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Abstract: Polymer composites with high thermal conductivity have a great potential for applications
in modern electronics due to their low cost, easy process, and stable physical and chemical
properties. Nevertheless, most polymer composites commonly possess unsatisfactory thermal
conductivity, primarily because of the high interfacial thermal resistance between inorganic fillers.
Herein, we developed a novel method through silver functionalized graphene nanosheets (GNS)
and multiwalled carbon nanotube (MWCNT) composites with excellent thermal properties to meet
the requirements of thermal management. The effects of composites on interfacial structure and
properties of the composites were identified, and the microstructures and properties of the composites
were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of
12.3 W/mK for polymer matrix composites was obtained, which is an approximate enhancement
of 69.1 times compared to the polyvinyl alcohol (PVA) matrix. Moreover, these composites showed
more competitive thermal conductivities compared to untreated fillers/PVA composites applied to
the desktop central processing unit, making these composites a high-performance alternative to be
used for thermal management.

Keywords: chemical modification; electronics cooling; thermal management nanocomposites;
thermal conductivity; silver nanoparticles

1. Introduction

Effective thermal management has become a critical issue to enhance reliability and performance
in many research areas including highly integrated electronic devices, lighting components, electronics
cooling, and energy-harvesting systems [1–5]. Therefore, it is essential to develop thermal management
materials with high thermal conductivity (λ), low coefficient of thermal expansion (CTE), and high
insulating property [1,4]. In particular, thermal interface materials (TIM) are typically composed of
thermally conductive fillers and viscous polymer matrix to achieve both high thermal conductivity and
good frequency stability [3–6]. TIM are essential components for efficient electronics cooling. They act
by filling unavoidable air gaps between the contacting surfaces of devices and heat sinks. Carbon
materials, such as graphene, carbon nanotubes (CNT), graphite, diamond, and carbon fibers (CF),
have recently proved to be promising thermal management materials due to their excellent thermal
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properties [4–7] (graphene intrinsic thermal conductivity λ = 5300 W/mK). However, the λ of thermal
management nanocomposites was not as high as expected when these various carbon materials were
embedded in various polymer matrices. This was due to the presence of an incomplete formation
of thermal percolation pathway and large interfacial thermal resistance (ITR) between the fillers and
polymer matrix [3–7]. The ITR could become one of the biggest obstacles for heat conduction from
good-conducting fillers to poor-conducting polymers.

The ITR in polymer nanocomposites can be classified into filler/matrix resistance and filler/filler
resistance [6–14]. Electrically conducting TIM with metal or nano-carbon fillers generally provide
higher λ than electrically insulating TIMs with ceramic fillers because additional thermal transport
could be recognized by electrons [14–17]:

λ = λe + λ1 = LσT + λ1 (1)

where λe is the electronic thermal conductivity, λ1 the lattice or phonon thermal conductivity,
L the Lorenz number, σ the electrical conductivity, and T the absolute temperature. A significant
improvement in σ of polymer matrix or composites has been observed using metal silver (Ag) fillers,
nano-carbon, or their combination, approaching 40% of intrinsic σ of Ag fillers [18–23].

Herein, this study proposed an alternative simple fabrication route, which introduced silver
nanoparticles (AgNPs) functionalized graphene nanosheets (GNS) and multiwalled carbon nanotube
(MWCNT), forming GNS@AgNPs and MWCNT@AgNPs coating microstructures to create a silver
nanoparticle “bridge”, to decrease the interfacial thermal resistance between fillers. We selected GNS
and MWCNT as fillers for their unique thermal conductivity compared with other materials, which are
cost-effective, widely used in thermal conductive applications and in research. Meanwhile, it is more
probably to obtain a 3D thermal percolation pathway through the combination of 1D and 2D fillers.
We chose AgNPs as the modification materials for its similar high thermal properties, and at the same
time, nanoparticles modifying increased the surface roughness of the fillers, which contributed to
enhance the bonding strength between the fillers and polymer matrix and to decrease the interface
resistance. (GNS-MWCNT)@AgNPs/PVA flexible film specimens were successfully prepared by
introducing the aforementioned structure into a polyvinyl alcohol (PVA) matrix. This combination
microstructure was designed to provide an even greater opportunity to enhance λ due to a significantly
higher intrinsic λ (about 3000 W/mK) of GNS and MWCNT [23–30] than that of other high–thermal
conductivity ceramic fillers, such as aluminium nitride (AlN) and boron nitride (BN). Moreover,
AgNPs were chosen because of their high thermal conductivity of Ag (λ = 429 W/(mK)) [6,24].
AgNPs functionalized GNS and MWCNT showed a higher σ in functionalized fillers, forming a more
effective thermally conductive network and hence, lowering the ITR effect. High thermal conductivity
and good insulation performance were gained with 20 vf% low filling ratios. This TIM was successfully
applied between a heat sink and a central processing unit (CPU) of the computer for efficient cooling.
GNS/PVA, MWCNT/PVA and (GNS-MWCNT)/PVA specimens with the same volume fraction were
prepared for comparison.

2. Materials and Methods

2.1. Materials

Ethylene glycol (EG, 99.5%), polyvinyl alcohol (PVA, powder), silver nitrate (AgNO3, 99.9%),
sodium chloride (NaCl, 98%), tetraethylorthosilicate (TEOS, 99.0%), and ammonium hydroxide
(NH4OH, 26 wt%) were purchased from Alfa Aesar Co. (Shanghai, China). Graphene nanosheets
(GNS, about 5–9 nm in thickness and 25 µm2 of surface area) and Multi-Walled Carbon Nanotubes
(MWCNTs, 40 nm in diameter and 1–2 µm in length) were supplied by Sigma-Aldrich Company
(Shanghai, China). Silver (Ag, ~50 nm) nanopowder was supplied by Beijing DK Nano Technology Co.
Ltd. (Beijing, China). All other chemical reagents were used as received.
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2.2. Characterization

Microstructures and morphologies of the Ag nanoparticles, GNS@AgNPs, and MWCNT@AgNPs
were characterized by using a high-resolution transmission electron microscopy (HRTEM,
JEOL JEM-1230, Tokyo, Japan). The scanning electron microscopy (SEM, JEOL 7401F, Tokyo, Japan)
was performed with an accelerating voltage of 10 kV, where the samples were sputter-coated with a
thin layer of gold for better imaging. The thermal conductivities of the fluids were measured using
Nanoflash (NETZSCH LFA 447, Bavaria, Germany) technology. In brief, the laser source emits a
light pulse on the sample surface under certain temperature conditions. Consequently, the surface
absorbs light energy and the temperature is instantly raised, and heat source conduction occurs
towards the cold side (generally refers to the upper surface). The comprehensive thermal analysis with
simultaneous differential scanning calorimetry and thermogravimetry (TG) was conducted using a
thermal analyzer (NETZSCH STA449C, Bavaria, Germany). The bulk density of the specimen was
measured by the water displacement method using an electronic densimeter (METTLER TOLEDO,
XPE205, Greifensee, Switzerland). The resistance parameters, including volume resistivity and surface
resistivity, were determined using an Agilent 4339B high-resistance meter (Agilent Technologies Japan
Ltd, Tokyo, Japan) at room temperature. The specimen dimensions used to measure resistivity were
prepared in the cylindrical shape of 25.4 mm in diameter and 1.0–2.0mm in thickness. The results were
obtained from data average of three samples.

2.3. Preparation and Purification of GNS@AgNPs and MWCNT@AgNPs

The schematic diagram outlining the preparation of AgNPs functionalized GNS and MWCNT
is shown in Figure 1; they were prepared following a previously published protocol with
modifications [31–33]. GNS@AgNPs and MWCNT@AgNPs were prepared by the same procedure,
which was simple and practical and could be divided into two parts.
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Figure 1. Schematic diagram illustrating the preparation of a coated structure of MWCNT@AgNPs
and GNS@AgNPs.

(1) The synthesis of silver nanoparticles was achieved by the sol-gel method. The precursor of
silver nanoparticles, silver nitrate solution in 400 mL of ethanol (0.02 mol/L), was stirred with benzyl
mercaptan for about 48 h and served as a reductant. Hence, silver nanoparticles were successfully
synthesized with an approximate average size of 5 nm and connected with benzyl through the ionic
bond with the sulfur ion. MWCNTs with an outer diameter of 5 nm, dispersed by sonication (600 W,
10 min) in ethanol were mixed with the 500 mL of silver nanoparticle solution by sonication in a bath
(200 W, 6 h).
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(2) AgNPs and pure ultrasonically dispersed GNS or MWCNT were mixed, stirring for about
30 min, and ultrasonically shaken for about 5 h afterwards. Then, they were assembled through
benzyl, the cross-linking agent, in which the sulfur ion served as a bridge between silver and benzyl
because sulfur has good affinity for silver. Hence, AgNPs adhered to GNS through benzyl. As a result,
GNS and MWCNT decorated with AgNPs (GNS@AgNPs and MWCNT@AgNPs, respectively) were
obtained after centrifugal separation and drying in a vacuum oven at 60 ◦C for about 12 h.

2.4. Preparation of GNS@AgNPs/PVA, MWCNT@AgNPs/PVA, and (GNS-MWCNT)@AgNPs/PVA

The composite film was prepared by the method of tape casting. PVA (3 g) was dissolved in
deionized water to a volume of about 60 mL. Then, the dispersed GNS@AgNPs and MWCNT@AgNPs
were added into the PVA solution, stirred for about 2 h, and then kept aside for 3 h to remove
the bubbles formed during stirring and to facilitate the formation of a filler network across AgNPs,
which was vital for the thermal conductivity of the composite. The mixture liquid was cast on the
plastic film substrate and heated at 60 ◦C. After solidification, the cast layer was separated from the
substrate artificially. Ultimately, the PVA matrix nanocomposite containing hybrid GNS@AgNPs and
MWCNT@AgNPs fillers was successfully obtained.

3. Results and Discussion

The SEM and TEM images of core-shell GNS@AgNPs, MWCNT@AgNPs and 20 vol% (GNS-
MWCNTs)@AgNPs/PVA film are shown in Figure 2. As shown in Figure 2a, AgNPs were uniformly
attached on the surface of microscale GNS. Figure 2b shows the TEM image of AgNPs; their size was
about 20 nm. Also, the silver lattice constant was about 0.23 nm, as shown in Figure 2c. Similarly,
AgNPs were uniformly attached to the surface of MWCNT, as shown in Figure 2c. The silver diffraction
pattern is shown in the inset of Figure 2d. As shown in Figure 2e, the thickness of composites film was
about 100 µm, the highlight part inset was the fillers, (GNS-MWCNTs)@AgNPs, and the surroundings
were polymer matrix. It can be seen that the fillers dispersed uniformly in the matrix and rarely
agglomerate compared with the SEM images of (f), (g), and (h). This uniform distribution of fillers not
only contributed to propagate phonon among fillers with high thermal conductivity but also helped to
conduct 3D thermal conductive pathways in the composites. Therefore, the composites with uniform
dispersion of the fillers can be obtained by this approach and the thermal conductivity of polymer
composites could be enhanced as well.

The surface modification of GNS nanosheets and MWCNT by AgNPs provided hydroxyl groups
on the surface of nanoparticles in the preparation process, improving the distribution of GNS-MWCNT
in the PVA polymer matrix. The thermal properties of the composite films are summarized in Table 1.
The pure PVA exhibited high thermal oxidation stability. The glass transition temperature (Tg) of the
composite films was slightly higher than that of the pure PVA, indicating that the nanofillers increased
the Tg of the PVA matrix. The thermo-oxidative decomposition behavior of the PVA nanocomposites
was similar to that of PVA but showed a high decomposition temperature, suggesting that the addition
of (GNS-MWCNT)/AgNPs improved the thermal stability of the PVA nanocomposites. The CTE of
the composite films decreased with the increasing concentration of nanofillers. Thus, a substantial
decrease in the CTE of PVA films originated from the adequate dispersion and interfacial physical
bonds between the nanofillers and the PVA matrix. The nanofillers prevented the mobility of the loose
molecular bonds in polymer chains with increasing temperature [33–42]. For the composite films,
CTE is dependent on each component phase and the interactions between each phase. Some polymeric
chains may create structures close to the nanoparticles surface, i.e., reducing the mobility of polymer
segments. Since Tg is associated with the mobility of polymeric chains, less mobility results in higher
Tg values. Hence, the substantial decrease in CTE of PVA films should originate from the adequate
dispersion and interfacial physical bonds between the nanofillers and the PVA matrix. The nanofiller
can restrain the mobility of the loose molecular bonds in polymer chains as the temperature increases.
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Figure 2. (a) SEM image of GNS@AgNPs, (b) TEM image of GNS@AgNPs, (c) Partially enlarged view
of (b). The lattice constant d of silver was 0.23 nm. And (d) TEM image of MWCNT@AgNPs. The silver
lattice diffraction pattern as shown in the inset of (d). SEM images of (e) (GNS-CNTs)@AgNPs/PVA
film, (f) MWCNT/PVA, (g) GNS/PVA, (h) (GNS-MWCNT)/PVA, and (i) partially enlarged view of
20 vol% (GNS-MWCNTs)@AgNPs/PVA. Particle average size of synthesized silver was about 20 nm,
thickness and surface area of 2D GNS were about 5–9 nm and 25 µm2, and MWCNTs possessed 40 nm
in diameter and 1–2 µm in average length.

Table 1. Glass transition temperatures, coefficient of thermal expansion, and thermal decomposition
temperature of pure PVA and its composites filled with GNS, MWCNT, and (GNS-MWCNT)@AgNPs
at 5%, 10%, 15%, and 20% fillers loading.

Sample Content
(vol%) Tg

a (◦C) CTE b

(ppm/◦C)
Td5%

c (◦C)

Pure PVA 0 208.2 ± 4.4 40.5 ± 1.2 517.3 ± 10.4

GNS/PVA

5 211.4 ± 6.3 41.1 ± 1.5 525.6 ± 11.2
10 211.6 ± 4.2 39.6 ± 2.4 517.5 ± 9.80
15 211.8 ± 5.1 38.4 ± 2.3 528.2 ± 10.8
20 212.2 ± 4.3 38.2 ± 2.1 527.3 ± 10.3

MWCNT/PVA

5 210.3 ± 5.5 40.2 ± 3.0 514.3 ± 9.90
10 211.5 ± 4.4 39.1 ± 2.7 513.5 ± 11.2
15 212.1 ± 4.1 38.7 ± 2.6 528.2 ± 10.8
20 212.3 ± 5.6 38.2 ± 2.7 522.9 ± 12.3

(GNS-MWCNT)@AgNPs/PVA

5 210.4 ± 6.1 39.8 ± 2.3 518.2 ± 11.1
10 210.6 ± 4.8 39.3 ± 3.2 519.4 ± 10.2
15 211.1 ± 6.5 38.7 ± 3.2 524.8 ± 10.9
20 212.4 ± 5.5 38.2 ± 2.5 526.2 ± 11.4

Tg
a glass transition temperature. CTE b coefficient of thermal expansion, measured using TMA determined over a

range of 100–200 ◦C. Td5%
c thermal decomposition temperature at 5% weight loss as determined using TGA.
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Both the volume and surface resistivities of the (GNS-MWCNT)@AgNPs/PVA composite films
with different volume fractions of fillers (0, 5%, 10%, 15%, and 20%) were measured using the 2-point
method at room temperature. The results are presented in Figure 3. As shown in Figure 3, the volume
and surface resistance of the films decreased gradually with increased nanofiller loading. The results
suggested that although the volume resistance and surface resistance of the films decreased gradually,
they were within the range of accepted properties for electronic packaging and/or electrical insulation
material applications [26,43–48]. The inset of Figure 3 shows the effects of four fillers on the flexural
strength of the composites compared to the pure PVA matrix. The maximum flexural strength of
the (GNS-MWCNT)@AgNPs/PVA composite with 20 vol% fillers loading increased to 131.0 MPa,
which was increased by 47.2% compared to the pure PVA matrix (89.0 MPa). Appropriate fillers with
surface modification could effectively transfer stress and facilitate stress relaxation under external
forces, finally leading to improve the flexural strength of the composites.Crystals 2018, 8, x FOR PEER REVIEW  6 of 11 
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compared with that of pure PVA matrix (inset).

The thermal conductivities of composites greatly depended on the properties of polymers and
fillers, such as their content, components, and surface treatment of fillers [49–54]. Comparison charts of
thermal conductivities and their enhancements for GNS/PVA, MWCNT/PVA, (GNS-MWCNT)/PVA,
and (GNS-MWCNT)@AgNPs/PVA composite films with different nanofillers are shown in Figure 4.
As shown in Figure 4a, the thermal conductivity of the pure PVA was about 0.178 W/mK. The thermal
conductivities of the aforementioned four composite films increased with the increase in filler loading.
Further, the thermal conductivity of (GNS-MWCNT)@AgNPs/PVA was higher than that of the other
three films and reached the highest value of 12.3W/mK at 20% filler loading. The efficiency of fillers in
thermally conductive materials were characterized by thermal conductivity enhancement, which was
defined by the following equation [48]:

η(%) =
Kc − Km

Km
× 100 (2)

where Kc represents the thermal conductivity of the composite, and Km is the thermal conductivity
of the matrix material. As shown in Figure 4b, the enhanced matrix thermal conductivity was
always larger than that for GNS/PVA, MWCNT/PVA, and (GNS-MWCNT)/PVA composite films
at 5%, 10%, 15%, and 20% filler loading, respectively. The maximum thermal conductivity of
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(GNS-MWCNT)@AgNPs/PVA composite with 20% filler low loading increased to 12.3 W/mK,
representing an approximate enhancement of 6810.1 times, compared to the used pure PVA matrix.
Graphene nanosheets could be considered as a 2D materials, multiwalled carbon nanotube could
be considered as a one-dimensional material, and GNS@AgNPs and MWCNT@AgNPs could be
considered as 2@0 and 1@0 coated structures. Compared to GNS/PVA and MWCNT/PVA films,
silver nanoparticles coated with GNS and MWCNT provided an effective bond between fillers and PVA
polymer, enabling effective thermal conductivity, compared to the films without silver nanoparticles at
the same filler loading. Hence, it was fair to conclude that multidimensional structure fillers improved
the thermal conductivity of polymer matrix composite materials compared to the single-dimensional
structure fillers [28].
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MWCNT/PVA, (GNS-MWCNT)/PVA, and (GNS-MWCNT)@AgNPs/PVA nanocomposite films with
different volume fractions of fillers.

Printability and thermal expansion are important parameters of TIM when applied between
the surfaces of heat-generating devices and heat sink in the advanced microelectronics packaging
technology. The CPU cooling of the desktop computer was investigated using TIM for heat dissipation,
as shown in Figure 5a. The (GNS-MWCNT)@AgNPs/PVA TIM was applied between the
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Figure 5. Changes in computer CPU cooling with the temperature of (GNS-MWCNT)@AgNPs/PVA
TIM and a commercial TIM were investigated. An optical image of the coating-printed
(GNS-MWCNT)@AgNPs/PVA TIM is provided in the inset of (a). Optical images of a CPU on a
motherboard before and after the installation of a heat sink with a fan. T-type thermocouples were
employed to measure the temperatures of the CPU. Temperature (TCPU) profiles were investigated with
two kinds of TIMs and without TIM between the CPU and heat sink. (b) Experimental data of TCPU

with TIMs under normal working conditions were also compared with the data of TCPU without TIM.
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CPU and a heat sink and cured at 120 ◦C for 5 h. A cooler master fan was attached at the top of
the heat sink. The surface temperature of the CPU (TCPU) was measured using T-type thermocouples
at room temperature. A commercial TIM (ARCTIC MX-4, Shenzhen, China λ = 8.5 W/mK) was
chosen as a comparison. As shown in Figure 5b, TCPU without and with two kinds of TIMs were
room temperature initially, which increased gradually with the increase in time. TCPU without
TIM was more than 50 ◦C after about 2000 s and increased with time, gradually into the abnormal
conditions (more than 50 ◦C). However, TCPU with two kinds of TIMs were always normal, a better
heat dissipation performance was obtained by the (GNS-MWCNT)@AgNPs/PVA TIM compared with
that of commercial TIM. The highest TCPU of (GNS-MWCNT)@AgNPs/PVA TIM was only about
40◦C. Hence, it was evident that using TIM obtained could more effectively reduce the redundant heat
compared with CPU without TIM and commercial TIM.

4. Conclusions

In summary, silver-functionalized GNS and MWCNT composites with excellent thermal
properties were developed in this study. The effects of composites on the interfacial structure and
properties of the composites were identified, and the microstructures and properties of the composites
were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of
12.3 W/mK for polymer matrix composites was obtained, which was enhanced by approximately
69.1 times compared to the PVA matrix. Further, these composites displayed more competitive thermal
conductivities compared to the untreated fillers/PVA composites, and more effectively reduced the
redundant heat, compared to CPU without TIM and commercial TIM. This technique provides insight
into designing thermally conductive polymer composites, highlighting the potential for its use in the
next-generation electronic packaging.
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