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Abstract: Tetraarylethylene derivatives are emerging as an increasingly important family of supramolecular
building blocks in both solution phase and the solid state. The utility of tetraarylethylenes stems from
appealing structural features (rigidity and symmetry) and their propensity to exhibit aggregation
induced emission (AIE). In an effort to investigate the luminescent sensing ability of heteroaromatic
tetraarylethylenes, we previously prepared tetra(4-pyridyl)ethylene and characterized its solution
phase AIE properties. We here report the successful incorporation of tetra(4-pyridyl)ethylene
into three distinct salts and co-crystalline assemblies with three organic di-carboxylic acids (oxalic
acid, malonic acid, and fumaric acid). Interactions between the tetra(pyridyl)ethylene and di-acid
components were found to vary from conventional to charge-assisted hydrogen bonding according
to the extent of proton transfer between the acid and pyridine groups. Notably, the formation of
pyridinium-carboxylate adducts in the salts does not appear to be strongly correlated with acid
pKa. Three distinct network topologies were observed, and all featured the bridging of two or three
tetra(pyridyl)ethylene groups through di-acid linkers. Crystalline assemblies also retained the AIE
activity of tetra(pyridyl)ethylene and were luminescent under UV light. As tetra(4-pyridyl)ethylene
features four Lewis basic and potentially metal ligating pyridine rings in a relatively well-defined
geometry, this compound represents an attractive building block for the design of additional
crystalline organic and metal–organic functional materials.

Keywords: supramolecular chemistry; crystal engineering; co-crystals; hydrogen bonded organic
frameworks; aggregation induced emission

1. Introduction

The design of functional crystalline materials has emerged as a principal objective of contemporary
solid state supramolecular chemistry. It is envisioned that crystalline assemblies prepared from
appropriate combinations of organic and/or metal–organic building blocks will afford functional
materials that exhibit targeted bulk properties. Desirable bulk properties include inter alia porosity,
catalysis, magnetism, conductivity, luminescence, and non-linear optical activity [1–12]. Of these
targeted functions, the construction of porous crystalline materials has garnered considerable attention,
in large part spurred by the desire to identify energy-related materials that can be potentially used for
reversible gas storage [13–15].

A common strategy implemented in many crystal engineering approaches to functional materials
aims to exploit well-defined elements of molecular recognition or metal ligating ability that are
arranged in pre-defined patterns about rigid or semi-rigid organic building blocks to mediate
supramolecular assembly. For example, aromatic polycarboxylic acids, such as terephthalic acid
(1,4-benzene dicarboxylic acid), isophthalic acid (1,3-benzene dicarboxylic acid), and trimesic acid
(1,3,5-benzene tricarboxylic acid), have provided a wealth of robust crystalline assemblies (both purely

Crystals 2018, 8, 41; doi:10.3390/cryst8010041 www.mdpi.com/journal/crystals

http://www.mdpi.com/journal/crystals
http://www.mdpi.com
https://orcid.org/0000-0003-2700-7141
http://dx.doi.org/10.3390/cryst8010041
http://www.mdpi.com/journal/crystals


Crystals 2018, 8, 41 2 of 12

organic as well as metal–organic) with diverse properties [5,6,10]. Similarly, N-functionalized Lewis
basic building blocks (such as bipyridine and related polypyridines) have proven to be valuable crystal
engineering tools [16]. Benzene polycarboxylic acids, polypyridine derivatives, and related congeners
offer predictable and geometrically defined supramolecular or metal ligating interactions. Consonant
with this strategy, new rigid or semi-rigid organic architectures that can be decorated with hydrogen
bonding and/or metal ligating moieties offer opportunities to expand the crystal engineering toolbox
and further facilitate construction of additional functional materials.

In this context, tetraarylethylenes represent an attractive platform for the construction of novel
crystalline assemblies. The parent hydrocarbon tetraphenylethylene (1, Figure 1) and numerous
substituted derivatives are known to exhibit the phenomenon of aggregation-induced emission (AIE)
in which enhanced luminescence is observed upon the restriction of intramolecular bond rotations due
to aggregation of tetraarylethylene molecules in solution (e.g., in the presence of poor solvents) or in
the solid state [17,18]. This general property of tetraarylethylenes coupled with a geometrically
appealing molecular structure has resulted in studies examining the utility of tetraarylethylene
derivatives in solution phase and solid state supramolecular assembly processes, often with the
aim of capitalizing on enhanced luminescence to deliver new optical or sensing materials [19,20].
Indeed, several crystalline luminescent metal organic frameworks (MOFs) have been prepared using
the symmetrical tetraphenylethylene carboxylic acid (2) as well as the extended biphenylethylene
analogue (3) as rigid metal ligating components [21–35]. Additionally, we have investigated the
electrooptical properties of crystalline organic assemblies constructed from phenoxyacetic acid (4)
and bis(pyridine) derivatives [36]. We have also characterized halogen bond-mediated self-assembly
and luminescence in crystals of tetraphenylethylene halophenyl esters (5) [37]. The tetrapyridine
derivative (6), featuring four pyridine units grafted onto the periphery of tetraphenylethylene [38],
has also been utilized as a metal ligating component in several MOFs, as well as a ligand in dynamic
solution phase metal–organic assemblies [39–50]. The solid state halogen bond accepting ability of 6 in
combination with diiodoarene halogen bond donors has also been examined [51].
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Recently, we have initiated research aimed at developing small-molecule sensors for select analytes
based on the metal chelating ability of poly(pyridyl) tetraarylethylenes in which two or more phenyl
rings in tetraphenylethylene have been replaced with pyridine groups [52–54]. During the course of
these studies, we also prepared tetra(4-pyridyl)ethylene (7) and characterized its solution phase AIE
luminescent properties [54]. This tetra(pyridine) derivative resembles its larger analogue 6 in that the
four pyridine rings are oriented in more or less fixed positions about the central alkene linkage to
provide geometrically well-defined Lewis basic sites that are available for intermolecular interactions.
We envision that synthetic accessibility and desirable molecular features will render 7 a useful building
block in a range of crystal engineering applications. In preliminary efforts to explore the solid state
supramolecular chemistry of 7, we report here the structures of three crystalline networks between 7
and oxalic, malonic, and fumaric acids.

2. Materials and Methods

Tetra(pyridyl)ethylene (7) was synthesized as reported previously [54]. Co-crystals of 7 and the
three dicarboxylic acids were obtained under similar conditions. A capped sample vial containing
tetra(pyridine) 7 (33.6 mg, 0.1 mmol) and 0.2 mmol of the dicarboxylic acid in 6 mL of a 2:1
MeOH/acetone solution was heated in a 60 ◦C water bath for 1 h to obtain a homogeneous solution.
The vial was then allowed to cool to room temperature. Slow evaporation of solvent under ambient
conditions deposited X-ray quality single crystals. Diffraction data were collected on a Nonius Kappa
CCD diffractometer (Bruker-Nonius, Delft, The Netherlands) equipped with Mo Kα radiation with
λ = 0.71073 Å. Crystallographic data is shown in Table S1. Structures were solved by direct
methods, and data were refined by full matrix least squares refinement of F2 against all reflections.
Supplementary crystallographic data for this paper can be found in CCDC 1590576-1590578.
This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures.

3. Results and Discussion

Tetra(pyridyl)ethylene (7) was prepared via double Suzuki coupling between 1,1-dibromo-2,2-
bis(4-pyridyl)ethylene and 4-pyridyl boronic acid as described previously [54]. Initial attempts to
prepare co-crystals involved mixing 7 with terephthalic or isophthalic acid in different solvents
followed by slow evaporation, but crystalline materials were not deposited under these conditions.
We speculate that the combined rigidity of 7 and the benzene dicarboxylic acids may not be compatible
with efficient crystal nucleation and growth. Consequently, we selected linear acyclic dicarboxylic acids
as crystallization partners with the expectation that the smaller size and greater flexibility of these acids
may be conducive to co-crystallization with 7. Gratifyingly, slow evaporation of methanol/acetone
solutions containing 2:1 ratios of di-acid/7 yielded crystalline salts or co-crystalline assemblies. Of the
simple di-acids screened in this study, X-ray quality single crystals were obtained from 7 and oxalic,
malonic, and fumaric acids, while microcrystalline powders unsuitable for X-ray analysis were obtained
from succinic, glutaric, and adipic acids.

Crystals of 7 (oxalic acid)2 were formed with a 2:1 ratio of oxalic acid/7 along with seven H2O molecules
of hydration. Crystallographic data is provided in Table S1. The asymmetric unit is comprised of
one molecule of oxalic acid, 0.5 molecules of 7, and 3.5 H2O molecules. The C–O bond lengths in
the oxalic acid component are all comparable and range from 1.288 to 1.219 Å, indicative of doubly
deprotonated oxalate(2-) anions. Each pyridine group has been converted to a protonated pyridinium
cation as evidenced by intra-annular N–C–N angles of ~121◦. These angles are significantly larger than
comparable bond angles found in neutral pyridines (typically ~116◦) [55]. Oxalate and pyridinium
groups are connected through a network of charge-assisted hydrogen bonds as shown in Figure 2.
One pyridinium group engages oxalate in a bifurcated H-bonding interaction, but the H4–O2 distance
is much shorter than the H4–O1 distance (1.806 Å and 2.319 Å, respectively). The O1 oxygen of
oxalate is also involved in a second strong H-bonding interaction with H10 of a neighboring molecule
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of 7 that serves to bridge two tetraarylethylenes (H10–O1 d = 1.474 Å). Individual molecules of 7
adopt a propeller-like conformation typical of tetraarylethylenes [17]. The oxalate ions are further
linked through an extensive network of H-bonds emanating from discrete T4(1) water tetramers
(Figure 3A) [56]. Hydrogen bond distances from H2O to oxalate and among H2O molecules range from
1.833 to 2.080 Å. Two views of the extended packing are illustrated in Figure 3B,C. Figure 3B shows the
view down c in which offset stacked columns of alternating bridged tetra(pyridinium)ethylenes are
separated by oxalate–water clusters, while Figure 3C depicts the packing down b.
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The structure of 7 (malonic acid)1.5 exhibits significantly different features compared to the oxalic
acid salt described above. First, solvate-free close-packed crystals were obtained in stoichiometry
consisting of one molecule of 7 and 1.5 molecules of malonic acid (crystallographic data is provided in
Table S1). The malonic acid groups are present as neutral carboxylic acids (rather than carboxylate
anions as observed for oxalic acid). This is clearly evident by differences in the two C–O bond lengths
in each carboxylic acid unit (1.202 + 1.309 Å; 1.203 + 1.314 Å; 1.202 + 1.306 Å). Each unique carboxylic
acid residue engages a pyridine ring of 7 in a conventional (neutral) hydrogen bonding interaction
(Figure 4, H–N distances range from 1.685 to 1.847 Å, O–N distances 2.655–2.680 Å). The fourth
pyridine ring of 7, however, does not participate in any H-bonding interactions. Evidence that the
pyridines are acting as H-bond acceptors (and not as pyridinium H-bond donors) is further provided
by the intra-annular C–N–C angles (which range from 116.91 to 117.69◦) [55]. These angles are similar
to the angle found in the remaining non-H-bonded pyridine (115.93◦) and are significantly smaller
than the analogous angles found in tetra(pyridinium)ethylene described above.
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The structural topology observed in co-crystals of 7 (malonic acid)1.5 can be described as a (6,3)
net [57]. Each molecule of 7 functions as a three-connected node bridged by malonic acid linkers.
Six malonic acid molecules and six molecules of 7 comprise a cyclic motif that share common edges
with adjacent cyclic assemblies, affording two-dimensional layers shown in Figure 5. The large cavities
evident in Figure 5 (cross-sectional dimensions of ~24× 34 Å) are filled with two additional intertwined
(6,3) nets as shown in Figure 6. Offset stacking of 2D layers then completes the structure.
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networks are color coded red, green, and blue.

Crystals of 7 and fumaric acid were also successfully grown. X-ray diffractometry revealed a
close-packed structure of stoichiometry 7 (fumaric acid)4 (crystallographic data is shown in Table S1).
The asymmetric unit consists of a 0.5 tetra(pyridyl)ethylene molecule that features one neutral pyridine
(N–C–N angle 117.93◦) and one protonated pyridinium cation (N–C–N angle 122.54◦). Additionally,
two molecules of fumaric acid are present, one of which exists as a mono-anion as evidenced by similar
C–O bond lengths at the anionic carboxylate terminus (1.240 and 1.262 Å) compared to distinctly
shorter and longer C–O bond lengths at the carboxylic acid terminus (1.212 and 1.316 Å). The second
fumaric acid molecule is present as a neutral dicarboxylic acid with C=O bond lengths of 1.202 and
1.211 Å and C–OH bond lengths of 1.322 and 1.312 Å. The protonated pyridinium cations in each full
molecule of 7 are in a trans-1,2-orientation about the central ethylene bond. Each pyridinum moiety is
engaged with the carboxylate terminus of a fumarate mono-anion to form a cyclic hydrogen bonded
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motif featuring a pyridinium-carboxylate charge-assisted hydrogen bond (NH+–O− distance 2.008 Å,
N–H–O angle 147.05◦, C–O–H angle 126.54◦) and a C–H· · ·O hydrogen bond (pyCH–O distance
2.400 Å) [58]. In complementary fashion, the neutral pyridine rings in 7 each engage the neutral
carboxylic acid terminus of fumarate mono-anion in a conventional hydrogen bonding interaction
(OH–N distance 1.826 Å, O–H–N angle 169.26◦). Thus, two fumarate mono-anions serve to bridge
two bis(pyridyl)-bis(pyridinium) ethylenes, ultimately giving rise to two-dimensional hydrogen
bonded chains, as shown in Figure 7.
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hydrogen bonding interactions as shown in Figure 8. A distorted hydrogen bonded trimer involving
the carboxylate terminus of fumarate mono-anion, a carboxylic acid group of neutral fumaric acid,
and a pyridinium residue orients fumaric acid groups perpendicular to the 2D hydrogen bonded
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Thus, the fumaric acid components serve to connect parallel chains of 7 fumarate hydrogen bonded
polymers to form cross-linked sheets.
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Interdigitation of a second network of fumaric acid-linked 7 fumarate chains gives rise to
an alternating sheet-like structure with an ABAB stacking motif. The elliptical openings in the
supramolecular macrocycles formed through fumarate–pyridine/pyridinium H-bonding in one sheet
(see Figure 7) possess diagonal 2D cross-sections of ~1 nm (i.e., distance from pyridine to pyridine
N atoms and pyridinium to pyridinium N atoms). These openings are occupied by two neutral
fumaric acid molecules that support the charge-assisted carboxylate–pyridinium hydrogen bonding
interactions connecting two adjacent offset parallel sheets. Two views of this packing arrangement are
shown in Figure 9 with identical independent networks color coded green and red.
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Three distinct crystalline organic composites have been obtained from tetra(4-pyridyl)ethylene 7
and three different linear dicarboxylic acids. Interestingly, the assemblies characterized in this study
feature 7 in three different formal protonation states: a tetra-protonated tetracation in combination
with oxalic acid, a di-protonated dication in the presence of fumaric acid, and a neutral tetra(pyridine)
in the presence of malonic acid. Thus, it appears that the solid state basicity of 7 can respond to an
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acidic environment in a manner that facilitates the formation of stable crystalline networks. Although
oxalic acid is the strongest dicarboxylic acid among the three utilized in this study (pKa values of
1.27 and 4.28), both malonic and fumaric acid possess comparable pKa1 (2.85 and 3.02, respectively),
and oxalic and fumaric acid possess comparable pKa2 (4.28 and 4.39, respectively). It appears, then,
that consideration of pKa alone is insufficient to explain the conversion of 7 to poly(pyridindium)
cations, and the tendency of 7 to experience protonation in the solid state may be strongly influenced
by self-assembly dynamics along with the size and shape of acidic additives.

4. Conclusions

The results of this study demonstrate the capability of Lewis basic tetra(pyridyl)ethylene (7)
to participate in co-crystal and salt formation with organic acids. The distinct topologies of the
crystalline assemblies characterized in this work provide a glimpse of the varied architectures
potentially accessible from small-molecule building blocks such as 7 and structurally related
analogues. Additionally, insertion of metal ions into poly(pyridyl)ethylene–poly(acid) networks
offer opportunities for construction of novel metal–organic frameworks that may exhibit topologies
and properties distinct from those obtained using significantly larger tetraarylethylene components
such as 6 (see Figure 1). Research along these lines is currently underway. Finally, a defining feature
of tetraarylethylene assemblies is the luminescent properties that often emerge upon restriction of
intramolecular bond rotation (i.e., AIE effects). The AIE activity of tetra(pyridyl)ethylene 7 previously
established in solution phase studies is retained in the solid state assemblies prepared in this work.
For example, the luminescence of 7 (fumaric acid)4 is visible to the naked eye as shown in Figure 10.
The other two crystalline assemblies displayed similar luminescence, as shown in Figures S1 and S2
(see Supplementary Materials).
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Tetra(pyridyl)ethylene (7) is a promising supramolecular building block with appealing molecular
and structural features. Moreover, 7 itself is easily prepared in good overall yield, and numerous
additional structural analogues should become available via similar synthetic sequences. Additional
applications of heteroarylethylenes in both organic and metal–organic crystal engineering are under
investigation, and it is envisioned that these efforts will offer new approaches to a variety of functional
crystalline materials.
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