTP phase down to TC(HTP),
reflecting the complete suppression of the CTPT, and undergo a ferromagnetic phase transition within
the HTP spin state at this temperature. Below TC(HTP), the complexes in this x region are in the
ferromagnetic phase with the spin state of the HTP (FHTP).

Although the phase diagram of the magnetically substituted complexes
(n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] is essentially similar to that for (n-C3H7)4N[FeII

1−xZnII
xFeIII(dto)3],

the major difference between these two systems is the ferromagnetic ordering in the high dopant
concentration region; i.e., the ferromagnetic phase appears in the whole MnII concentration range in the
present case, while it was not found for (n-C3H7)4N[FeII

1−xZnII
xFeIII(dto)3] [40,41]. The disappearance

of the ferromagnetic phase in the latter case is a result of the disconnection of the ferromagnetic
exchange pathway by ZnII-substitution, since there is no magnetic interaction between FeIII and
nonmagnetic ZnII. In contrast to this, on the basis of the analysis of the magnetic data, the ferromagnetic
interaction between MnII and FeIII through the dto bridge in (n-C3H7)4N[FeII

1−xMnII
xFeIII(dto)3] is

operating, though weaker than that for FeII–FeIII, and hence the ferromagnetic exchange pathway
is maintained over the whole substitution range. This feature is responsible for the existence of the
ferromagnetic phase across the whole substitution range in the phase diagram of this system.

Moreover, the critical substituted ratio for the disappearance of the CTPT is unexpectedly
low compared with that for the series of ZnII-substituted complexes, whose CTPT is completely
suppressed in the substituted ratio between x = 0.13 and 0.26 [40,41]. Considering the ion radii
between MnII and FeII, the substitution of MnII for FeII tends to expand the honeycomb structure in
the magnetic layer of [FeIIFeIII(dto)3]−. It causes the suppression of HTP in the same manner for the
cation-extended complex, (n-C5H11)4N[FeIIFeIII(dto)3] [38]. A cooperative effect of the CTPT in the
low dimensional system has been effectively terminated by the substitution of MnII with remaining
the ferromagnetic interaction.

5. Conclusions

We investigated the effect of metal substitution on the CTPT and the ferromagnetic phase
transition for (n-C3H7)4N[FeII

1-xMnII
xFeIII(dto)3] (x = 0–1). The existence of the CTPT strongly

depends on the MnII-substituted ratio of x. The series of MnII-substituted complexes consist of
the structures combined in the space group of P63 and R3c because of the stacking fault between
adjacent magnetic layers of [FeII

1-xMnII
xFeIII(dto)3]–. However, since the magnetic behavior is mainly

governed by the intralayer magnetic structure, we can discuss the substituted ratio dependence of
their physical properties.

From the results of the magnetic and dielectric measurements, the substitution of MnII suppressed
the CTPT, leading to the disappearance of CTPT above x = 0.04. The finding indicates that
MnII substitution is more effective at diminishing the CTPT compared with ZnII substitution
(n-C3H7)4N[FeII

1-xZnII
xFeIII(dto)3] (critical substituted ratio: 0.13 < x < 0.26) due to the large MnII-ion

radius in addition to the high cooperativity of the charge transfer phenomenon, as discussed in the
case of ZnII-substituted complexes.

In contrast to such a substitution effect on the CTPT, the ferromagnetic phase was observed in
the whole range of x for (n-C3H7)4N[FeII

1–xMnII
xFeIII(dto)3], while it disappears above x = 0.83 for
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the ZnII-substituted one. In particular, the ferromagnetic transition temperature (TC) was enhanced
in a lower region of x = 0.2–0.4, although the magnetic interaction between MnII and FeIII ions is
supposed to be weaker than that of FeII–FeIII ions considering the estimated Weiss temperatures. Such
an enhancement of TC is caused by the increment of the high-temperature phase with the higher TC,
which originates in the suppression of the CTPT.

The difference between the MnII and ZnII-substituted complexes is based on the magnetic
interaction between MII and FeIII. In the case of the ZnII-substituted complex, the nonmagnetic ZnII

prevents the ferromagnetic interaction between the FeII and FeIII and induces an antiferromagnetic
exchange pathway of FeIII-ZnII-FeIII through the medium of nonmagnetic ZnII. The antiferromagnetic
interaction between FeIII and FeIII compensates for the ferromagnetic interaction between FeII and FeIII

at around x = 0.83, and the θ becomes zero. Above x = 0.83, the absolute value of the negative Weiss
temperature rapidly increases with increasing x. On the other hand, in the case of the MnII-substituted
complex, both the FeII-FeIII and MnII-FeIII magnetic interactions are ferromagnetic, which is responsible
for the positive Weiss temperature in the whole range of x, in contrast to the ZnII-substituted complexes,
which is due to the substitution of the magnetic ions.
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