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Abstract: New ferroelectric crystals Pb(Er1/2Nb1/2)-Pb(Mg1/3Nb1/3)O-PbTiO3 (PEN-PMN-PT) were
grown by using the flux method. Phase structure of the crystals was described by the X-ray diffraction
analysis. Dielectric, ferroelectric and optical properties of the PEN-PMN-PT crystals were investigated
systematically. Higher Curie temperature (Tc ~291 ◦C) and larger coercive field (Ec ~17.6 kV/cm)
for the 40PEN-13PMN-47PT can be obtained, respectively, compared with those of the PMN-PT.
Moreover, strong green and red emissions can be excited by using the 980 nm laser. The PEN-PMN-PT
crystals with these performances have some promising applications in the electromechanical and
optical devices.

Keywords: Pb(Er1/2Nb1/2)-Pb(Mg1/3Nb1/3)O-PbTiO3; electric and optical properties; Perovskite
structure; UC emission mechanisms

1. Introduction

As a typical relaxor ferroelectric crystal, Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) with morphotropic
phase boundary (MPB) composition has been extensively researched due to their excellent dielectric,
piezoelectric and pyroelectric properties, such as ultrahigh piezoelectric coefficient (d33 > 1800 pC/N),
high longitudinal electromechanical coupling factor (k33 > 90%), high dielectric constant (ε’ > 4000)
and low dielectric loss (tanδ < 0.01) et al. [1–5]. These brilliant properties make it good candidates in
the applications of medical ultrasonic probes, underwater acoustic transducers, ultrasonic motors and
military sensors [6].

However, PMN-PT show low coercive field (Ec < 3 kV/cm ) and low Curie temperature
(Tc < 150 ◦C), which gradually limit their applications in high temperature and high energy fields [7].
In order to raise the Curie temperature and coercive field of the PMN-PT crystals, a lot of researches
and trials have been done [7–15]. Luo et al. [16] reported that the Ec and Tc of Mn-doped PMN-29PT
crystals increased by 1.65 kV/cm and 15 ◦C, respectively. Li et al. [17] explored new ternary crystals
Pb(Ho1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PHN-PMN-PT) with the Ec and Tc of 3.22 kV/cm and
140 ◦C, respectively. The Ec ~8.17 kV/cm and Tc ~148 ◦C were achieved in 6PSN-63PMN-31PT by
He et al. [18]. These results indicate that the Curie temperature and coercive field of the PMN-PT
crystals can be improved with the appropriate cations.

Previous reports indicated that Curie temperature and coercive field of the PMN-PT crystals
can be improved by the rare earth cation of Erbium [19]. In addition, high Curie temperature can be
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obtained in the Pb(Er1/2Nb1/2) (PEN) ceramics [20]. In the present work, the PEN was used to modify
PMN-PT crystals by using the linear design rule on the component of the PEN-PMN-PT crystals. The
structural, electrical and optical properties of the PEN-PMN-PT crystals were studied systematically.

2. Experimental Procedure

2.1. Crystal Growth

The 20PEN-40PMN-40PT and 40PEN-13PMN-47PT were chosen on the straight line connecting
two MPBs in PMN-33PT and Pb(Er1/2Nb1/2)-50PbTiO3 (PEN-50PT), as shown in Figure 1 [7,21].
The crystals of two components were grown by using the flux method. First of all, the starting
materials of MgO (99.99%), Nb2O5 (99.99%), TiO2 (99.99%), PbO (99.99%) and Er2O3 (99.99%) were
prepared, and the precursors, MgNb2O6 (MN) and ErNbO4 (EN) were first synthesized at 1050 ◦C
for 6 h. MN, EN, TiO2 and PbO were weighed according to the stoichiometric composition of the
20PEN-40PMN-40PT and 40PEN-13PMN-47PT, with 60 wt% excess amount of PbO, and then the raw
materials were mixed and wet-milled in alcohol for 12 h. The dried mixed powder was compacted in a
platinum crucible with a size of Φ 40 mm × 40 mm and covered with a platinum lid. The platinum
crucible was then placed in a corundum crucible, and filled with Al2O3 powder in the gap. After that
corundum crucible was placed in the high temperature furnace and crystal growth was performed
according to the preset procedure. At the end of crystal growth, the Pt crucible was taken out and was
boiled with hot nitric acid solution (mixture of HNO3 and H2O with a volume ratio 1:1). Finally, the
obtained crystal was cleaned in the CNC ultrasonic cleaner (KQ-100DE).
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Figure 1. Phase diagram of PEN-PMN-PT ternary system.

2.2. Characterization Procedure

Firstly, the phase structure of the present crystals was measured by X-ray diffraction (XRD)
analysis (D8 ADVANCE, Bruker, Billerica, MA, USA) with Cu-Ka radiation, perating at room
temperature in a scan steps of 0.02 (2θ) and an angular range of 20–80◦. Secondly, the crystals
were polished for the two parallel surfaces, and then polished crystals were coated with silver paste
on both polished surfaces and fired at 550 ◦C for 30 min to obtain the electrode. Eventually, the
temperature dependence of dielectric properties was measured by impedance analyzer (Agilent4294A,
Agilent, Santa Clara, CA, USA). The ferroelectric performances of the samples were tested by using
ferroelectric test system (Radiant Precision Premier II, Radiant Technologies, Inc., Albuquerque,
NM, USA). The optical absorption performances of crystal powders were measured by UV-VIS-NIR
Spectrophotometer (UV3600PLUS, Shimadzu, Japan). The up-conversion (UC) photoluminescence
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(PL) and decay curve of the 20PEN-40PMN-40PT and 40PEN-13PMN-47PT crystals were tested by
using a photoluminescence spectrometry (FLS980, Edinburgh, England) at room temperature.

3. Results and Discussion

XRD patterns of the powders and natural exposure surfaces of the PEN-PMN-PT crystals are
shown in Figure 2. In Figure 2a, the positions and intensity of the main diffraction peaks are consistent
with those of the Pb(Mg1/3Nb2/3)O3 (PDF#81-0861). No obvious diffraction peaks of the secondary
phases are detected, indicating that the phase structure of the present crystals is pure perovskite
structure. The natural exposure surfaces of the present crystals are shown in Figure 2b,c. Only three
diffraction peaks of the (100), (200) and (300) can be detected, which indicate that the natural exposure
surface of the present crystals is strict {100} surface and the slowest growth direction is [100] orientation.
Moreover, the (200) peak at around 2θ = 45◦ is an important differential characteristic peak, which is
used to determine the MPB compositions. It is well-know that only one characteristic peak R(200) can
be observed at around 2θ = 45◦ for rhombohedral phase, whereas (200) peak should be split into two
peaks with intensity ratio of 1:2 for tetragonal phase. They correspond to the diffraction of T(200)/(020)
and T(002), respectively [10]. Obvious splitting of the (200) peak with the deviated intensity ratio 1:2
can be observed in Figure 2, indicating that the tetragonal and rhombohedral phase coexist in the
present crystals.
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Figure 2. XRD patterns of (a) PEN-PMN-PT crystals powders; (b) [100]-oriented 20PEN-40PMN-40PT
crystals; and (c) the [100]-oriented 40PEN-13PMN-47PT crystals.

In order to figure out the effect of the content of rhombohedral and tetragonal phases on electrical
properties, the ratio of rhombohedral and tetragonal phase is calculated by the following equation [11]:

R/T =
IR(200)

IT(200) + IT(002)
(1)

where IR(200) is the intensity of the rhombohedral (200) peaks. IT(200) and IT(002) are the intensities of
tetragonal (200) and (002) peaks. The XRD patterns fitted with the Gaussian functions are shown in
Figure 3. Pink circles represent the fitted peak profile, and the green line and the blue line represent
the deconvoluted profiles of the rhombohedral and tetragonal phase components, respectively. It is
observed that the (200) reflection is composed of three reflection peaks of T(200)/(020), T(002) and
R(200). According to calculation, the ratio of rhombohedral and tetragonal phases is obtained to be 0.12
and 0.07 for the 20PEN-40PMN-40PT and 40PEN-13PMN-47PT, respectively. These results confirm that
the tetragonal phase is dominant in the present crystals and higher content of the tetragonal phases
could be responsible for the higher coercive filed [22].
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Figure 3. X-ray diffraction patterns fitted with Gaussian functions for (200) peaks at 2θ = 43–47◦:
(a) 20PEN-40PMN-40PT; (b) 40PEN-13PMN-47PT.

Temperature dependence of the dielectric permittivity of the unpoled PEN-PMN-PT crystals are
shown in Figure 4. Only one dielectric peak, corresponding to the transition from ferroelectric to
paraelectric phase, is observed for the present crystals. Curie temperatures are 207 and 291 ◦C for
the 20PEN-40PMN-40PT and 40PEN-13PMN-47PT crystals. It indicates that the Curie temperature
of the PMN-PT crystal can be improved significantly by the modification of the PEN. The reason for
the improvement of Curie temperature of the present crystals is attributed to the introduction of the
PEN. When PEN is incorporated into the PMN-PT system, relatively larger Er3+ substitutes are located
at the B site. This will result in the decreasing of the perovskite tolerance means the rhombohedral
or tetragonal phases become more stable. That leads to the increasing of the Tc [7]. Moreover, Curie
temperature of PEN-PMN-PT crystals increases with the increase in the PEN and PT content, which is
consistent with the results of the PYbN-PMN-PT crystals and PSN-PMN-PT ceramics [11,23].
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(a) 20PEN-40PMN-40PT; (b) 40PEN-13PMN-47PT.

Polarization versus electric field (P-E) of [100]-oriented PEN-PMN-PT crystals with 28 kV/cm at
room temperature is shown in Figure 5. Higher coercive electric (Ec ~12.3 kV/cm and 17.6 kV/cm) and
remnant polarization (Pr ~30 µC/cm2 and 18.2 µC/cm2) can be obtained for the 20PEN-40PMN-40PT
and 40PEN-13PMN-47PT crystals compared with those of the PMN-PT crystal. In the present crystals,
Pb(Er1/2Nb1/2) is incorporated into the PMN-PT system. Oxygen vacancies will be generated for the
charge compensation when the Er3+ substitutes Ti4+ or (Mg1/3Nb2/3)4+ locates at B sites. The higher
coercive filed of the present crystals is attributed to the domain motion prevented by the oxygen
vacancies. The results are similar to those of the Er3+ doped PMN-PT and PSN-PMN-PT crystals [18,19].
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Moreover, previous reports indicated that coercive filed of PZN-PYN-PT ceramic in MPB regions is
mainly dependent on the tetragonal phase and have been improved with increasing of content of
the tetragonal phase [22]. As a result, it is believed that the ratio of the rhombohedral and tetragonal
phases in the present crystals is the reason of the difference of ferroelectric properties.
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The UV–VIS–NIR absorption spectra of the PEN-PMN-PT crystals in the wavelength range of
400–1800 nm is shown in Figure 6. It can be seen that there are seven absorption peaks at around 489,
526, 665, 794, 974, 1467 and 1540 nm, corresponding to the Er3+ transitions from ground state 4I15/2
to excited levels 4F7/2, 2H11/2, 4F9/2, 4

I9/2, 4I11/2 and 4I11/2, respectively. It indicates that the optical
absorption is induced by the rare earth cation of the Er3+ ions [11,19,24]. The absorption spectra of the
PEN-PMN-PT crystals is similar as other Er3+-doped ferroelectric materials [25,26].
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Figure 6. The UV–VIS–NIR absorption of PEN-PMN-PT crystals.

Figure 7 displays the UC luminescence of the PEN-PMN-PT crystals at room temperature. Under
the excitation of 980 nm, three distinct emission bands, centered at 526 (green), 565 (green), and
665 nm (red), and the transition emissions’ counterparts, 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 and 4F9/2 →
4I15/2, are observed in the present crystals. The emission intensity at 665 nm is pretty much constant.
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However, the obvious difference in luminous intensity at 565 and 526 nm can be observed as well.
It may be related to different mechanisms in two crystals.
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To study differences in luminous intensity at 565 and 526 nm in two crystals, the UC emission
mechanisms is described in detail. Figure 8 shows the energy level diagrams and possible UC PL
mechanisms of the PEN-PMN-PT crystals under 980 nm excitation. Er3+ ions are excited from the
ground state 4I15/2 to the excited state 4I11/2 through the ground state absorption (GSA) process.
Then, the Er3+ ions in 4I11/2 energy level can reach a higher excited state 4F7/2 through excited state
absorption process (ESA) and the energy transfer (ET) process: 4I11/2 + 4I11/2→ 4I15/2 + 4F7/2. The Er3+

ions are unstable in 4F7/2 level, which reach to 2H11/2, 4S3/2 and 4F9/2 level by nonradiative transition
process. Finally, the Er3+ ions return to the ground state 4I15/2 with 526 (green), 565 (green) and 665 nm
(red) emitted, respectively. Previous reports indicate the ET processes is enhanced with increasing
Er3+ ions concentration because of short distance between neighboring Er3+ ions [26]. Therefore,
Green emissions being significantly enhanced can be explained by the intense ET process that led to
populated 4I11/2 state.
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The lifetime τ of energy level is an important parameter for the luminescent materials. The decay
curves of 4S3/2 and 4F9/2 levels for the PEN-PMN-PT are shown in Figure 9. The double and triple
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exponential function (2) is used to fit measured curves [27]. Equation (3) is used to calculate the
average lifetimes τm.

I(t) = I0 ∗ [A + B1 exp(−t/τ1) + B2 exp(−t/τ2) + B3 exp(−t/τ3)] (2)

τm = (B1τ1
2 + B2τ2

2 + B3τ3
2)/(B 1τ1 + B2τ2 + B3τ3

)
(3)

where A, B1, B2 and B3 are constant, I(t) is the emission intensity. All curves (black line) increase first and
then decrease, standing for absorbing energy and releasing energy of electrons populating at ground
state and excited state, respectively. The fitting curve (red line) matches perfectly with the measured
curve. The lifetimes of 20PEN-40PMN-40PT crystals exhibit a triple exponential decaying behavior, but
the 40PEN-13PMN-47PT crystals display a double exponential behavior. Fitting results of fluorescent
decay curve for the present crystals are shown in Table 1. The average lifetime of 4S3/2 level in
40PEN-13PMN-47PT crystals increases (44.00 us) compared with that of 20PEN-40PMN-40PT crystals
(45.57 us). However, the average lifetime of 4F9/2 decreases with the increase of the concentration
Er3+ ions. The increase of Er3+ concentration enhances energy transfer (ET) process. The intense
ET process makes the 4F9/2 excited levels become populated, resulting in the population of 4S3/2.
Ultimately, the enhanced process 4S3/2 → 4I15/2 leads to the average lifetime increase from 44.00 to
45.57 us. Nevertheless, owing to the depopulation of the 4I15/2 level, the possibility of the 4F9/2 →
4I15/2 transition will decrease, resulting in the average lifetime of 4F9/2 from 105.79 to 69.60 us.
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(c) 20PEN-40PMN-40PT at 667 nm (4F9/2→ 4I15/2); (d) 40PEN-13PMN-47PT at 667 nm (4F9/2→ 4I15/2).
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Table 1. Fitting results of fluorescent decay curve for the PEN-PMN-PT crystals.

Samples 4S3/2 → 4I15/2
4F9/2 → 4I15/2

τ1 τ2 τ3 τm τ1 τ2 τ3 τm

20PEN-40PMN-40PT 6.93 33.75 90.15 44.00 13.91 33.24 177.23 105.79
40PEN-13PMN-47PT 9.84 55.57 45.57 59.07 118.97 69.60

4. Conclusions

New ferroelectric crystals Pb(Er1/2Nb1/2)-Pb(Mg1/3Nb1/3)O-PbTiO3 (PEN-PMN-PT) were grown
by using the flux method. Pure perovskite structure was confirmed by X-ray diffraction analysis.
Dielectric and ferroelectric properties were improved significantly by forming the PEN-PMN-PT
ternary crystals. Higher Curie temperature was obtained as Tc ~291 ◦C for the 40PEN-13PMN-47PT
crystals, together with larger coercive field (Ec ~17.6 kV/cm). The improvements in Curie temperature
and coercive field of the PEN-PMN-PT crystals were attributed to the introduction of the PEN and the
increasing of tetragonal phase. Moreover, a special absorption in the range 300–1800 nm and strong
green UC emissions at the 980 nm excitation were obtained for the PEN-PMN-PT crystals.
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