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Abstract: A new compound, namely, [Zn(L)2]n (1) was obtained by the reaction of 2-methyl-4-(4H-1,2,
4-triazol-4-yl) benzoic acid (HL) with ZnSO4·7H2O, and the compound was characterized by
single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, powder X-ray diffraction
(PXRD), and thermogravimetric analysis. The linear HL ligands were deprotonated to be L− anions
and act as two-connectors to link Zn2+ to form a two-dimensional (2D) lay structure with (4, 4)
topology. The large vacancy of 2D framework allows another layer structure to interpenetrate,
resulting in the formation of 2D + 2D→ 2D parallel interpenetration in 1. The weak interactions,
such as hydrogen bonding and π–π stacking interactions, connect the adjacent 2D layers into
a three-dimensional (3D) coordination polymer. The solid-state UV-visible spectroscopy and
luminescent property have also been studied.
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1. Introduction

In recent years, coordination polymers (CPs) built from metal ions and organic ligands have
become a hot research topic because of their fascinating architectures and potent applications in
the fields of luminescence [1–5], chemical sensors [6], gas adsorption or selective gas adsorption,
gas separation [7,8], and heterogeneous catalysis [9]. Generally speaking, the nature of metal ions and
organic ligands can greatly affect the properties of CPs [10–15]. Therefore, the elaborate design for
organic ligands and the selection of metal ions are the most important factors to obtain desired
architectures with favorable properties. Commonly, the N- or O-donor ligands with favorable
coordination abilities are extensively employed to build diverse CPs. Among the N-heterocyclic
ligands, triazole, imidazole, tetrazole, and pyrazole moieties can not only act as electrically neutral,
but also negatively charged muti-dentate bridging ligands to construct CPs [16–20]. For example,
we have designed a series of polyazaheteroaromatic ligands including the derivatives of 1, 2, 4-triazole,
for example, and 4-imidazoly-containing ligands, such as 1,3,5-tri(1H-imidazol-4-yl) benzene and
1,4-di(1H-imidazol-4-yl) benzene [21,22]. Due to their favorable coordination abilities, they are used to
build various porous metal Cu(II) or Co(II) imidzolate complexes, which have shown favorable gas
adsorption properties in our previous work. Besides the polyazaheteroaromatic ligands, the carboxylic
acids show diverse coordination modes and are extensively employed to assemble porous CPs via
reticular synthesis by Yaghi’s group [23,24]. Significantly, the porous CPs possess a large surface
area, as much as 10,000 m2/g, and greatly exceed those of traditional porous materials, such as
zeolites and carbons [23]. Moreover, the different electron configurations of N and O atoms cause
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polycarboxylates and N-donors ligands to exhibit different coordination preferences, which produces
favorable compatibility for mixed polycarboxylates and N-donors ligands for building CPs [25,26].
In this context, we have designed the difunctional organic molecule 4-(1H-imidazol-4-yl) benzoic
acid including carboxyl and 4-imidazolyl groups, assembled into two series of Cu(II)/Cu(I) and
Cd(II) complexes due to its diverse coordination modes [27]. Due to their good adjustability for N/O
donor ligands, we have designed the new ligand 2-methyl-4-(4H-1,2,4-triazol-4-yl) benzoic acid (HL)
including the difunctional 1,2,4-triazol-4-yl and carboxyl groups (Scheme 1) to react with ZnSO4·7H2O,
and synthesized a new Zn(II) complex [Zn(L)2]n (1) as our extensional study. The UV-vis absorption
spectra and luminescent properties of 1 have been studied.
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2. Experimental Section

2.1. Materials and Instrumentation

All the reagents were purchased from Jinan Henhua reagent company (Jinan, China). IR spectra
(Nicolet Instrument Inc., Madison, WI, USA) was measured on a Bruker Vector 22 FT-IR
spectrophotometer using KBr pellets. Perkin-Elmer 240C Elemental Analyzer (Perkin-Elmer, Inc.,
Billerica, MA, USA) was used to carry out elemental analyses. Thermogravimetric analyses (TGA)
(Perkin-Elmer, Inc., Billerica, MA, USA) was carried out on a simultaneous SDT 2960 thermal analyzer.
Power X-ray diffraction pattern was recorded on a Shimadzu XRD-6000 X-ray diffractometer with
CuKα (λ = 1.5418 Å) radiation. A HORIBA FluoroMax-4 fluorescence spectrophotometer (Edinburgh
Instruments, Edinburgh, UK) was used to measure photoluminescence spectra and the decay lifetimes.

2.2. Synthesis of [Zn(L)2]n (1)

A mixture of HL (0.020 g, 0.1 mmol), ZnSO4·7H2O (0.0287 g, 0.1 mmol), and NaOH (0.008 g,
0.1 mmol) in 12 mL H2O was sealed into a 15 mL Parr Teflon-lined stainless steel vessel and heated
at 140 ◦C for 72 h. Colorless block crystals of 1 were obtained (yield, 72%). Anal. Calcd. (%)
for C20H16N6O4Zn: C, 51.13; H, 3.43; N, 17.89. Found (%): C, 49.96; H, 3.52; N, 17.78. IR(KBr):
3620–3245(m), 1598(vs), 1566(s), 1528(m), 1361(vs), 1303(w), 1235(m), 1088(s), 1046(s), 1017(m), 875(m),
789(s), 709(m), 693(w), 655(m), 574(w), 507(w) cm−1.

2.3. Crystal Structure Determination

The single-crystal structure for [Zn(L)2]n (1) was collected on a Bruker Smart APEX II charge
couple device diffractometer using MoKα radiation (λ = 0.71073 Å) at 296(2) K. The structure was
solved by the direct method and refined anisotropically on F2 refined by the full-matrix least-squares
procedure technique using the SHELX-97 program [28]. The crystallographic data and structural
refinement are shown in Table 1.
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Table 1. Crystallographic data and structure refinement for 1.

Empirical Formula C20H16N6O4Zn

Formula weight 469.76
Temperature/K 296(2)
Crystal system Monoclinic

Space group P21/n
a/Å 7.6127(6)
b/Å 17.5092(14)
c/Å 14.2027(11)
α/◦ 90
β/◦ 97.2370(10)
γ/◦ 90

Volume/Å3 1878.0(3)
Z 4

ρcalcmg/mm3 1.661
µ/mm−1 1.352

S 1.042
F(000) 960

Index ranges
−8 ≤ h ≤ 9,
−18 ≤ k ≤ 21,
−17 ≤ l ≤ 17

Reflections collected 10245
Independent reflections 3694

Data/restraints/parameters 3694/0/282
Goodness-of-fit on F2 1.042

Final R indexes [I ≥ 2σ(I)] R1 = 0.0360, wR2 = 0.0911
Final R indexes [all data] R1 = 0.0502, wR2 = 0.0986

Largest diff. peak/hole/e Å−3 0.866/−0.323

Crystallographic data CCDC 1,871,965 for 1. Copy of the data can be obtained free of charge
upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: +44-1223-336-033;
E-Mail: deposit@ccdc.cam.ac.uk).

3. Results and Discussion

3.1. Preparation

In this study, we adopted the hydro/solvothermal reaction, because it is an effective method
in construction of CPs, especially for the carboxylic acid ligands. Generally, the reaction of metal
atoms with carboxylate ligands easily leads to the formation of precipitate, making it difficult to grow
suitable single crystals for X-ray diffraction studies. However, a hydro/solvothermal reaction can
facilitate crystal growth under the spontaneous reaction system. Coordination polymer 1 was readily
prepared with 72% yield by hydrothermal reaction. The IR spectra exhibit the O–H/C–H stretching
vibration absorption of ligand at the center of 3620–3245 cm−1 for 1 (Figure S1). Strong characteristic
bands of carboxyl group are observed in the range of 1598–1528 cm−1 for asymmetric vibrations and
1361 cm−1 for symmetric vibrations, respectively. The typical vibrational band at 1701 cm−1 observed
in the IR spectra of HL belongs to the characteristic peak of the carboxyl group, which disappeared
in coordination with polymer 1, showing the carboxyl group was deprotonated and participated in
coordination with Zn(II) metal atom.

3.2. Crystal Structure of [Zn(L)2]n (1)

X-ray diffraction analysis showed that [Zn(L)2]n (1) crystallizes in the monoclinic P21/c space
group. One crystallographically independent Zn(II) atom and two L− ligands are included in
the asymmetric unit. As shown in Figure 1, each Zn(II) atom possesses a distorted tetrahedral
geometry and is coordinated by two oxygen atoms (O1, O3) from two different L− ligands and
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two nitrogen atoms (N1) from another two distinct L− ligands. The Zn-O bond lengths are 1.931(2)
and 1.938(2) Å, and the Zn-N bond lengths are 2.024(2) and 2.042(2) Å (Table S1). The bond angles
around the center Zn(II) atom are in the range of 99.64(10)–124.08(10)◦ (Table S1). Both of the L−

ligands in 1 have the same coordination mode and act as two-connectors to link two metal Zn(II)
atoms. In 1, the L− ligands links Zn(II) ions to form a two-dimensional (2D) (4,4) layer structure
(Figure 2), where the lateral Zn···Zn distances are 11.54 and 11.66 Å, and the diagonal Zn···Zn
distances are 15.22 and 17.51 Å. The large vacancy of the 2D framework allows another same layer
structure to interpenetrate, resulting in the formation of 2D + 2D→ 2D parallel interpenetration in
1 (Figure 3) [29]. Compared with the reported 4-(4H-1,2,4-triazol-4-yl) benzoic acid ligand (CPT),
the HL ligand employed in this study has a methyl group at 2-position that can build a different
framework from the ones originated from CPT ligand. For example, the Liu group employed the
CPT ligand to build two isomeric Zn(II)-based metal-organic frameworks {[Zn(CPT)2](NMF)3}n and
{[Zn(CPT)2](DMF)0.75}n (NMF = N-methylformamide, DMF = N,N-dimethylformamide) with the same
4-fold interpenetrated dia topological network [30]. The study further demonstrates that the ligand has
great effect on the resulting coordination framework. Moreover, the O and N atoms from imidazolyl
or carboxyl groups can act as the acceptor for hydrogen bonding, thus easily benefiting the formation
of supramolecular polymers [31]. As a result, there exists rich hydrogen bonding interaction in 1,
and the C–H···O (C(1)···O(2) 3.424(4) Å, C(1)–H(1)···O(2) 152◦; C(4)···O(2) 2.794(4) Å, C(4)–H(4)···O(2)
100◦; C(7)···O(4) 3.123(4) Å, C(7)–H(7)···O(4) 138◦; C(11)···O(4) 2.809(4) Å, C(11)–H(11)···O(4) 100◦;
C(14)···O(4) 3.432(4) Å, C(14)–H(14)···O(4) 160◦; C(19)···O(2) 3.034(4) Å, C(19)–H(19)···O(2) 128◦;
C(20)···O(4) 3.125(4) Å, C(20)–H(20)···O(4) 152◦ hydrogen bonds are extensively distributed among
the 2D layers (Table S2). Moreover, the two benzene rings of L− ligands from the neighboring 2D
layers are parallel and separated by a centroid–centroid distance of 3.48 Å, exhibiting classic weak
π–π stacking interactions [32]. In this context, a three-dimensional (3D) coordination polymer is built
through the connections originating from the weak interactions, including hydrogen bonding and π–π
stacking interactions between the adjacent 2D layers (Figure 4).
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Figure 1. The coordination environment of Zn(II) ion in 1, with the ellipsoids drawn at the 30%
probability level. All of the hydrogen atoms are omitted for clarity. Symmetry code: A 2.5 − x, 0.5 + y,
1.5 − z, B 0.5 − x, −0.5 + y, 1.5 − z.

3.3. Thermal Analysis and Powder X-Ray Diffraction Analysis

Thermogravimetric analysis (TGA) was performed to study the thermal stability of the
coordination polymer in the N2 atmosphere from 20–700 ◦C. Figure S2 shows no weight losses for the
coordination polymer 1, and the collapse of the network happened at about 405 ◦C, which indicated the
component of 1 has no lattice or coordinated water molecules or other organic components, completely
fitting with crystal architecture of 1. The powder XRD experiment can be employed to measure the
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phase purity of the as-synthesized compound. As shown in Figure S3, the simulated sample from
the crystal structure is quite consistent with the experimental pattern, indicating the phase purity of
the sample.Crystals 2017, 7, x  5 of 11 
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3.4. Diffuse Reflectance Spectra

The UV-visible spectroscopy was investigated for the complex 1, as well as the free ligand HL.
As shown in Figure 5, the compounds HL and 1 exhibited absorption peaks at 305 and 304 nm,
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respectively, which belong to π → π* and n → π* transitions, due to the conjugate character of
the organic molecule [33]. From the diffuse reflectance data, it can be easily transformed into a
Kubelka–Munk function. And band gaps (Eg) can be obtained from the theory of optical absorption
for a direct band gap semiconductor: (Ahν)2 = B(hν–Eg), where B is a constant corresponding to the
material itself [34]. The Eg can be employed to evaluate the semiconductivity of the complexes. The Eg
of 1 is estimated to be approximately 4.01 eV, which is obtained by extrapolation of the linear portion
of the diffuse reflectance spectra (Figure 6), showing that 1 is an optical semiconductor [35].
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3.5. Photoluminescent Property

Luminescent CPs, especially containing π-conjugated organic molecules and a d10 metal
center, can adjust the photoluminescent property through their interaction arising from metal and
ligands [36,37]. Therefore, we performed the study of the photoluminescent properties of complex 1
together with HL organic ligand in the solid-state. As shown in Figure 7, the broad emission band at
433 nm was recorded for the HL organic molecule upon excitation at 365 nm; this is attributable to
π*→ π transition because of the π-conjugated effect of the aromatic group from the HL ligand [38].
Upon excitation at 365 nm, compound 1 shows similar broad photoluminescence emission at 442 nm.
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For the complex 1, the emission band is 9 nm red-shifted in contrast to the free HL ligand (Figure 7),
which may be intraligand fluorescence due to their similarity [39,40].
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Furthermore, we studied the corresponding decay lifetimes and quantum yield (QY) for the
HL ligand and complex 1. As shown in Figure 8, the QY value of compound 1 is 0.74%. The QY
value of coordination polymer 1 is 0.74%. The QY value of compound 1 is probably attributed to the
immobilization of the HL ligand, as it is strongly coordinated to metal ions that effectively increase the
rigidity of the ligands, and to the low-dimensional structure with a π-conjugated system that decreases
the molecular band gap [41]. Furthermore, the luminescence lifetime was also investigated for complex
1. The exponential function of I(t) = A exp(−t/τ) was employed to fit the luminescence decay curves,
which shows the luminescence lifetime of 1 is 84 ns (Figure 9).
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4. Conclusions

A new coordination polymer [Zn(L)2]n was synthesized by the reaction of Zn(II) salt with an HL
organic ligand including difunctional triazolyl and carboxyl groups. The deprotonated L− ligands act
as linear two-connectors to link Zn2+ atoms to form a 2D layer structure. The large vacancy of the 2D
framework allows another layer structure to interpenetrate, resulting in the system of 2D +2D→ 2D
parallel interpenetration in 1. The coordination polymer 1 exhibits an emission at 442 nm upon
excitation at 365 nm. The luminescence lifetime and quantum yield of compound 1 are 84 ns and
0.74%, respectively. The study has further demonstrated that the difunctional organic linkers containing
triazolyl and carboxyl groups are effective moieties to generate desired architectures. The coordination
polymer 1 shows good photoluminescence properties, and this study has further confirmed that CPs
with the combination of d10 metal atoms and conjugated organic ligands could be potentially used as
luminescent material.
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and coordination polymers [Zn(L)2]n. Figure S2. TGA plots of 1. Figure S3. The X-ray powder diffraction pattern
of [Zn(L)2]n.
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