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Abstract: A new nonlinear optical crystals fluoride carbonate, Na4Yb(CO3)3F, has been synthesized
by mild hydrothermal method. The Na4Yb(CO3)3F crystallizes in the noncentrosymmetric space
group Cc (no. 9) with the lattice parameters a = 8.018(3), b = 15.929(5), c = 13.950(5) Å and
β = 101.425(6)◦. The compound Na4Yb(CO3)3F has a high density of [CO3] groups. The structure can
be described as one-dimensional [Na5Yb(CO3)2F2] chains connected by [CO3] groups, forming an
intricate three-dimensional (3D) framework. Other Na+ and Yb3+ cations are located in the cavities of
3D network. The powder second harmonic generation (SHG) measurement shows that Na4Yb(CO3)3F
features a large SHG response, about 4.3 times that of KH2PO4 (KDP), and is a phase-matchable
material. In addition, its UV-Vis-NIR diffuse reflectance spectral data indicate that Na4Yb(CO3)3F
has a large optical gap about 4.72 eV, which corresponds to the UV cut-off edge of 263 nm.
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1. Introduction

Nonlinear optical (NLO) crystals are of great importance for UV frequency conversion, due to the
increasing demand on the applications of UV laser. Over the last few decades, the dominant research
on the explorations of new UV NLO materials has been focused on the borates, resulting in finding
many excellent potential UV NLO crystals [1–7]. However, it remains challenging to obtain practically
useful materials possessing high NLO coefficients and wide UV transparency.

To date, although various ideas have been put forward on how to design NLO crystals with large
SHG effect [8–10], the anionic group theory has achieved great success in guiding the design and
synthesis of UV and deep-UV NLO. Based on the anionic group theory [11,12], there are two ways
to produce large NLO effects: (1) favorable NLO-active structural units are in coparallel alignment
in crystal and (2) the density of NLO-active structural units is high in crystal. In addition, according
to the anionic groups theory, one can know that the favorable structural unit is the planar [BO3]3−

group containing conjugated π-orbital in borates system, because the planar [BO3]3− anionic group
has a moderate birefringence and a large microscopic second-order susceptibility β(2). Some successful
examples include KBe2BO3F2 [13], BaAlBO3F [14], Sr2Be2B2O7 [15]. Analogously, [NO3]− and [CO3]2−

anionic groups possessing the similar planar triangle structure with π-orbital are expected to be the
good NLO-active anionic groups as well. The nitrates are not commonly considered as the NLO
crystals candidates, attributing to their hydrolysis. However, most carbonates have stable physical
and chemical properties. Thus, we choose [CO3]2− anionic groups as fundamental structural units to
design novel UV NLO materials.
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It is well known that the alkaline metal cations without unclosed d or f electrons contribute
to the cut-off edge shifting to the UV region, because the d-d or f-f electronic transitions have
negative influences on the optical band gap. In addition, the NLO crystals containing fluorine
atoms, such as AB4O6F (A = NH4, Na, K, Rb, Cs) [16–19], M2B10O14F6 (M = Ca, Sr) [20], MB2O3F
(M = Pb, Sn) [21], will cause a crystal blue shift effect, because strong electronegativity of fluorine atom
can effectively increase the energy band gap of compounds, thus resulting in short UV cut-off edge.
Besides, the compounds that contain rare earth atoms often exhibit excellent optical properties, such as
Na3Re(CO3)3 (Re = Y, Gd) [22], Cd4ReO(BO3)3 (Re = Y, Gd, Lu) [23] and GdCa4(BO3)3 (GCOB) [24].
Guided by these principles, in order to obtain the novel UV NLO crystals, we expected to introduce
alkali metal, rare earth and halogen fluorine atoms into carbonates to form complex fluoride carbonates.

Fluoride carbonates systems have been extensively studied in recent years, which has resulted
in some excellent fluoride carbonates NLO materials, such as K4Ln2(CO3)3F4 (Ln = Pr, Nd, Sm, Gd,
Eu) [25], ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) [26], Na3Lu(CO3)2F2 [27], K2.70Pb5.15(CO3)5F3 [28],
RbPbCO3F [29] and CsPbCO3F [29]. In addition, it is noteworthy that large, centimeter size,
single crystals of KSrCO3F had been successfully grown by a top seeded solution growth (TSSG)
method [30]. KSrCO3F exhibited a laser damage threshold (LDT) over 700 MW cm−2 (1064 nm, 6 ns,
15 Hz), which suggested that fluoride carbonates’ potential laser application. In this study, our further
investigation of the alkali metal (Li, Na, K, Rb, Cs) and rare earth (La, Sc, Yb) fluoride carbonates
system at subcritical hydrothermal condition resulted in the finding of a new noncentrosymmetric
material Na4Yb(CO3)3F, with a short UV cut-off edge and a large SHG effect. Herein we report the
syntheses, crystal structure, and optical properties.

2. Materials and Methods

2.1. Reagents

Na2CO3 (99.8%), NaF (99.8%) were purchased from Sinopharm (Fuzhou, China). Yb(NO3)3·6H2O
(99.0%) were purchased from Jinan Camolai Trading Company (Jinan, China).

2.2. Syntheses of Na4Yb(CO3)3F

A mixture of Na2CO3 (2.12 g, 0.02 mol), NaF (0.52 g, 0.012 mol), Yb(NO3)3·6H2O (0.181 g,
0.004 mol), and H2O (5.0 mL) was sealed in an autoclave equipped with a Teflon liner (23 mL) and
heated at 220 ◦C for 5 days, followed by slow cooling to room temperature at a rate of 3 ◦C/h.
The reaction product was washed with deionized water and ethanol and then dried in air. Colorless
brick-shaped Na4Yb(CO3)3F crystals were obtained.

2.3. Single Crystal X-ray Diffraction

Single crystal X-ray diffraction data were collected at room temperature on a Rigaku Mercury CCD
diffractometer (Rigaku, Tokyo, Japan) with graphite-monochromatic Mo Kα radiation (λ = 0.71073 Å).
A transparent block of crystal was mounted on a glass fiber with epoxy for structure determination.
A hemisphere of data was collected using a narrow-frame method with ω-scan mode. The data
were integrated using the CrystalClear program, and the intensities were corrected for Lorentz
polarization, air absorption, and absorption attributable to the variation in the path length through
the detector faceplate. Absorption corrections based on the Multiscan technique were also
applied. The structure was solved by the direct methods. Then they were refined by full-matrix
least-squares fitting on F2 by SHELX-97 [31]. All nonhydrogen atoms were refined with anisotropic
thermal parameters. The structure was verified using the ADDSYM algorithm from the program
PLATON [32], and no higher symmetries were found. Relevant crystallographic data and details
of the experimental conditions for Na4Yb(CO3)3F are summarized in Table 1, atomic coordinates
and isotropic displacement coefficients are listed in Table S1, and bond lengths in Table S2 in the
Supplementary Information.



Crystals 2018, 8, 381 3 of 10

Table 1. Crystal data and structure refinement for Na4Yb(CO3)3F.

Formula Na4Yb(CO3)3F

Formula Mass (amu) 464.03
Crystal System Monoclinic
Space Group Cc
a (Å) 8.018(3)
b (Å) 15.929(5)
c (Å) 13.950(5)
β (◦) 101.425(6)
V (Å3) 1746.4(11)
Z 8
ρ (calcd) (g/cm3) 3.530
Temperature (K) 293(2)
λ (Å) 0.71073
F (000) 1647
M (mm−1) 11.602
R/wR (I > 2σ (I)) 0.0171/0.0347
R/wR (all data) 0.0177/0.0350
GOF on F2 1.077
Absolute Structure Parameter 0.00

R(F) = Σ||Fo| − |Fc||/Σ|Fo|. wR(Fo
2) = [Σw(Fo

2 − Fc
2)2/Σw(Fo

2)2]1.

2.4. Powder X-ray Diffraction

Polycrystalline materials were ground from single crystals. X-ray diffraction patterns of
polycrystalline materials were obtained on a Rigaku Dmax2500 powder X-ray diffractometer (Rigaku,
Tokyo, Japan) by using Cu Kα radiation (λ = 1.540598 Å) at room temperature in the angular range of
2θ = 5–65◦ with a scan step width of 0.05◦ and a fixed time of 0.2 s. The powder XRD patterns showed
good agreement with the calculated XRD patterns from the single-crystal models. (Figure 1).
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Figure 1. X-ray powder diffraction patterns of Na4Yb(CO3)3F. The black curves are the calculated ones,
the red are the patterns of samples.

2.5. Thermal Analysis

The TG/DTA scans were measured on a NETZSCH STA 449C (NETZSCH, Bavaria, Germany).
Reference (Al2O3) and crystal samples (3–10 mg) were enclosed in Al2O3 crucibles and heated from
room temperature to 900 ◦C at a rate of 10 ◦C/min under a constant flow of nitrogen gas.

2.6. UV-Vis Diffuse Reflectance Spectroscopy

UV-vis Diffuse Reflectance Spectroscopy data were recorded at room temperature using a powder
sample with BaSO4 as a standard (100% reflectance), on a PerkinElmer Lamda-900 UV/vis/NIR
spectrophotometer (PerkinElmer, Berlin, Germany) and scanned at 200–2500 nm. Reflectance spectra
were converted to absorbance using the Kubelka-Munk function [33,34].
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2.7. Second-Harmonic Generation

Polycrystalline second-harmonic generation (SHG) signals were measured using the method
adapted from Kurtz and Perry [35]. Since SHG efficiencies are known to depend strongly on particle
size, polycrystalline samples were ground and sieved into the following particle size ranges: 25–45,
45–62, 62–75, 75–109, 109–150, and 150–212 µm. The samples were pressed between glass microscope
cover slides and secured with tape in 1 mm thick aluminum holders containing an 8 mm diameter
hole. To make relevant comparisons with known SHG materials, crystalline KDP were also ground
and sieved into the same particle size ranges. The samples were then placed in a light-tight box and
irradiated with a pulsed laser. The measurements were performed with a Q-switched Nd:YAG
laser at 1064 nm. A cutoff filter was used to limit background flash-lamp light on the sample,
and an interference filter (530 ± 10 nm) was used to select the second harmonic for detection with a
photomultiplier tube attached to a RIGOL DS1052E 50-MHz oscilloscope. This procedure was then
epeated using the standard nonlinear optical materials KDP, and the ratio of the second-harmonic
intensity outputs was calculated. No index-matching fluid was used in any of the experiment.

2.8. Computational Methods

The first-principle calculations were performed by the plane-wave pseudopotential method
implemented in the CASTEP package [36]. The ion-electron interactions were modeled by the
optimized normal-conserving pseudopotentials for all constituent elements. In this model, C 2s22p2,
O 2s22p4, Na 2s22p63s1 and Yb 4f145s25p66s2 electrons were treated as the valence electrons,
respectively. The kinetic energy cutoff of Na4Yb(CO3)3F was set at 850 eV. The convergence criteria of
total energy for the title compounds was set at 1.0 × 10−5 eV/atom. According to the Monkhorst-Pack
scheme [37], the k-point meshes in the Brillouin zone was sampled as 6 × 3 × 3. Generalized gradient
approximation (GGA) in the scheme of Perdew-Burke-Eruzerhof (PBE) [38] describe the exchange and
correlative potential of electron-electron interactions. Both the lattice constants and atom sites were
fully fixed within experimental values. For the optical property calculations, the scissors-correction
method was adopted, where the scissors operator was set as the difference between the experimental
and GGA-PBE bandgaps.

The “velocity-gauge” formula derived by Sipe et al. [39] was employed to calculate the SHG
coefficient. The calculated second-order susceptibilities are expressed as follows:

χ(2)(−2ω; ω, ω) =
i
2

∣∣∣ e
mω

∣∣∣3∑
ijl

∫
BZ

dk
4π3

PijPjl Pl j

2E− Eji

[
fil

E− Eli
−

f jl

E− Ejl

]
, (1)

where e = hw, Eji = Ej − Ei, fil = fi − fl, etc.; fi is the Fermi occupation factor of the single-particle
state i, and Pij are momentum matrix elements. Subscripts i, j, and l can be thought of as labeling
the band index at a given k in the BZ; quantities like Pij, and Ejk are therefore functions of k. In this
formula, the optical transition dipole moment p is taken from dielectric function of CASTEP optical
properties calculation.

In this manner, we calculated the imaginary part of χ(2)′, and the real part of χ(2)′′ was
obtained by Kramers−Kronig Relations on the imaginary part. The total second-order susceptibility

χ(2) = (
∣∣∣χ(2)′

∣∣∣2 + ∣∣∣χ(2)′′
∣∣∣2) and d = 2χ(2).

3. Results and Discussion

3.1. Crystal Structure

Na4Yb(CO3)3F crystallizes into a monoclinic crystal system with an acentric space group of Cc.
As shown in Figure 2, its structure can be described as the [CO3] groups connect to the one-dimensional
[Na5Yb(CO3)2F2] chains to construct an intricate three-dimensional framework. The Na(2), Na(3),
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Na(8) and Yb(1) atoms reside in the cavities of the 3D network. The Na(2), Na(8) atoms are 7-fold
coordinated, respectively, forming [Na(2)O7] and [Na(8)O6F] polyhedra and Na(3) atoms are 6-fold
coordinated, forming [Na(3)O6] polyhedra. The other Na atoms are surrounded by five O atoms and
one F atom, forming [NaO5F] polyhedral (Figure 2c). The Yb atoms occupy two crystallographic
sites and exhibit different coordination environments. The Yb(1) atom is coordinated to eight O
atoms, forming [Yb(1)O8] polyhedra, while the Yb(2) atom is coordinated to five O atoms and two
F atoms forming [Yb(2)O5F2] polyhedral (Figure 2c). The [CO3] groups form rods along the c-axis
that can be described as piercing or cross-linking (on-edge) infinite corrugated sheets of edge sharing
(Figure 2b). In terms of [CO3] triangles, the range of C–O bond lengths is between 1.248(6) and 1.333(5)
Å, and O–C–O bond angles range from 114.1(4) to 124.8(4)◦. It is noteworthy that one-third of the [CO3]
groups are approximately parallel to a-b plane and in the same direction, giving main contribution to
the SHG effect and the other [CO3] groups inclined to a-b plane having additional contributions to the
SHG effect.

1 
 

 
Figure 2. Crystal structure of Na4Yb(CO3)3F.

3.2. Thermal Analysis

As shown in Figure 3, the thermogravimetric analysis (TGA) were performed to investigate the
thermal properties of Na4Yb(CO3)3F. TGA curve revealed that the compound was stable up to 300 ◦C.
The weight loss occurred in the temperature interval about 300–500 ◦C, which can be ascribed to the
loss (weight %) of 1.5 moles of CO2 gas per one mole of Na4Yb(CO3)3F (exp./th. = 14.7/14.2).
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3.3. Diffuse-Reflectance Spectroscopy

The data of UV-vis diffuse reflectance spectra collected for Na4Yb(CO3)3F in the region of
200–2500 nm is presented in Figure 4. Absorption (K/S) data were calculated from the following
Kubelka-Munk function: F(R) = (1 − R)2/2R = K/S, where R is the reflectance, K is the absorption,
and S is the scattering. In the (K/S)-versus-E plots, extrapolating the linear part of the rising curve to
zero provided the onset of absorption. The optical diffuse reflectance spectrum study indicated that
the optical band gap for Na4Yb(CO3)3F was approximately 4.72 eV with UV cut-off edges of 263 nm.
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3.4. NLO Properties

The curves of the SHG signals, as a function of particle size from the measurements made on
ground crystals of Na4Yb(CO3)3F, were shown in Figure 5. According to the rule proposed by Kurtz
and Perry, the titled compound was phase-matching in the visible region. The KDP sample was used
as a reference. The measurement of second-harmonic signal for Na4Yb(CO3)3F was found to be about
4.3× KDP. Since the reported d36 coefficient for KDP was 0.39 pm/V, the derived deff coefficients for
Na4Yb(CO3)3F was 1.28 pm/V.
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a reference.

In order to study the relationship between structure and NLO properties, the computational
method based on the anionic group theory reported in reference [40] was employed. The detailed
computational processes are presented in the Supplementary Information, and the calculated results
can be seen in Tables S3 and S4. According to Equations (2) and (4) in the Supplementary Information,
without considering localized field (F), the NLO coefficient X(2)

ijk depended on two factors: (1) the
structural criterion (C) and (2) the density of [CO3] group (n/V). The C factor was between 0 to 1,
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representing the average result of the addition of the anionic group dipole vectors in the unit cell.
That is, the C factor directly reflected the arrangement of anionic groups in the cell. For Na4Yb(CO3)3F,
the calculated value of C factor was 0.86 approaching 1. The result indicated that all [CO3] groups were
approximately in coparallel alignment, giving a great contribution to macroscopic NLO coefficients.
In addition, apart from large C value, compound Na4Yb(CO3)3F had a high density of [CO3] groups
(0.0137), which was larger than those of some known carbonate NLO crystals, such as KSrCO3F (0.0089)
and Na3Lu(CO3)2F2 (0.0117). Therefore, a large C factor and the high density of [CO3] group (n/V)
resulted in large SHG effect of Na4Yb(CO3)3F.

3.5. Theoretical Calculations

For a deeper understanding of the bonding interactions in Na4Yb(CO3)3F, theoretical calculations
were adopted based on DFT methods. The calculated band structure is presented in Figure 6.
Compound Na4Yb(CO3)3F exhibited a direct band gap of 4.573 eV at Г point. This value was smaller
than the experimental values, due to the underestimation of band gap by DFT method. The total and
partial densities of states (DOS and PDOS) are presented in Figure 7, in which the occupied part of the
valence band can be subdivided into three regions, separated by energy gaps. The valence bands (VB)
in the lowest region, ranging from −24.0 eV to −20.0 eV, were mainly occupied by p orbitals of Yb and
Na atom and s orbitals of C, O and F atom, while those from −20 eV to −17.0 eV have most of the
contributions from O-2s and C-2p. In the vicinity of the Fermi level, namely, from −9.0 eV to −0 eV
in the VB, O-2p, and C-2p orbitals were predominantly involved and overlap fully, revealing that the
strong covalent interactions of C–O bonds. In the range from 4.6 eV to 8.0 eV in the conduction band
(CB), C-2p, O-2p and Yb-4f state were mainly occupied. Notably, since the VB maximum and the CB
minimum were mainly composed of the O 2p and C 2p orbitals, respectively, this indicated that the
electron transition was mainly contributed to by inside excitation of the [CO3]2− group. Therefore,
the SHG coefficients primarily originate from the contribution of CO3.
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To gain theoretical values of the SHG coefficients, the “velocity-gauge” formula derived by
Sipe et al. was used. Since the space group of the title compound belonged to class m, there were
10 nonvanishing tensors of second-order susceptibility. Under the restriction of Kleinman’s symmetry,
only six independent SHG tensor components (d11, d12, d13, d15, d24, and d33) were considered.
The calculated six frequency dependent NLO components (d11, d12, d13, d15, d24, and d33) were plotted
in Figure 8. The calculated largest tensor at a wavelength of 1064 nm (1.165 eV) is d11 and the value of
d11 is 0.90 pm/V, which are close to the experimental one.
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