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Abstract: Utilization of Ti4O7 in applications such as catalyst support calls for control over the
size of the Ti4O7 nanoparticles. This can be achieved using a simple process such as carbothermal
reduction. In this study, various sizes of Ti4O7 nanoparticles (25, 60, and 125 nm) were synthesized
by carbothermal reduction using a multimode microwave apparatus. It was possible to produce
Ti4O7 nanoparticles as small as 25 nm by precisely controlling the temperature, heating process,
and holding time of the sample while taking advantage of the characteristics of microwave heating
such as rapid and volumetric heating. The results show that microwave carbothermal reduction is
advantageous in controlling the size of the Ti4O7 nanoparticles.
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1. Introduction

Ti4O7 is a Magnéli phase material [1] that exhibits excellent electrical conductivity at room
temperature, with a value of about 103 S cm−1, which is comparable to graphite [2–4]. In addition,
Ti4O7 shows high corrosion resistance [5] and high stability in electrochemical environments [3]
as well as acidic electrolytes [6]. From these features, it is possible to use Ti4O7 in different
applications, such as unitized regenerative fuel cells [7,8], polymer electrolyte fuel cells [9–11],
lithium-sulfur batteries [12–14], and water filtration systems [15,16].

For all these applications, it is necessary to synthesize single-phase Ti4O7 nanomaterials with
a high specific surface area [4]. In previous works, Magnéli phase nanoparticles were synthesized
using different methods, such as calcination of titanium ethoxide and polyethylene glycol solution [17],
thermal plasma treatment of H2TiO3 under Ar/H2 [18], sol-gel and calcination [19], sol–gel and
vacuum-carbothermic processes [20], pulsed UV laser irradiation [21], and thermal-induced plasma
processes [22]. In addition, Zhang et al. prepared fiber-like Ti4O7 by heating intermediate H2Ti3O7

at 1050 ◦C under a hydrogen atmosphere [23], but the fibers sintered and became submicron chains.
Size control of Ti4O7 nanoparticles is still a challenge because nanoparticles are prone to heavy sintering,
e.g., sintering of TiO2 nanoparticles begins at approximately 700 ◦C [24].

In addition to controlling the size of the nanoparticles, it is also necessary to employ simple,
practical techniques for the synthesis. In our previous works, Ti4O7 nanoparticles were prepared
using microwave irradiation by a carbothermal reduction process, where the device used was a
single-mode furnace [25,26]. To scale up the microwave carbothermal process for industry, the process
has to be adapted to multimode furnaces. It is more difficult to control the sample temperature in
a multimode-type furnace than in a single-mode microwave furnace because the electromagnetic
field distribution tends to be no-uniform in the former case. In order to prepare nanoparticles by
the carbothermal reduction process, accurate temperature control is required, especially with rapid
temperature increase.
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Taking all these factors into account, we synthesized Ti4O7 nanoparticles in various sizes (25, 60,
and 125 nm) using a carbothermal reduction method with a multimode-type microwave apparatus.
Our experimental set-up included a self-made susceptor (using carbon powder with high microwave
absorbing power) and proportional–integral–derivative (PID) temperature control.

2. Materials and Methods

Figure 1 shows the sample setting. TiO2 samples with three particle sizes were used as pristine
samples: Sample 1 (TTO-51(A), particle size about 25 nm, Ishihara Sangyo Kaisha, Ltd.), Sample 2
(particle size about 60 nm, 99.5%, IoLiTec-Ionic Liquids Technologies GmbH, Heilbronn, Deutschland),
and Sample 3 (particle size about 110 nm, EM Japan Co., Ltd., Tokyo, Japan). Sample 1 was washed
with 5M NaOH to eliminate Al(OH)3, which is used as a protective agent. Pristine TiO2 was dispersed
in water with dissolved polyvinylpyrrolidone (PVP, molecular weight: 40,000, Wako Pure Chemical
Industries, Ltd., Osaka, Japan) by sonication. The ratio of weight between TiO2 and PVP is 1.21 g:5.59 g.
The solution was dried to obtain PVP-coated TiO2 nanoparticles. PVP decomposes and becomes a
carbon source during microwave heating. The PVP-coated TiO2 nanoparticles (0.15 g of Sample 1,
0.3 g of Samples 2 and 0.3 g of Sample 3) were filled in a quartz tube. After sealing with silica wool,
0.8 g of titanium sponge (Wako Pure Chemical Industries, Ltd., Osaka, Japan) was added as an oxygen
absorber. This quartz tube was set in a quartz container filled with a carbon susceptor. The pressure
inside the quartz tube was controlled with a rotary pump so that the base pressure of the system was
about 10 Pa. A microwave irradiation furnace from µReactor Ex (Shikoku Instrumentation Co., Ltd.,
Kagawa, Japan) was used. The process temperature was measured with a thermocouple, which was
placed between the susceptor and the quartz tube. Microwave-irradiated samples were analyzed
by X-ray diffraction (XRD, RINT-2200/PC, Rigaku Co., Tokyo, Japan) and a field emission scanning
electron microscope (FE-SEM, S4800, Hitachi High-Technologies Co., Tokyo, Japan). In the analysis
of particle size distribution, we traced each surface of particles in FE-SEM images, and used ImageJ
software to calculate the number average particle diameter from the area of traced particles.
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3. Results and Discussion

To achieve a reduction of the pristine TiO2 to Ti4O7 and retaining of the nanomorphology of
pristineTiO2 at the same time, various experiments were conducted in different heating regimes to
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decide the optimal experiment condition. The experimental results of various heating regime to
synthesize Ti4O7 nanoparticles from Sample 1 was summarized as Table 1. In 25 nm pristine TiO2 case,
reduction reaction was too fast to obtain Ti4O7 when the heating regime was same to the previous
paper (No. 7) [25]. To control the reduction-reaction speed in high temperature region, rate of heating,
holding temperature and holding time was changed to fast, low and short, respectively. Below 900 ◦C,
sample was not reduced. At 925 ◦C, Ti4O7 phase was obtained, and when the holding time was 13 min,
single phase Ti4O7 was obtained.

Table 1. Experimental results of various heating regime to synthesize Ti4O7 nanoparticles from
Sample 1.

No. Rate of
Heating/◦C s−1

Holding
Temperature/◦C

Holding
Time/min. Synthesized Phase

1 12.0 900 10 TiO2
2 12.0 925 10 Ti7O13 + Ti4O7
3 12.0 925 11 Ti4O7 + Ti6O11
4 12.0 925 13 Ti4O7
5 12.0 925 15 Ti4O7 + Ti3O5
6 12.0 925 20 Ti3O5 + Ti4O7
7 10.0 950 30 Ti3O5 + Ti2O3

Figure 2 shows the profiles of microwave power and process temperature during microwave
processing when a reduction of the pristine TiO2 to Ti4O7 and retaining of the nanomorphology of
pristineTiO2 was achieved at the same time.
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Table 2 shows the optimal condition of the rate of heating, holding temperature, holding time,
and average microwave power during temperature holding for each process. For Sample 1, the holding
temperature was lower and the holding time was shorter than the other samples as a smaller particle
size results in a more effective reduction reaction. In addition, to obtain Ti4O7 nanoparticles, it is
necessary to increase the temperature rapidly and shorten the holding time at high temperatures
(above 700 ◦C) in order to prevent grain growth. The process temperature was 975 ◦C for Sample 2.
This temperature is different compared to a previous study [25] and is due to the temperature
measurement method. In the previous study, the thermocouple was located in the sample powder.
However, in this experiment, the thermocouple was placed between the susceptor and the quartz
tube used to hold the sample powder. Thus, the process temperature measured in this experiment is
different from the sample temperature: it is possible that the true sample temperature is lower. We can
consider that the temperature of the susceptor is the main factor in maintaining the temperature of the
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system because the carbon volume of the susceptor is much larger than that of PVP. Regardless of the
particle size, the average microwave power values during the holding process were almost the same.

Table 2. Experimental conditions in microwave processing.

No. Rate of Heating
/◦C s−1

Holding
Temperature/◦C

Holding
Time/min.

Microwave Power
@ Holding/W

Sample 1 12.0 925 13 168.0
Sample 2 3.4 975 30 171.0
Sample 3 5.7 975 30 181.1

Figure 3 shows XRD patterns of pristine TiO2 and the samples after the microwave process.
All pristine TiO2 samples were in the rutile phase. The right-side figure shows XRD patterns of
synthesized samples. In this figure, Ti4O7_1, Ti4O7_2 and Ti4O7_3 refer to synthesized samples after
microwave processing from Sample 1, Sample 2 and Sample 3, respectively. The synthesized samples
were single-phase Ti4O7 without any other Ti-O phase.
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Ti4O7_1, Ti4O7_2 and Ti4O7_3 refer to particles after synthesis from Sample 1, Sample 2, and Sample
3, respectively.

Crystallite diameters of the pristine TiO2 and the synthesized Ti4O7 were analyzed from XRD
patterns using Scherrer equation, and the results were summarized in Table 3. All crystallite diameters
were smaller than the primary particle diameter confirmed by FE-SEM: thus the pristine TiO2 and the
synthesized Ti4O7 was polycrystalline. The crystallite diameter of pristine TiO2 was almost the same
value as synthesized Ti4O7.

Table 3. Crystallite diameter of pristine TiO2 and synthesized Ti4O7 by microwave; MW: microwave.

Before MW Process After MW Process

Sample 1 9.2 (0.3) nm 9.2 nm
Sample 2 28.3 (0.4) nm 25.3 nm
Sample 3 31.0 (0.9) nm 29.5 nm

Figure 4 shows FE-SEM images of pristine TiO2 and synthesized Ti4O7 nanoparticles acquired in
SE mode. Although some coarse particles were observed in pristine TiO2, the particle diameter was
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uniform. From SE-images of Ti4O7_1 and Ti4O7_2, there seems to be grain growth, but this is because
of residual carbon around the Ti4O7 nanoparticles. Figure 5 shows FE-SEM images of the samples
acquired in TE mode, where Ti4O7 particles can be clearly observed, since electrons go through the
carbon layer. The TE-images for Ti4O7_1 and Ti4O7_2 also show the difference between particles and
residual carbon when compared with SE-images. For Ti4O7_3 nanoparticles, the carbon coating was
relatively thinner, making it easier to observe and determine the diameter of the nanoparticles.
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Figure 6 shows histograms of particle sizes for pristine TiO2 and synthesized Ti4O7. Table 4
shows the average particle size (Ave. diameter), standard deviation (S.D.), maximum particle diameter
(Max.), minimum particle diameter (Min.), sample number (n), and standard error (S.E.). The average
nanoparticle diameter of Sample 1, Sample 2, and Sample 3 was 25.8, 54.6, and 108.0 nm, respectively.
The average nanoparticle diameter of Ti4O7_1 was 24.7 nm, which is within the error margin of the
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average diameter of Sample 1. On the other hand, the average nanoparticle diameter of Ti4O7_2 was
60.4 nm; indicating a 3.3 nm grain growth. For Ti4O7_3, the average nanoparticle diameter was 6.3 nm
larger compared to the average nanoparticle diameter of Sample 3. However, since the maximum
particle size of Sample 3 was larger than the measured sizes of Ti4O7_3 particles, it can be deduced
that there was no significant grain growth.Crystals 2018, 8, x 6 of 8 
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Table 4. Average particle size (Ave. diameter), standard deviation (S.D.), maximum particle diameter
(Max.), minimum particle diameter (Min.), sample number (n), and standard error (S.E.) of pristine
TiO2 and synthesized Ti4O7.

No. Ave. Diameter/nm S.D./nm Max./nm Min./nm n/- S.E./nm

Sample 1 25.8 7.9 69.5 13.9 100 0.8
Ti4O7_1 24.7 6.7 43.5 12.2 100 0.7

Sample 2 54.6 13.9 91.1 29.2 120 1.3
Ti4O7_2 60.4 12.8 94.6 30.7 120 1.2

Sample 3 108.0 38.0 246.2 41.8 50 5.4
Ti4O7_3 125.0 37.5 215.6 51.0 50 5.3

From these results, even when a simple apparatus such as a multimode microwave irradiation
furnace is used, it is possible to produce Ti4O7 nanoparticles with an average size as low as 25 nm.
This can be done using a carbon thermal reduction method by precise control of the heating rate,
holding temperature, and holding time.

4. Conclusions

Ti4O7 nanoparticles of various sizes (25, 60, 125 nm) were prepared in a multimode microwave
furnace. In general, the synthesized Ti4O7 nanoparticles retained the size of the pristine TiO2

nanoparticles. The process time and temperature varied depending on the size of nanoparticles
because the reduction reaction was slower when larger pristine nanoparticles were used. It is
possible to precisely control the temperature, heating process, and holding time of the sample while
taking advantage of the characteristics of microwave heating such as rapid and volume heating.
This microwave carbothermal reduction method is thus highly effective in controlling the size of the
synthesized Ti4O7 particles.
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