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Abstract: Crystalline silicon (c-Si) is the dominating photovoltaic technology today, with a global
market share of about 90%. Therefore, it is crucial for further improving the performance of c-Si
solar cells and reducing their cost. Since 2014, continuous breakthroughs have been achieved in the
conversion efficiencies of c-Si solar cells, with a current record of 26.6%. The great efficiency boosts
originate not only from the materials, including Si wafers, emitters, passivation layers, and other
functional thin films, but also from novel device structures and an understanding of the physics of
solar cells. Among these achievements, the carrier-selective passivation contacts are undoubtedly
crucial. Current carrier-selective passivation contacts can be realized either by silicon-based thin films
or by elemental and/or compound thin films with extreme work functions. The current research and
development status, as well as the future trends of these passivation contact materials, structures,
and corresponding high-efficiency c-Si solar cells will be summarized.
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1. Introduction

1.1. The Demand of Passivation Contact

Severe energy crises and environmental problems increasingly promote the rapid research and
development of the photovoltaic industry [1–3]. Because of its earth-abundant element, a suitable band
gap of 1.12 eV, high purity, high minority carrier lifetime, very low grain boundary defects, and easy
control of resistivity, crystalline silicon (c-Si) is widely used for solar cells and accounts for more than
90% of the current photovoltaic market [1,4].

Conversion efficiency increase is always the first-key issue in PV research. The first c-Si solar cell
with 6% efficiency was fabricated in Bell Labs, USA, in 1954 [5]. Since then, a variety of new materials,
technologies, and device structures have been developed by researchers all over the world [6–8]. For a
factual solar cell, there are five energy loss mechanisms, including non-absorption loss for photons
with energy lower than the bandgap, lattice thermalization loss for photons with energy higher than
the bandgap, junction voltage loss caused by an imperfect PN junction, bulk recombination loss caused
by defects inside wafers, and contact voltage loss between semiconductors and metal electrodes [9].
During the past decades, various techniques have been developed to improve the performance of c-Si
solar cells [10–12], including pyramid light trapping structures and antireflective coatings, high-quality
Si wafers (N-type FZ-Si, N-type CZ-Si) used to reduce bulk recombination, emitter materials (diffused
emitter and deposited emitter) used to realize carrier selectivity and improve contact properties,
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passivation materials (SiO2, SiOx, SiNx, Al2O3 and a-Si:H) used to reduce surface combination, and
other functional materials (transparent conductive oxide and metal electrodes) used to improve
carrier collection and transportation. The device designs of c-Si solar cells are also continuously
being optimized.

Recent studies indicated that carrier recombination loss via defect states, present at the contact
points between the absorber and the metal, become the key factor for further improving conventional
diffused homojunction c-Si solar cell efficiency [13,14]. Such recombination losses decrease the
fill factor (FF), and particularly the open-circuit voltage (Voc), and thus result in a lower device
efficiency. Therefore, this loss is even considered to be the last obstacle standing in the way of the
achievement of the theoretical limit of efficiency [13,15]. To address this problematic loss by reducing
the metal–semiconductor contact area [6,7,10,11] in conventional diffused-homojunction c-Si solar cells,
partial rear contacted (PRC) schemes, for example, a passivated emitter and rear locally diffused (PERL),
a passivated emitter and rear cell (PERC), as well as a passivated emitter and rear totally-diffused
(PERT) have been developed. An efficiency as high as 25% was achieved for the PERL solar cell in
1999 [6,7], which was mainly achieved by engineering small local metal contacts, with heavy doping
underneath to minimize the contact resistance and the recombination losses by reducing one type
of carrier at the defective metal–semiconductor contact region. However, despite the less than 1%
contacted area, the high recombination velocity of >105 cm/s, induced by the unpassivated contact,
still seriously prevents the further improvement of Voc and conversion efficiency [16]. This complicated
and high-cost local-opening-process inevitably causes damage to the Si wafers at the opening positions.
Additionally, because of the local contacts, the carriers deviate from the one-dimensional shortest path,
perpendicular to the metal contact, and accumulate at the opening positions, resulting in an obvious
fill factor loss [6,7]. To resolve the contact-recombination issue caused by metal–semiconductor contact,
further investigation into advanced contact schemes and/or device structures is necessary.

1.2. Two Types of Passivation Contacts

To eliminate the metal/semiconductor-contact-induced recombination issue, passivating contact
(also known as heterocontacts, or carrier selective contacts) materials and corresponding structures
were recently proposed and widely investigated. These novel contacts were realized by depositing
carrier-selective materials or stacks of materials on the surface of a c-Si wafer, which provides a
low contact resistivity to electrons (or holes), while simultaneously ‘blocking’ holes (or electrons).
Using carrier-selective passivation contacts, the full-area passivation of the c-Si wafer surface can
be realized. At the same time, the carrier is one-dimensionally transported between the two metal
electrodes, which is favorable for obtaining a high fill factor. The main advantages of a carrier-selective
contact for silicon solar cells include: (1) Excellent surface passivation at both the contact and
non-contact areas; (2) extraction of carriers at the energy of a quasi-Fermi level, resulting in a high
open circuit voltage (Voc); (3) cost-effective thermal diffusion processes; (4) simple contact patterning;
and (5) a simple process flow, with a low cost.

As the most typical partial rear contacted (PRC) scheme, the PERL solar cell maintained the
record efficiency of 25% [6,7] for as long as fifteen years, until 2014, when SunPower, USA, and
Panasonic, Japan, reported certified efficiencies of 25.2% [17] for an interdigitated back-contacted (IBC)
solar cell, and 25.6% [18], for an interdigitated back-contacted silicon heterojunction (IBC-SHJ) solar
cell. The breakthroughs in conversion efficiencies caused another research rush on c-Si solar cells.
In the following years, Kaneka [19–21], the Fraunhofer Institute for Solar Energy Systems (Fraunhofer
ISE) [22,23], and the Institute for Solar Energy Research in Hamelin (IFSH) [24,25] successively reported
conversion efficiencies over 25%. All these record c-Si solar cells consist of at least a back-side
(electron) passivation contact, and some even possess both-side (hole and electron) passivation contacts.
Undoubtedly, these breakthroughs further consolidate the dominant position of c-Si solar cells in the
current and near-future photovoltaic markets. In reference to the carrier-selective materials, there are
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two types of passivation contacts, including silicon-based thin films and materials with extreme
work functions.

In recent years, the benefits of the asymmetric heterocontact concept have been realized, perhaps
most famously by the silicon heterojunction cell architecture (SHJ, sometimes called HIT) [19–21,26–28],
which has now overtaken its homojunction counterpart in terms of efficiency. Besides SHJ solar
cells, the recently emerging tunnel oxide passivated contact (TOPCon) [22,23], polysilicon on oxide
(POLO) junction [24,25], and passivated emitter and rear poly-silicon (PERpoly) [29] solar cells also
employ carrier-selective passivation contacts by stacking doped-silicon films, either amorphous or
polycrystalline. The selectivity of the passivation contacts for electrons and holes can be achieved
by doped hydrogenated amorphous silicon (a-Si:H) or polycrystalline silicon (poly-Si:H), while the
passivation of c-Si surfaces was obtained by intrinsic a-Si:H or ultrathin silicon oxide (SiO2). Thus,
the SHJ and TOPCon solar cells adopt i-a-Si:H/doped a-Si:H and SiO2/doped poly-Si, respectively,
to simultaneously achieve full-area passivation, carrier selectivity, and transport functions.

The above-mentioned passivation contacts, based on doped-silicon layers, require a relatively
expensive PECVD system, flammable and explosive silane, and highly toxic materials, such as
borane and phosphorane. Meanwhile, the relatively small band gap of silicon film results in a
high parasitic absorption of light. Alternative materials are expected to completely replace doped
silicon layers to form the asymmetric carrier selective heterocontacts with c-Si wafers. These alternative
materials, which usually are called carrier-selective materials or passivation contact materials, include
transition metal oxides [30–47], organic materials [48–53], and alkali/alkaline earth metals and/or
salts [30,40,54–61]. Compared to doped-silicon layers, dopant-free carrier-selective materials open
a wider optical and electrical parameter space, decoupling the optimization of different solar cell
loss components. Furthermore, they can generally be deposited using simpler and low-temperature
techniques, including, for example, evaporation, spin coating, spray pyrolysis, and so on, with a great
potential for realizing a low-cost and reduced fabrication complexity. Current c-Si solar cells, containing
a set of dopant-free asymmetric heterocontacts (DASH), have demonstrated a high efficiency of up to
20.7%, indicating their competitiveness in relation to conventional approaches [40].

2. Doped Silicon Film-Based Carrier-Selective Contacts

2.1. Silicon Heterojunction (SHJ) Solar Cells

Since the 1980s, Sanyo Corporation, which was subsequently acquired by Panasonic Corporation,
has been in the leading position in the SHJ solar cell industry. The first a-Si:H/c-Si heterojunction solar
cell was fabricated in 1983 [26–28]. The potential of heterojunction technology was demonstrated by
Sanyo in 1992, with an intrinsic a-Si:H ultra-thin buffer layer between a doped emitter and c-Si wafer
to reduce the interface state density, decrease surface recombination, and lower emitter saturation
current, which was named HIT [26–28]. In SHJ solar cells, the emitter and back surface field are formed
by doped a-Si:H films, sandwiching the c-Si wafer, among which an intrinsic a-Si:H buffer layer of
a few nanometers in thickness is typically inserted between the c-Si surface and the doped a-Si:H
films to further improve the passivation. That is to say, i-a-Si:H/n-a-Si:H are the electron-selective
contacts, and i-a-Si:H/p-a-Si:H are the hole-selective contacts. Physically, the passivation stems from
the hydrogenation of the c-Si surface states. The full c-Si area is passivated with the a-Si:H, and thus
there is no direct contact between the c-Si absorber and the metal. Therefore, this approach has the
potential to produce a very high Voc [26–28]. The silicon heterojunction structure suffers a lot from
the a-Si:H/c-Si defects, as compared to the conventional homojunction structure. However, such a
problem can be fixed by surface passivation techniques. When the a-Si:H layer is deposited onto
the c-Si surface, not all the dangling bonds at the surface can be bonded because the a-Si:H network
configuration is not always fit for bonding. As a result, these unpassivated dangling bonds lead to
defects at the surface. Such a problem can be fixed by passivating those dangling bonds with hydrogen,
which is also called chemical passivation. It is normally achieved by depositing a thin intrinsic a-Si:H
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layer. In addition, the passivation quality can be further improved by field-effect passivation, which is
achieved by the deposition of the doped a-Si:H layer. Because of the fixed charge in the a-Si:H layer,
the electric field is formed to force and accelerate the electron/hole separation in order to minimize
recombination at the a-Si:H/c-Si interfaces [26–28].

From the cell fabrication process perspective, a-Si:H/c-Si heterojunctions have the following
advantages over a conventional diffused-homojunction: (1) Excellent passivation properties,
which achieve a high Voc and therefore a high efficiency; (2) low processing temperatures,
which prevent bulk quality degradation in low-quality c-Si wafers; (3) a better temperature coefficient,
compared to diffused-homojunction cells; and (4) a low-cost fabrication process, with a high potential
for reducing production costs [26–28]. By the continuous optimization of the intrinsic a-Si:H passivation
layer, back surface field and back-side passivation, highly conductive transparent ITO, texturing
surface, metal grid lines, and wafer quality, Panasonic has increased its best cell efficiency to 24.7% on
large areas [28]. The best Voc reached 750 mV, which was much higher than that of the state-of-the-art
homojunction counterpart. Another prestigious Japanese corporation, Kaneka, reported an even higher
efficiency of 25.1%, with a Voc of 738 mV, Jsc of 40.8 mA/cm2 and FF of 83.5% [19]. The schematic
cross-section of a typical SHJ solar cell is shown in Figure 1.
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Figure 1. Schematic cross-section of a typical silicon heterojunction (SHJ) solar cell [11].

Even though SHJ solar cells have reached very high efficiencies of around 25% [19,28], there are
some disadvantages, most of which come from the front grid shading and parasitic absorption of front
emitter layers, which ineluctably and severely decrease the current. Additionally, the problem of how to
balance the series resistance and anti-reflection properties of the front TCO presents another limitation.

For the interdigitated back contacted (IBC) solar cell, both the emitter and the base contact are
placed at the back surface to form an interdigitated structure [62]. Since there are no emitter contacts
on the front side, more light can penetrate into the absorptive c-Si wafer. Additionally, the original
emitter contact area at the front can be coated by passivation and anti-reflection layers, which can
lead to a further current increase. SunPower Corporation has been the leader in the industry for a
number of years, with its renowned IBC solar cell efficiency of up to 25% [17]. By combining the SHJ
and IBC structures, a novel IBC-SHJ solar cell is formed, which provides both a high Voc of the SHJ
solar cell and a high Jsc of the IBC solar cell [18,20,21]. The IBC-SHJ solar cell is considered the most
promising to approach the theoretical limit efficiency of a c-Si solar cell [20,63]. Based on this novel
and promising structure, Panasonic Corporation achieved a high efficiency of 25.6% (Voc = 740 mV,
FF = 82.7%, Jsc = 41.8 mA/cm2, 143.7 cm2) [18], whilst Kaneka Corporation reported an even higher
efficiency of 26.6% (Voc = 740 mV, FF = 84.6%, Jsc = 42.5 mA/cm2, 179.7 cm2) [20,21].

2.2. Tunnel Oxide Passivated Contact (TOPCon) Solar Cells

Only a small area on the rear side is contacted in order to reduce recombination with PERC
technology, although additional patterning steps are still required, leading to longer current conduction
paths in the c-Si wafer [6,7]. In 2014, Fraunhofer ISE proposed a full-area, carrier-selective,
passivated contact as an appealing alternative to a partial rear contact, and named it Tunnel Oxide
Passivated Contact (TOPCon) [64], which consists of metal contacts on both the front and back sides
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and removes patterning from the back side by full-area passivated back contacts [22,23,64]. This has
served the purpose both of increasing efficiencies and simplifying the manufacturing processes.
The thickness of the intermediate SiO2 passivation layer is reduced to one or two nanometers,
allowing the charge carriers to ‘tunnel’ through it. Subsequently, a thin coating of highly doped
silicon is deposited over the entire layer of the ultra-thin tunnel oxide. This novel combination of
layers allows the electrical current to flow out of the cell with nearly zero loss. The structure of the
TOPCon solar cell is shown in Figure 2. The first key technical issue of the TOPCon technology is the
preparation of the ultra-thin oxide layers, which was previously realized by wet chemical methods by
Fraunhofer ISE. Later, researchers developed various methods to prepare ultra-thin oxide layers [65,66],
including plasma-assisted oxidation, wet chemical hydrochloric acid oxidation, wet chemical nitric
acid oxidation, thermal oxidation, and UV/O3 anodization. Secondly, the as-deposited doped silicon
thin layer is amorphous. A post-annealing process is usually needed to increase the crystallization
fraction [64] and activate the dopant, leading to the excellent field passivation and junction property.
Low-pressure chemical vapor deposition (LPCVD) [67] or Ion implantation [68,69] were also performed
to achieve heavily-doped poly-Si films.
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Compared with the PERC cell, the TOPCon cell provides a simple rear contact, without any
patterning, reducing the costs and process complexity. Additionally, the quality of the c-S wafer is
essential for a highly efficient solar cell [64–69]. For solar cells with pronounced lateral structures
(PERC, IBC), only c-S wafers with certain base resistances can lead to high efficiencies. On the contrary,
due to the one-dimensional current flow in the TOPCon solar cell, the base resistance has no significant
influence on the solar cell performance. High Voc (>715 mV), high FF (>81.5%) and high efficiencies
were achieved for c-S wafers, with a wide base resistance between 1 and 10 Ωcm. Using the TOPCon
back side structure, a record efficiency of 25.7% (Voc = 725 mV, FF = 83.3% and Jsc = 42.5 mA/cm2)
could be achieved, with a low resistivity of 1 Ωcm for n-type c-Si [23]. This represents the highest
efficiency reported for both-sides contacted c-Si solar cells.

In fact, the TOPCon technology not only can be used as a rear-side passivation contact for the
n-type c-Si solar cell, but can also be applied in p-type c-Si solar cells, with reported efficiency values
of up to 23.9% and 24.3% for cells without and with a front surface field, respectively [70,71].

2.3. Polycrystalline Silicon on Oxide (POLO) Solar Cells

IBC-SHJ solar cells held the record efficiency of 26.6% [21], although they suffer from the inherent
limitations of low-temperature processing. Thus, low-temperature metallization and interconnection
procedures need to be developed. The other disadvantage is parasitic optical absorption in the doped
a-Si:H layer and the need for ultra-clean wafer surfaces before the deposition of thin-film silicon
layers. Combining heterojunction with back-contacted structures also requires complex patterning
procedures in the formation of interdigitated junctions. In an effort to address these limitations,
ISFH has developed polycrystalline silicon on oxide (POLO) passivating contacts, which are stable
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under high temperatures [24,25,72]. The crucial aspects of the POLO contacts are the growth of
interfacial oxide and deposition of intrinsic polycrystalline silicon layers, which are subsequently
doped. The beauty of the approach is that the resultant junctions have a low recombination current
density (1 fA/cm2 on n+-POLO and 4 fA/cm2 on p+-POLO), which can be contacted by metal without
inducing any additional recombination losses. For this kind of back-contact technology, it is necessary
to separate the base and emitter regions. ISFH employed textured trenches to separate evaporated
aluminum contacts. The interfacial oxide can be grown thermally or by means of wet chemistry.
Commercially available LPCVD systems are employed to deposit intrinsic polycrystalline silicon
layers. The intrinsic layers are subsequently doped using an ion implantation process, while in-situ
doping in LPCVD is also possible.

Compared with the a-Si/c-Si heterojunction, the poly-Si/c-Si junction has a lower saturation
current density, a lower contact resistance, and better carrier selectivity [73]. In addition, polycrystalline
silicon has a very high defect state, but when used in a POLO solar cell as a back contact,
the recombination of such a PN junction is greatly reduced [74]. Subsequently, by comparing the same
thickness of a p-type a-Si:H layer and p-type poly-Si layer, Reiter et al. found that the former has
a higher loss of short-circuit current density due to parasitic absorption [75]. They also conducted
related studies on the mechanism of carrier selectivity in poly-Si/c-Si junctions. They found that
n+-poly-Si behaves better in terms of electron selectivity, while p+-poly-Si demonstrates an excellent
hole selectivity. Chemically etched grooves were used to separate the n+-poly-Si and p+-poly-Si,
which were combined with the interfacial silicon oxide to obtain excellent passivation [76]. Adapting
the POLO concept to the back-contact architecture, as shown in Figure 3, ISFH attained an impressive
26.1% efficiency in February 2018, which is the record efficiency for a p-type c-Si wafer solar cell [25].
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A photolithography-free process sequence for POLO technology, adapted to a back-contact 
structure on n-type c-Si wafers, has also been developed. This approach also relies on textured 
trenches to separate the emitter and base regions and employs inkjet and laser technology for 
patterning and contact opening, a mask-free high throughput metallization process, and a self-
aligned contact separation method. A high efficiency of 24.25% was obtained for n-type c-Si wafers 
[77]. 

3. Dopant-Free Carrier-Selective Contacts 

Compared to the doped silicon films, dopant-free carrier-selective contacts consist of elementary 
or compound thin films, with high work functions as hole-selective contacts and low work functions 
as electron-selective contacts. For example, electron-selective contacts include compounds with a low 
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Figure 3. Schematic structure of a polysilicon on oxide (POLO) solar cell [25].

A photolithography-free process sequence for POLO technology, adapted to a back-contact
structure on n-type c-Si wafers, has also been developed. This approach also relies on textured trenches
to separate the emitter and base regions and employs inkjet and laser technology for patterning
and contact opening, a mask-free high throughput metallization process, and a self-aligned contact
separation method. A high efficiency of 24.25% was obtained for n-type c-Si wafers [77].

3. Dopant-Free Carrier-Selective Contacts

Compared to the doped silicon films, dopant-free carrier-selective contacts consist of elementary
or compound thin films, with high work functions as hole-selective contacts and low work functions
as electron-selective contacts. For example, electron-selective contacts include compounds with
a low work function, such as LiFx [30,32,40], MgFx [56], TiO2 [31,40,43–45] and ZnO [46,47],
and alkaline metals with an extremely low work function, such as Mg [54] and Ca [57]. Hole-selective
contacts mainly consist of organic films [48–53] and transition metal oxides (TMOs), such as
MoOx [30,32,36–38,40–42,47], WOx [35,38,39], V2Ox [33–35,38], and NiOx [31].
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3.1. PEDOT:PSS Hole-Selective Contacts

In order to form organic/c-Si heterocontacts for hole-selectivity, a wide range of organic layers
are investigated, including TAPC [48], Spiro-OMeTAD [49], and PEDOT:PSS [50–53], among which
PEDOT:PSS remains the most promising candidate.

Since it is difficult to successfully form uniform PEDOT:PSS layers on textured c-Si wafers,
conventional n-Si/PEDOT:PSS solar cells are generally fabricated on planar c-Si substrates,
which usually have relatively high reflectivity and poor current density. He et al. firstly deposited
PEDOT:PSS layers on textured c-Si and then fabricated a water-insoluble phthalic acid ester, diethyl
phthalate (DEP), onto the PEDOT:PSS. The external tensile stress stretches the PEDOT:PSS films so
that they have a tight contact with the textured c-Si surface, even at the valley regions, which largely
decreases the pyramid-textured c-Si/PEDOT:PSS interface recombination. Because of the improved
electrical passivation, the enlarged junction area, as well as the excellent light trapping property, a high
efficiency of up to 16.2% was obtained [51].

If the PEDOT:PSS layer is deposited on the front side of a solar cell, a significant parasitic
light absorption within the PEDOT:PSS layer is inevitable. Zielke et al. proposed a back-junction
organic-silicon solar cell, in which the PEDOT:PSS layer was placed on the rear side instead of the
front surface to avoid parasitic light absorption within the PEDOT:PSS and to allow for an improved
surface passivation. This novel solar cell was named the “BackPEDOT” cell [52]. By optimizing the
silicon surface pre-treatment in combination with the adapted PEDOT:PSS blend, record efficiencies of
18.3% and of 20.6% were achieved for n-type c-Si and p-type c-Si wafers, respectively [53].

3.2. Alkali/Alkaline Earth Metal Salts Electron-Selective Contacts

Inherited from the organic electronic community, thin alkali and alkaline earth metal salt
interlayers, including LiFx [30,32,40], MgFx [56], Mg [54] and Ca [57], can be used to enhance electron
extraction, and when these layers are integrated under a metal electrode, low work function values
can be obtained (as low as ~2.5 eV, in some cases), promoting electron collection from the adjacent c-Si
surface. In fact, alkali and/or alkaline earth metal salts have been explored intensively as electrodes
with low work functions in solar cells and light-emitting diodes.

Due to the ubiquitous Fermi-level pinning effect, the low-resistance contact between metals and
lightly-doped n-type c-Si is a technologically challenging issue, which usually results in a relatively
high Schottky barrier (>0.65 eV) for electrons. Bullock developed a simple and robust process to
reduce the impact of contact recombination and optical losses, and also to achieve an mΩcm2 scale
contact resistivity on lightly-doped n-type c-Si via a lithium fluoride/aluminum (LiF/Al) partial rear
contact, permitting a conversion efficiency higher than 20% in the initial proof-of-concept stage [55].
In 2016, Bullock successfully developed and implemented dopant-free electron-selective heterocontacts,
using alkali metal fluorides in combination with passivating intrinsic a-Si:H interlayers, resulting in a
conversion efficiency of 19.42% for a DASH cell [30].

Magnesium fluoride (MgF2), an alkaline earth metal salt, has a long history of being utilized as an
antireflection coating in optical devices, including c-Si solar cells, because of its high transparency and
low refractive index (n ≈ 1.36). Wan investigated the conduction and recombination properties
of a thermally-evaporated MgF2/Al electron−selective contact on n-type c-Si for the first time.
A significantly lower work function than that of pure aluminum was obtained. Application of the
novel electron contact to the full rear surface of n-type c-Si solar cells resulted in a conversion efficiency
of over 20% [56].

Allen demonstrated a low resistance Ohmic contact for n-type c-Si wafers by incorporating
a metal calcium (ϕ~2.9 eV) layer with a low work function between c-Si and an aluminum
electrode. Contact resistivity (ρc) of ~2 mΩcm2 can be realized on undiffused n-type silicon,
thus enabling partial rear contact cell designs on n-type c-S, without the need for a phosphorus
diffusion. Integrating the Ca/Al stack into a partial rear contact solar cell architecture, fabricated on a
lightly-doped (ND = 4.5 × 1015 cm−3) n-type wafer, resulted in a device efficiency of 20.3%, whereas
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the Ca/Al contact comprised only ~1.26% of the rear surface [57]. Tong reported a high-performance
electron-selective contact by combining an ultrathin SiOx and an Mg layer with a low work function,
which simultaneously achieved moderate-level passivation and low contact resistivity on lightly-doped
n-type c-Si. In addition, the deposition of Mg on SiOx relaxes the restriction on the threshold thickness
of the SiOx for electron tunneling and therefore broadens the optimization space for rear-sided
passivation [54]. A dopant-free c-Si solar cell, with a SiOx/low-WFM electron-selective contact and a
MoOx hole-selective contact, yielded a high efficiency of 21.8% [58].

3.3. Transition Metal Oxide (TMO) Carrier-Selective Contacts

Transition-metal-oxides (TMO) are of great interest since they are cheap, non-toxic, and abundant.
They usually demonstrate large band gaps (Eg > 3 eV), a wide variety of work functions, from 3 to
7 eV, and conductivities, from insulating to metallic-like, which make them highly flexible when used
as electron- or hole-selective contact materials [78]. In addition, these films can be deposited at low
temperatures (T < 200 ◦C), or by solution-processing methods [42,79], indicating a greater potential for
process simplification and cost reduction.

If both the dopant-free hole and electron-selective contacts are deposited on the front and rear
sides of c-Si wafers, respectively, these novel devices are nominated as dopant-free asymmetric
heterocontacts (DASH) solar cells [30,40], which have been widely investigated in recent years and will
be one of the most promising key issues for further improving the performance of c-Si-based solar cells.
The DASH solar cells, based on TMOs, have the following advantages [30–47]: (1) TMOs have a large
band gap and thus low parasitic light absorption, which is beneficial for increasing the short-circuit
current density of the solar cell; (2) the DASH solar cell has a very high efficiency potential of up to
28% [31]; (3) most of the TMOs can be deposited by low-temperature and low-cost techniques, such as
thermal evaporation or the solution method; (4) no flammable, explosive, or toxic gases and materials
are used; (5) it is easy to realize the IBC structure by multi-step masks, which avoids the complicated
photolithography processes [32–34].

3.3.1. TMO Hole-Selective Contacts

The most commonly used TMO materials as hole-selective contacts are MoOx, V2Ox, and WOx.
These materials exhibit an n-type nature, although their work functions are as high as ~6.0 eV, indicating
much lower Fermi levels than those of n-type c-Si. When these TMOs are connected with c-Si, the Fermi
levels in these two materials are aligned and cause an energy band bending of about 0.8 eV on the
c-Si surface, which is similar to the value caused by the p-type a-Si:H layer. From a band alignment
perspective, a large conduction band offset will be formed on the Si surface, leading to a strong
inversion layer with an accumulation of holes. The heterojunction works more like a p-n junction and
enables a high enough theoretical built-in potential [30]. This behavior lays the foundation for the high
efficiency of TMO/c-Si solar cells. A schematic diagram of the energy band of the MoOx/c-Si interface
is shown in Figure 4a.

MoOx is the most explored hole-selective contact material at present [30,32,36–38,40–42,47].
In 2014, Battaglia deposited 15 nm MoOx directly on the n-type c-Si by thermal evaporation as a
hole-selective contact, achieving a cell efficiency of 14.3% [36]. In 2015, Geissbühler replaced the
p+-a-Si:H emitter in a conventional SHJ solar cell using MoOx as a hole-selective layer, reaching a
conversion efficiency of 22.5% in a MoO3/(i)a-Si:H/n-Si configuration [37], in which the intrinsic
a-Si:H chemically passivates the silicon surface while the MoO3 provides the hole-selectivity. In 2016,
Bullock used intrinsic a-Si:H as the passivation layers, MoOx as the hole-selective contact, and LiFx as
electron-selective contact, respectively. A Voc of 714 mV and efficiency of 19.4% were achieved with
this structure [30]. Additionally, rear MoOx contacts with partial contact areas have been reported
with an efficiency of 20.4% for the p-type c-Si wafer [80].
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Gerling [38] and Wu [39] compared the effects of the V2Ox, MoOx, and WOx hole-selective contacts
on the SHJ solar cells, reaching a conclusion that V2Ox is a better candidate for the hole-selective
contact. Shen and co-workers proposed a multi-layered emitter (i.e., hole-selective contact) based
on a TMO/Ag/TMO structure [33,81]. The first TMO layer to make contact with c-Si caused band
bending on the c-Si surface, achieving carrier selectivity. The Ag layer, with a thickness of only a few
nanometers, improves the overall conductivity of the multilayer structure. The second TMO layer is
used for anti-reflection and carrier collection. Therefore, the TMO/Ag/TMO multi-layered emitter
greatly reduced the sheet resistance and simultaneously acted as the hole-selective contact and the
transparent conductive electrode. With a V2Ox/Ag/V2Ox hole-selective contact, the cell efficiency
with the IBC structure reached 19.02% [39]. Masmitjà used V2Ox as the single-layer hole-selective
contact and achieved an efficiency of 19.1% [34]. The above results show the great potential of V2Ox as
an effective hole-selective contact.

3.3.2. TMO Electron-Selective Contacts

Metal oxides with a low work function and small conduction band offset with n-Si are promising
candidates for insertion between the Si/Al interface in order to alleviate the Fermi level pinning
effect and reduce the energy barrier for electrons. For example, the TiOx/Si interface has been
demonstrated to have a small conduction band offset (∆Ec~0.05 eV) and a high valence band
(∆Ev~2.0 eV), which would allow the transport of electrons from silicon to TiOx and a large valence
band offset, and block the holes from silicon to TiOx, as illuminated in Figure 4b [43].

Yang has studied the effect of different contacts on electron transport in n-type c-Si solar cells.
The use of a double-layer structure of SiO2/TiO2 can improve the passivation and increase the
cell efficiency to 22.1% [44]. Applying MoOx as a hole-selective contact layer and LiFx as an
electron-selective contact layer, as well as intrinsic a-Si:H as passivation layers, on both the front
and back sides of c-Si wafers, Bullock et al. reported a novel DASH solar cell with an efficiency
of 19.4% [30]. Further inserting an ultrathin TiOx to form a TiOx/LiFx hybrid electron-selective
contact, the cell efficiency was improved to 20.7% [40]. Sun compared the difference between the
heterojunction, formed by ZnO/c-Si and TiO2/c-Si. The TiO2 not only realize the electron selectivity,
but also passivate the c-Si surface [82], which can contribute to the formation of Si-O-Ti bonds. ZnO
has a very similar band structure as TiO2, although ZnO cannot form similar bonds and does not
play a role in the passivation. Finally, when TiO2 was used as an electron-selective contact, the
corresponding solar cell demonstrated a Voc of 643 mV and FF of 72.4%, while a Voc of 637 mV and
FF of 75.2% were obtained for the ZnO electron-selective contact [82]. Ye and Gao’s group directly
deposited titanium film on an n-type c-Si of 8 Ω·cm by electron beam evaporation, which was then
annealed at 250 ◦C in an oxygen atmosphere to form TiO2. The surface recombination rate can be
reduced to 16 cm/s, showing an excellent passivation quality, which was attributed to the formation
of Si-O-Ti bonds at the c-Si/TiO2 interface and the chemical passivation of the SiO2 [83]. By using a
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metal with an extremely low work function such as Mg and SiO2 as the full-area electron selective
contacts, the contact resistance and recombination current density were reduced to 26 mΩcm2 and
115 fA/cm2, respectively [54]. In contrast, Khan et al. showed that the silver-doped aluminum-rich
zinc oxide (ZnO:Al:Ag), prepared by the sol-gel method, provided a significant passivation of the
n-Si. The minority carrier lifetime reached 1581.2 µs, and Voc reached 688.1 mV. This passivation
was attributed to the chemical passivation of the naturally formed SiOx during the preparation of
ZnO:Al:Ag, and to the field effect passivation caused by charges at the ZnO/Si interface [46].

Wan et al. demonstrated a highly conductive and thermally-stable electrode composed of a
magnesium oxide/aluminum (MgOx/Al) contact, achieving moderately low resistivity ohmic contacts
on lightly-doped n-type c-Si. The electrode, functionalized with nanoscale MgOx films, significantly
enhances the performance of n-type c-Si solar cells to a power conversion efficiency of 20%, advancing
n-type c-Si solar cells with full-area dopant-free rear contacts [84,85].

Wang et al. used MoOx and ZnO:B as the hole- and electron-selective contacts, with the structure
of MoOx/i-a-Si:H/n-c-Si/i-a-Si:H/ZnO:B, and obtained a cell efficiency of 16.6% [47]. ZnO:B, as the
electron-selective contact, has two significant advantages: First, its lower refractive index enhances
the back-reflection and significantly improves the spectral response in the long wavelength range,
from 900 nm–1200 nm. Secondly, its good conductivity lowers the contact resistance, and the fill factor
is significantly improved.

3.3.3. TMO/c-Si Interface Passivation Layers

The lattice mismatch between TMO and c-Si inevitably results in a high defect density and
consequently in a high carrier recombination at the contact interface, which can be reduced by
inserting an ultrathin dielectric interlayer between the c-Si surface and the contacting metal, which is
called “passivated contact”. The ultra-thin dielectric layers simultaneously play three roles, including
separating metal from the silicon wafer, passivating the silicon surface, and serving as a contact to the
solar cell. Until now, ultra-thin SiO2, Al2O3, and a-Si:H dielectrics have frequently been investigated
and applied as passivated contact layers for c-Si solar cells [36,37,41,64–68,73,76]. However, they still
suffer from an increased contact resistivity (ρc) between the c-Si wafer and the carrier-selective contact
layer. Because of its wide band gap, SiOx has a stronger hole blocking capability, compared to TiOx and
intrinsic a-Si:H. A tunnelable SiOx interlayer may alleviate ρc in SiOx-based electron-selective contacts,
but the critical thickness for electron tunneling may not allow for satisfactory c-Si surface passivation.
From the results of an intrinsic a-Si:H layer for SHJ solar cells and a SiO2 layer for TOPCon and POLO
solar cells, the typical thickness of an intrinsic a-Si:H layer is around 4–5 nm [18–21,26–28], while it is
about 1.5 ± 0.5 nm for SiO2 layers [22–25,64–77], i.e., effective interface passivation layers. Thicker
layers result in a better passivation quality and high contact resistivity, while a poor passivation quality
and low contact resistivity are the characteristics of thinner layers.

Battaglia’s research indicated that an MoOx/c-Si heterojunction solar cell, without any passivation
layer, achieved an efficiency of only 14.3%, and the Voc was as low as 580 mV [36]. If an intrinsic
a-Si:H passivation layer was adopted to form the MoOx/a-Si:H/c-Si solar cell, the Voc was improved
to 711 mV, and the cell efficiency was 18.8% [41]. Geissbühler showed that when replacing the p-type
a-Si:H film with an MoOx layer at the front of SHJ solar cells, with an intrinsic a-Si:H passivation
layer between an MoOx layer and c-Si wafer, a high efficiency of 22.5%, with a high Voc of 725.4 mV
is demonstrated. These results demonstrate that an MoOx layer can be an effective and efficient
hole-selective contact, and that excellent passivation properties can be achieved on intrinsic a-Si:H
layers [37].

According to the research of Gerling [38], Khan [46], and Tong [42], it was found that naturally
formed SiOx on the c-Si surface during the MoOx deposition by the thermal evaporation or solution
method plays a key role in the c-Si surface passivation. However, the naturally formed SiOx is not
compact enough to provide enough passivation. Therefore, an extra well-designed process is needed
to obtain a compact SiOx passivation layer. Since SiOx passivation layers, obtained by ozone oxidation,
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concentrated nitric acid oxidation, and H2O2 oxidation in high-efficiency TOPCon solar cells [65,66]
have been successfully applied, these methods used for compact SiOx passivation layers could be
imitated in order to improve the performance of DASH solar cells. What is more, Masmitjà used 0.5 nm
ultra-thin Al2O3, deposited by atomic layer deposition at the TiO2/c-Si interface, as the passivation
layer. The surface recombination rate was reduced to 33 cm/s, and the corresponding implied Voc

reached 680 mV [34].

3.3.4. High-Efficiency DASH Solar Cells

Imran’s numerical simulation indicated the theoretical efficiency for a both-sides contacted
DASH solar cell, with metal oxide layers on the front and back sides of a c-Si wafer as hole- and
electron-selective contacts, respectively, which can be as high as 28%, with a Voc of 772.7 mV, Jsc of
43.63 mA/cm2 and FF of 82.99% [31]. If the IBC structure is further adopted, an even higher efficiency
can be expected.

Current experimentally-reported DASH solar cells based on TMO usually adopt a both-sides
contacted front-junction structure [30,31,35–38,40–47]. The c-Si solar cell, with only MoOx as the
hole-selective contact, which has a structure of ITO/MoOx/i-a-Si:H/c-Si/i-a-Si:H/n-a-Si:H/Al,
demonstrated a record conversion efficiency of 22.5%, compared with the current TMO-based
solar cells [37]. If both hole- and electron-selective contacts were made of dopant-free
TMO materials, the current highest conversion efficiency is 20.7%, with a structure of
TCO/MoOx/i-a-Si:H/c-Si/i-a-Si:H/TiOx/LiF/Al, of which the structure, J–V curve, external quantum
efficiency, internal quantum efficiency, and reflection are shown in Figure 5 [40].
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In order to further improve the utilization of incident light, inspired by the SunPower’s IBC
solar cell, Um [32], Wu [33,39] and Masmitjà [34] placed both hole- and electron-selective contacts
on the back side of the c-Si wafers to realize the full-back-contacted solar cells, with corresponding
conversion efficiencies of 15.4%, 19.02%, and 19.7%, respectively. The conversion efficiencies of
these IBC-structured solar cells do not exceed those of the both-sides contacted ones, although the
low-temperature deposition and metal patterning techniques, together with the simplicity of the
devices themselves, still suggest the great potential of low-cost and high-efficiency all-back-contact
c-Si solar cells using structured and dopant-free carrier-selective contacts.

3.4. Working Mechanisms of TMO/c-Si Solar Cells

3.4.1. Carrier Separation

In a conventional PN junction, the built-in potential is considered the internal force to separate
the photogenerated carriers. However, current research suggests that the PN junction is not necessary
for a solar cell, while the asymmetric conductivity of the contact layers on the two sides of the absorber
layer is the internal force that promotes the separation of photogenerated carriers [86,87]. As a new
type of solar cell, which has just been developed in recent years, the basic physical principles of the
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internal force of carrier separation in c-Si DASH solar cells have not been clearly understood [60,61],
even though their conversion efficiencies are higher than 20% [40].

Gerling regarded the difference between TMO’s high work function and the n-Si Fermi level to be
the driving force behind the balance of Fermi levels [38]. Carrier selectivity is controlled by the band
bending induced by n-Si. The difference (~1.2 eV) between the work function of TMO and the Fermi
level of n-Si cannot meet the needs for Fermi level balance. A negatively charged dipole should exist
at the TMO/n-Si interface, which results in a shift of the energy band and makes the carrier transport
more complicated. He thought that, in this kind of cell, there was no band bending in MoOx, and
all the depletion regions are in c-Si. However, Battaglia considered that MoOx in MoOx/c-Si cells
behave more like the high-work function metal. Band bending occurs on both the c-Si surface and the
MoOx [36,41]. Sun studied the band alignment of MoOx/n-Si by UPS and XPS and found that there
are interfacial dipoles (~0.97 eV), which are related to energy band bending (~0.80 eV) on both sides of
the interface [82].

3.4.2. Carrier Transport

Battaglia compared the band diagram of the heterojunction of MoOx/n-Si and p-type a-Si:H/n-Si.
The common features of these two heterocontacts are inversion layers, formed on the n-Si surface.
The band bending of n-Si and the offset in the conduction band between n-Si and a-Si:H together
cause a large barrier to electron transport. In both cases, MoOx and p-type a-Si:H can provide similar
hole extraction conditions: The holes firstly pass over the barrier, formed by the valence band offset
between n-Si and a-Si:H, and then pass through the tail states in a-Si:H or the oxygen vacancies in
MoOx, eventually reaching the ITO front electrodes [36,41].

Vijayan [87] and Messmer [88] studied the hole transport paths at the TMO/Si interface by
simulations. They held similar ideas that there are two possible paths, including band-to-band
tunneling (B2B) and defect-assisted tunneling (TAT), depending on the electron affinity of TMO.
As shown in Figure 6, if TMO has a sufficiently large electron affinity (i.e., a high work function),
which makes the conduction band of TMO lower than the valence band of c-Si, the band-to-band
tunneling is the main transport mechanism. If the electron affinity of TMO is small (i.e., the work
function is low), defect-assisted tunneling via TMO’s bulk defects is necessary, which may result in
additional series resistance. If the electron affinity is further decreased, and the defect states in the
TMO are insufficient, the J–V curve will behave as the S-shape. These results further indicate that the
high work function (electron affinity) of TMO is critical to improving the performance of TMO/Si solar
cells. However, the above-mentioned results from the simulation need to be verified by experimental
results concerning solar cells.
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4. Summary and Outlook

This article presents the latest advances in highly efficient c-Si solar cells with passivation contacts,
including doped silicon films and dopant-free materials, with a high/low work function. Since the IBC
structure is proven to be an effective and efficient way work to improve the short-circuit current density,
the combination of carrier-selection, passivation contact, and IBC structure will be the inevitable route
to the achievement of a higher conversion efficiency. The next step of research should also focus on the
optimization of existing carrier-selective materials and contact structure, exploitation of novel contact
and interfacial passivation materials, low-cost deposition techniques, novel device design, and further
understanding of device physics.

Additionally, besides the wide investigations on SHJ solar cells, the TMOs with a high/low work
functions have critical applications in perovskite solar cells, which are one of today’s most promising
up-and-coming photovoltaic technologies [89–92]. Over the past decades, in order to overcome
the single-junction limit of silicon solar cells [93], the so-called “third-generation photovoltaics”
concepts [9] were proposed, of which the multi-junction PV device is proven to be an efficient and
effective one. In fact, recent two-terminal tandem devices consisting of a perovskite top cell and SHJ
bottom cell have reached very promising efficiencies [94–96], of which the SHJ bottom cell includes
two-side doped silicon thin-film passivation contacts. The TMOs prepared by the solution method are
compatible with the fabrication processes of perovskite solar cells, which facilitates the realization of a
good tunneling junction between the top and bottom cells, an all solution-processed fabrication and,
finally, highly efficient perovskite/Si tandem solar cells.
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