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Abstract: Two-dimensional semiconductors, such as transition-metal dichalcogenides (TMDs)
and black phosphorous (BP), have found various potential applications in electronic and
opto-electronic devices. However, several problems including low carrier mobility and low
photoluminescence efficiencies still limit the performance of these devices. Interfacing 2D
semiconductors with functional oxides provides a way to address the problems by overcoming
the intrinsic limitations of 2D semiconductors and offering them multiple functionalities
with various mechanisms. In this review, we first focus on the physical effects of various
types of functional oxides on 2D semiconductors, mostly on MoS2 and BP as they are the
intensively studied 2D semiconductors. Insulating, semiconducting, conventional piezoelectric,
strongly correlated, and magnetic oxides are discussed. Then we introduce the applications of
these 2D semiconductors/functional oxides systems in field-effect devices, nonvolatile memory,
and photosensing. Finally, we discuss the perspectives and challenges within this research field.
Our review provides a comprehensive understanding of 2D semiconductors/functional oxide
heterostructures, and could inspire novel ideas in interface engineering to improve the performance
of 2D semiconductor devices.
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1. Introduction

Dielectric materials are essential components in modern electronics. In field-effect transistors (FETs),
the electric on/off states of semiconducting channel materials are switched by a gate voltage applied
through dielectrics. This has been a fundamental use of various FET-based devices in large-scale
logic circuits. Most traditional dielectrics are made of metal or non-metal oxides. Their properties
could drastically influence the gating efficiency of FET-based devices, especially when the channel is
a nanometer-thick material.

Monolayer or few-layer two-dimensional (2D) semiconductors are promising channel materials
in field-effect devices due to their very large surface-to-volume ratio and ultrathin body thickness.
They usually have novel electronic and optical band structures, high carrier mobility, and extremely
strong light–matter interactions that enable their applications in electronic and optoelectronic devices.
They also possess an atomic level of surface roughness and anisotropic physical properties
(in-plane versus out-of-plane) because of strong in-plane covalent bonds and weak van der Waals
(vdW) interlayer interactions [1–3]. Because of their ultrathin nature, however, monolayer or few-layer
2D semiconductors must be placed on a solid substrate in electronics. Currently, most of these
substrates are dielectric oxides, such as SiO2, Al2O3, and mica. Interface interactions between 2D
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semiconductors and substrates must be considered. Besides the traditional dielectric screening effect,
several new effects of oxide substrates, including charge transfer, energy transfer, and strain,
have emerged and may separately or co-functionally dominate the properties of overlayer 2D
semiconductors [4,5].

Challenges still exist in the present 2D semiconductor devices. For example, molybdenum
disulfide (MoS2) and black phosphorous (BP) have already been integrated into nano-electronic devices,
but problems like low carrier mobility and low photoluminescence (PL) efficiency limit their further
applications in electronics and opto-electronics. As Moore’s law is still proven to be effective,
FET devices scale down in size very rapidly. When the leakage current through dielectric oxides
caused by quantum mechanical tunneling becomes unacceptable, high-κ oxide materials, such as ZrO2,
HfO2, and Ta2O5, are expected to replace traditional SiO2 as insulating gate layers [6,7]. Such high-κ
materials also prove to be successful in enhancing the carrier mobility of channels because their
strong dielectric screening effectively reduces the interface impurity scattering. On the other hand,
multiple functions are also desirable in electronic devices for their miniaturization. This purpose could
be achieved by either a multiple functional channel material or a functional substrate that modulates
the channel in multiple ways. In this regard, many functional oxides may offer unique properties such
as piezoelectricity, strong polarization, and spin injection. When 2D semiconductors interface with
functional oxides, not only can the band gap be manipulated, but also multi-functional, co-operative
devices could be built to output new features through coupling. These aspects may open up a new
route to modulate novel 2D devices with interface engineering by functional oxides.

In this review, we first focus on the physical effects of various types of functional
oxides on 2D semiconductors. Insulating, semiconducting, conventional piezoelectric, strongly
correlated, and magnetic oxides are discussed. Then we introduce the applications of these 2D
semiconductors/functional oxide systems in FET devices, nonvolatile memory, and photosensing.
Finally, we discuss the perspectives and challenges in this research field.

2. Physical Effects of Oxides on 2D Semiconductors

2.1. 2D Semiconductors/Traditional Dielectric Material Heterostructures

Most traditional dielectrics are made of metal oxides and non-metal oxides. The dielectric layers
in transistors are indispensable and control the electric on-off states of channel materials. In 2D
semiconductor devices, different dielectric environments will influence the electrical and optical
properties of the 2D channels. At the same time, charge traps at the interface and doping effect also
have a significant impact on their physical properties.

Carrier mobility is a key parameter in determining the electrical properties of a channel material.
When the channel length gets smaller, the thickness of a traditional silicon channel in a FET must also
be reduced. The surface roughness and dangling bonds in silicon will affect the electrical transport
and cause a degradation in mobility [8]. In 2D semiconductors, it is believed that the interlayer
vdW force is weak and small defects will lead to less scattering and better electrical conduction.
However, the observed mobility is only 0.1–10 cm2V−1s−1 after exfoliation [9,10], compared with
200–500 cm2V−1s−1 in bulk MoS2 [11]. One possible explanation is that the intrinsic phonon scattering
is the main limiting factor in bulk materials. In ultrathin 2D layers, however, charge traps and
impurities at the interface may become additional scattering centers, hindering their thermal and
electrical transport [12,13]. Charge traps are found to have a strong relationship with the carrier
mobility and the series resistances of an electronic device [14]. According to the study of Ayari et al.,
the concentration of trap states changes the overall conductance, and calculations show that interfacial
charge traps, instead of bulk charge traps, play a dominant role [15]. When charge traps exist at the
interface, electrons might be accumulated or reduced to form a screening layer [16]. This suggests that
the carrier type and screening length would affect the electrical conduction at the same time. High
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dielectric materials, such as HfO2, have been used to reduce the Coulomb force by dielectric screening
to improve carrier mobility [9,11].

Several factors may function together to determine the overall carrier mobility. Besides intrinsic
phonons, the so-called ‘remote’ phonons also exist in dielectric materials. They are polar-optical-phonon
modes that can be excited by electrons in semiconductors through long-range Coulombic
interactions [17]. As semiconductors become thinner, the interactions become stronger. For 2D
semiconductors, intrinsic phonons and remote phonons in the dielectrics and impurities together
influence the mobility [18]. The remote phonons become dominant at room temperature although
they have minor impacts at low temperature. In the case of high-density impurities at the interface,
impurity scattering can hinder the carrier transport of the semiconducting channel. In ultra-clean
materials, however, intrinsic phonons usually dominate the mobility. Through theoretical calculation,
the mobility in HfO2/MoS2/ZrO2 structure will be even lower than in the SiO2/air caused by
remote phonons [19]. Currently, electron mobility in 2D semiconductors is mostly limited by
high-density impurities, while remote phonons usually play a secondary role. Dielectrics are also
found to have an impact on carrier transport direction. Calculations show that a smaller scattering
angle will cause a stronger screening in a low-κ environment. Thus the electron transport will be more
directional with high-κ surrounding oxides [19].

The photoluminescence (PL) properties of 2D semiconductors are also closely related to the
dielectric environment. The Coulombic interaction between negatively charged electrons and positively
charged holes will be modulated by dielectric screening, which further influences the binding energies
and the stabilities of excitons and trions. Lin et al. studied the behaviors of these quasiparticles under
different dielectric environments by using various organic solvents [20]. The whole PL peak can be
divided into three peaks, representing the A− trion, A exciton, and B exciton, respectively (Figure 1a).
As the dielectric constant increases, the intensities of PL peaks are rapidly enhanced, almost
exponentially. As depicted in Figure 1b, the peak positions all have blue shifts in high-κ solvents,
where the position of A− trion is closer to that of the A exciton, suggesting that the binding energy
of trions becomes smaller. Thus the intensity ratio of trions to excitons can also be regulated by the
dielectric environment. The experimental data fit well with the theoretical model. In this work, organic
solvents are used to exclude the possible doping or strain effect. It is reasonable to expect that oxide
dielectric substrates will have similar effects on the PL properties of 2D semiconductors.
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Figure 1. MoS2 PL properties influenced by dielectric environment and charge doping. (a) A typical 
PL spectrum of single-layer MoS2 that is fitted with three peaks. The inset schematics demonstrate 
classical pictures of a trion and an exciton; (b) PL peak positions as a function of surrounding solvent 
dielectric constants (Yuxuan Lin et al. [20]); (c) PL spectra of monolayer MoS2 on SiO2, LaAlO3, 
gel-film, and SrTiO3 substrates; (d) Peak positions of PL peak (A), neutral excitons emission (A0), and 
trion emission (A−), and energy difference between neutral excitons emission (A0) and trion emission 
(A−) (Yuanyuan Li et al. [21]). 
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temperature [23]. Another experiment focused on the band offset values of MoS2/high-κ interfaces, 
where substrate charge transfer has a similar effect on PL properties [26]. Interference has an impact 
on the absorption and emission intensities but has no relation to the peak position. It is also found 
that Raman modes are more related to the strain caused by the substrate instead of doping and 
dielectric screening [21]. Research on other transition-metal dichalcogenide (TMD) materials, such as 
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layer materials, Auger scattering is related to the strong Coulomb force inside the material [30]. Thus 
dielectric screening will affect the correlations of electrons and holes. Besides electrical mobility and 
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Figure 1. MoS2 PL properties influenced by dielectric environment and charge doping. (a) A typical
PL spectrum of single-layer MoS2 that is fitted with three peaks. The inset schematics demonstrate
classical pictures of a trion and an exciton; (b) PL peak positions as a function of surrounding solvent
dielectric constants (Yuxuan Lin et al. [20]); (c) PL spectra of monolayer MoS2 on SiO2, LaAlO3, gel-film,
and SrTiO3 substrates; (d) Peak positions of PL peak (A), neutral excitons emission (A0), and trion
emission (A−), and energy difference between neutral excitons emission (A0) and trion emission (A−)
(Yuanyuan Li et al. [21]).

Other effects, such as charge transfer and charge doping, also have many influences on the
electrical and optical properties of 2D semiconductors [22]. Charge doping can change the types
of semiconductors depending on the doping of electrons or holes. For example, at the MoS2/glass
interface, the first principle calculations show that Na atoms in the glass might become donors to
make the system an n-type semiconductor, while the O dangle bonds could do the opposite because
of the opposite charge polarity [16]. Li et al. utilized different substrates including LaAlO3, SrTiO3,
and SiO2 to control the charge transfer between a substrate and a monolayer of MoS2 [21]. A model is
set up to explain how the Fermi level and work function of the substrate influence the charge transfer.
Compared to a SiO2 substrate, there is a lower transfer of electrons and therefore a lower free electron
density for MoS2 on a SrTiO3 substrate. As a chemical equilibrium exists between the charged and
neutral excitons [23,24], the ratio of negatively charged trions to neutral excitons will decrease with
a lower doping level.

A + e− ↔ A−

Because of the larger binding energy of neutral excitons, the PL peak will have blue-shifted
as there is a higher concentration of neutral excitons [25]. Studies also show that the relative
proportion and intensities of neutral to charged excitons can be tuned by a gate voltage and the
ambient temperature [23]. Another experiment focused on the band offset values of MoS2/high-κ
interfaces, where substrate charge transfer has a similar effect on PL properties [26]. Interference has
an impact on the absorption and emission intensities but has no relation to the peak position. It is
also found that Raman modes are more related to the strain caused by the substrate instead of doping
and dielectric screening [21]. Research on other transition-metal dichalcogenide (TMD) materials,
such as MoSe2 and WS2, has shown similar properties. Currently, most reports are focused on MoS2,
and thereby we mainly discuss MoS2 in this review [27–29].

Dielectric oxides have some other effects on 2D semiconductors, such as influencing the
electron-hole recombination process. The Auger Carrier Capture Model is usually utilized to explain
how defects assist the recombination of electrons and holes. Theoretical model shows that in atomic
layer materials, Auger scattering is related to the strong Coulomb force inside the material [30].
Thus dielectric screening will affect the correlations of electrons and holes. Besides electrical mobility
and optical luminescence, the Coulombic potential may have a further influence on electronic
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structures of 2D semiconductors. At higher gate voltages in MoS2, a metal-insulator transition (MIT) is
observed. The electrical conductance shows a metallic behavior when the charge density is beyond
1013 cm−2 [12]. In another experiment, the results of electrical transport measurements are consistent
with a variable range hopping (VRH) model. In this case, randomly distributed charges and their
mutual Coulomb interaction may cause disorders in the material [10]. The top insulating layer has
a dielectric capping effect on 2D semiconductors [31]. When an Al2O3 top dielectric layer is added to
the black phosphorous channel, positive charges will accumulate and fix at the interface. This will
result in band bending and effectively reduce the Schottky barriers at the contact.

2.2. 2D Semiconductors/Semiconducting Oxide Heterostructures

When 2D semiconductors interface with semiconducting oxides, their band alignment must
be considered. Some novel phenomena, such as exciton magnetic polarons and two-dimensional
electron gas, emerge in the case of large band offsets. The overall mobility is influenced by both carrier
injection and scattering.

The band gap and work function are two of the most important parameters for semiconductors.
The relative positions of the valence and conduction bands of two semiconductors determine the
behaviors of the heterojunction. Anderson’s rule [32], quantum dipole theory [33], and other models
are utilized to predict band offsets. Based on the band alignment, semiconductor heterojunctions can
be classified into three types: type I (straddling or symmetric), type II (staggered gap), or type III
(broken gap), as shown in the Figure 2. The heterostructure is type I if VBMA < VBMB < CBMB < CBMA,
type II if VBMA < VBMB < CBMA < CBMB, and type III if VBMA < CBMA < VBMB < CBMB [34,35].
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The three types of heterojunctions have been used in various devices owing to their
different properties. Type I heterojunctions can well confine electrons and holes in quantum wells
for more efficient electron-hole recombination [36], and therefore they are often used to generate
light in optical devices such as LEDs and lasers [37]. Type II heterojunctions have very large band
offsets on either conduction band or valence band and can easily confine electrons in one layer. They
have been used to fabricate heterojunction field-effect transistors with high carrier mobility [38].
Both staggered gaps and broken gaps can regulate the energy difference between the valence band
and the conduction band. This can affect the photon absorption and electron transition process and
is applicable in photo detectors [39,40] and mid-infrared lasers [41]. In tunneling transistors [42],
the type II heterojunction is utilized to enhance the tunneling current. However, in a type II junction, a
finite tunneling barrier is not high enough to hinder the carrier transmission. A bigger band offset
(type III heterojunction) is desirable if the carrier transmission needs to be totally reduced.

Besides these traditional applications, 2D semiconductor heterojunctions can also enable
lots of novel properties including two-dimensional electron gas (2DEG), dilute magnetic oxides,
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and interlayer excitons. When 2D semiconductors and semiconducting oxides form heterojunctions,
they will interface with each other through band alignments and their properties can be modulated by
external fields. In InGaPN/GaAs heterostructures, the addition of nitrogen concentration lowers the
conduction band. The original type I heterostructure changes to type II. Simultaneously, 2DEG will
form at the interface [43]. In dilute magnetic semiconductors, where magnetic ions and carriers both
exist in comparable strength, spin splitting and optical properties are closely related to each other.
In such heterojunctions, when spin splitting of the valence induced by magnetic field exceeds the
band offset in the zero field, there will be a band alignment transition. In one spin state, holes
are confined to the quantum wells (type I behavior), while in the other spin state, holes will be
confined to the barriers, showing type II behavior [44]. Another interesting phenomenon is interlayer
excitons and polarons. At the interface of MoSe2–WSe2, bound electrons and holes are localized and
stabilized in respective layers. Interlayer excitons are found to have a long lifetime of ~1.8 ns in
these circumstances [45,46]. In ZnSe/(Zn,Mn)Se quantum wells, exciton magnetic polarons have been
observed to have much longer lives (20ns) than in type I because of the larger band offset [47]. In the
same system, calculations show that interlayer excitons have smaller binding energies and lifetimes
than quantum well excitons [48].

Besides the band alignment, oxides may also inject carriers towards 2D semiconductors at the
interface. This will regulate interfacial Schottky barriers as well as electrical contacts. The regulation is
essential, particularly in the case of p-type MoS2 devices where holes need to be provided for electrical
conduction. Chuang et al. used MoOx as contacts to fabricate p-type field effect transistors [49].
As Figure 3a shows, the substoichiometric compound MoOx (x < 3) has a high work function and
its Fermi level is pinned at the valence band of MoS2. Thus holes can transport easily from MoOx

to MoS2 by overcoming small Schottky barrier heights. Figure 3d shows the on and off states of the
PFET device. MoOx functions as an efficient hole injector to exhibit appropriate work function and
improve the contact at the interface. Different from the case of MoOx used as contacts, when MoO3

is deposited on the monolayer MoS2 as a capping layer, electron densities in the MoS2 channel will
decrease because of the charge transfer effect and its overall transport properties change [50].
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2.3. 2D Semiconductors/Conventional Piezoelectric Oxide Heterostructures

Piezoelectric ceramics are also usually oxides in which electric charges can be accumulated
in response to external mechanical fields, or, conversely, mechanical strains can be generated in
response to external electric fields. ZnO and lead zirconate titanate (PZT) are both conventional
piezoelectric oxides. When piezoelectrics and 2D semiconductors form heterostructures, strain and
electronic properties can have a mutual effect and one can be utilized to modulate the other property.

Piezoelectric charge accumulation at a 2D semiconductor/piezoelectric ceramic heterojunction
will influence the carrier density and the electrical conductance in the 2D semiconducting channel.
Chen et al. have utilized a piezoelectric ZnO nanowire to function as a gate to modulate the electrical
transport behavior of MoS2 by external mechanical stimulus [51]. In FET devices, the source-drain
current is usually modulated by a gate voltage. In this MoS2/ZnO system, however, environmental
air pressure is instead applied for gating. When the ZnO nanowire is grown on top of an exfoliated
MoS2 flake, the increase of pressure is significantly lower the source-drain current, where the ZnO
nanowire functions as an effective back gate voltage: the drain current curve when Vgs = −7 V with
6.25 MPa pressure is similar to that when Vgs = −15 V without pressure. Another device is fabricated
with an Al2O3 interlayer. In this device, a larger pressure induces a larger source-drain current, which
is in sharp contrast to the former device. The mechanism is further explained by the piezotronic effect.
At the interface of an n–n heterojunction, electrons accumulate and form a charged barrier for the
balance of Fermi levels. In the ZnO–MoS2 heterostructure, free electrons accumulate to screen positive
polarization charges of ZnO. Pressure will induce stronger polarization in ZnO and deplete electrons
in the MoS2 channel. With an interlayer, Al2O3 functions as a capacitor dielectric layer where holes
accumulate at the ZnO–Al2O3 interface and electrons accumulate at the MoS2–Al2O3 interface. Thus a
larger electron concentration leads to a larger source-drain current when the polarization is enhanced
by the applied pressure. In a reverse case, piezoelectricity has also been utilized in touch sensors
to detect pressure based on a change in the channel current difference [52]. In ferroelectrics, strong
spontaneous polarization exists and can be tuned by temperature. Fang reported a MoS2/PMN-PT
composite structure, in which infrared light (IR) is used to generate heat and reduce previous
polarization in ferroelectrics [53]. The charge accumulates at the interface and the carrier concentration
is therefore modulated. Under such circumstances, the IR works as a negative ‘gate’ in the FET
devices [53,54].

The piezoelectricity also has a great impact on the photoelectric response of 2D semiconductors.
Xue et al. fabricated a p-MoS2 and an n–ZnO diode and measured its photoresponse performance
under different pressures [55]. MoS2 is pretreated by SF6 to become p-type and acrylic is used
to apply a pressure and simultaneously transmit the ultraviolet. The highest external quantum
efficiency (EQE) is 52.7% with six layers of MoS2 at a −2 V drain voltage. The photoresponse time is
much longer at low power densities, mainly because the separation of excitons in the heterojunction
is slow. The barrier formed at the p–n junction interface and depleting area is crucial to stabilizing the
separated photogenerated carriers [56]. When applying pressure, charges generated by piezoelectricity
accumulate at the interface and lower both the valence and conduction bands of ZnO. Thus a lower
barrier results in a larger depletion region, which is beneficial to optoelectronic performance. As shown
in Figure 4b, the photo current and EQE both increase quickly as external pressure increases. The EQE
almost quadruples at 23 MPa external mechanical stimulus. ZnO proves to be a good ‘gate’ to modulate
the separation, transport, and recombination process of photocarriers. A similar experiment has been
conducted at the graphene/ZnO junction with a higher Schottky barrier and a wider depletion area
induced by strain, which resulted in better device performance [57].
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the increased applied pressure; (c) Band diagrams interpreting photogenerated carriers and 
piezophototronic effect enhanced photocurrents (Fei Xue et al. [55]). 
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because its properties cannot be explained by the traditional band theory. Compared with 
traditional piezoelectric materials, more degrees of freedom can be utilized in strongly correlated 
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of ferroelectric oxides, the band gap of MoS2 can be regulated through strain by applying an external 
voltage bias on the PMN-PT [59]. Raman spectroscopy confirms that there is a strain transfer from 
PMN-PT to MoS2. As shown in Figure 5c, the MoS2 PL peak blue shifts as the strain increases. A 0.2% 
compressive strain (corresponding to 500 V bias on PMN-PT) can shift the PL peak by 60 meV (~300 
meV per 1% strain) and double the PL intensity during the process. Previous researchers have tried 
to explain the strain-induced change of electronic structures in MoS2 by first principle calculations 
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Figure 4. Photoelectric response of a 2D semiconductor/piezoelectric ceramic heterostructure.
(a) Schematic of experimental set-up for testing the diode; (b) Pressure dependence of Iph at a drain
bias of –2 V and an incident power density of 500 mW cm−2. The inset shows the increased EQE
with the increased applied pressure; (c) Band diagrams interpreting photogenerated carriers and
piezophototronic effect enhanced photocurrents (Fei Xue et al. [55]).

2.4. 2D Semiconductors/Strongly Correlated Oxide Heterostructures

Strongly correlated systems are a wide range of materials where their electronic structures,
magnetic properties, spin, and mechanical strain are strongly correlated with each other.
The traditional band theory is based on independent electron approximation, i.e., only electron-ion
interaction is considered and electron-electron interaction is ignored. However, when the interaction
between electrons or spinons is not negligible, some novel phenomena such as metal-insulator
transitions, spin-charge separation, and high-temperature superconductivity may appear in such
strongly correlated systems. Many transition metal oxides are classified into strongly correlated
materials. For example, the concept of strongly correlated Mott insulators was first proposed in
NiO because its properties cannot be explained by the traditional band theory. Compared with
traditional piezoelectric materials, more degrees of freedom can be utilized in strongly correlated
systems. The diverse properties of strongly correlated oxides provide a variety of possibilities to
modulate the properties of ultrathin 2D semiconductors; equally, 2D semiconductors can be utilized as
indicators of the phase changes in strongly correlated oxides.

Electronic structures and band gaps of 2D semiconductors can be modulated by strongly
correlated materials through strain transfer [58]. When interfacing MoS2 with PMN-PT, a new type of
ferroelectric oxides, the band gap of MoS2 can be regulated through strain by applying an external
voltage bias on the PMN-PT [59]. Raman spectroscopy confirms that there is a strain transfer from
PMN-PT to MoS2. As shown in Figure 5c, the MoS2 PL peak blue shifts as the strain increases.
A 0.2% compressive strain (corresponding to 500 V bias on PMN-PT) can shift the PL peak by 60 meV
(~300 meV per 1% strain) and double the PL intensity during the process. Previous researchers
have tried to explain the strain-induced change of electronic structures in MoS2 by first principle
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calculations [60–62]. As depicted in Figure 5d, both valence and conduction bands shift to higher
energies with a compressive strain, and the energy levels of conduction band changed to a larger extent.
At 0.2% strain, MoS2 remains an indirect semiconductor but with a larger band gap. Another study
shows that the surface potential and work function of MoS2 can also be influenced by the strong
polarization of ferroelectrics [63]. Because of the induced dipole effect, a work functional variation is
found at the edge and interior region of PbTiO3 surface.
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Figure 5. Electronic structure and band gap of a 2D semiconductor influenced by strongly correlated
materials through strain transfer. (a) Schematic diagram of Raman and PL measurements on MoS2.
MoS2 is sandwiched between a piezoelectric PMN-PT substrate and a graphene top electrode;
(b) Raman spectra of a trilayer MoS2 under various applied strains; (c) PL spectra of MoS2 under
various strains; (d) Band structures of ABA-BAB stacking trilayer MoS2 under 0.0%, 0.2%, 0.4%, and
0.6% biaxial compressive strain (Yeung Yu Hui et al. [59]).

Strongly correlated materials have also been utilized to modulate the optical properties of 2D
semiconductors. When interfacing MoS2 with VO2, which is a textbook Mott insulator and exhibits
a metal-insulator transition (MIT) at around 68 ◦C, both the Raman and PL properties of MoS2 are
strongly modulated by the VO2 substrate [64,65]. Both the E2g and A1g modes of MoS2 are thus found
to have red shifts when heating the VO2 substrate to metal phase [65]. The PL position also shifts
to a lower energy due to increased non-radiative electron-hole recombination. Meanwhile, the PL
intensity is drastically enhanced because the excitons and trions are enhanced during the MIT process.
However, Hou et al. attributed this enhancement to an optical interference effect due to the different
refractive indexes of the two VO2 phases [64].

2.5. 2D Semiconductors/Magnetic Oxide Heterostructures

Ferromagnetic insulators and multiferroic oxides are two types of important magnetic oxides.
Some 2D materials including graphene and MoS2 have the advantage of long diffusion lengths of
spin electrons. When interfaced with functional magnetic oxides, 2D semiconductors may offer new
functions and open up novel applications.

In the EuOx/graphene heterojunction, the Eu atoms will generate proximity induced
ferromagnetism in graphene. Proximity-induced exchange splitting and spin orbit coupling have been
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revealed by first principle calculations [66]. They could also lead to a nonlinear dispersion at Γ point
through inter-valley interactions [67]. Multiferroics shows the coupling between ferroelectricity and
magnetism and is promising for spintronic devices. In BaMnO3/graphene structures, a distinct spin
polarization is caused by the interaction between π electrons from graphene and d electrons from
Mn atoms. An evident spin splitting as large as 300meV is observed in the system [68]. A high-mobility
electronic region is achieved by acceptor-doping in graphene. Meanwhile, theoretical calculations
have proven that multiferroic oxides can be utilized to generate 2DEG at the surface, which provides
a good platform to conduct research on spin interaction and spin field effect devices [69–71].

It is worth noting that all of these devices are based on the advantages of the long spin diffusion
length and high carrier mobility in graphene. Some other 2D semiconductors such as MoS2 possess
similar advantages. Therefore, similar devices are expected to develop in 2D semiconductors with
a high performance and low energy dissipation.

3. Applications of 2D Semiconductors/Functional Oxide Heterostructures

3.1. Volatile Field-Effect Transistor (FET) Devices

In modern computers, most calculations are done by a Boolean operation, which is carried
out by logic gate circuits. Logic gates are mainly realized by diodes and transistors to perform
as electronic switches. Compared with traditional bipolar transistors, field effect transistors (FETs)
have become mainstream in practical applications because of several advantages. Bipolar transistors
have majority carrier and minority carrier conduction, while in MOSFET devices only majority
carriers conduct the electricity. Complementary Metal-Oxide-Semiconductor (CMOS) logic utilizes
both n-channel and p-channel MOSFETs to achieve a high speed and low power consumption.
Several parameters are crucial in logic operation and integrated circuits. Smaller transistor size can
enhance the integration per unit area and reduce the production cost. Faster switching and response
speed calls for higher mobility in channel materials and lower subthreshold swing. A high on–off ratio
guarantees high performance and low leakage current. Low leakage current is also beneficial to less
power dissipation.

Continuously scaling down the size of FET devices relies on the development of advanced
lithography techniques and a new structure design (e.g., FinFET). As we have discussed in
Section 2, short channel effect and leakage current will become big problems when the size of FETs
becomes smaller. Thinning channel materials is a way to solve these problems, but in this case the
existence of dangling bonds and charge traps of traditional silicon channels will hamper the mobility.
Thus, novel ultrathin materials are still desired to improve the performance. A theoretical calculation
based on non-equilibrium Green’s function has predicted the ultimate performance limit of MoS2

transistors [72]. This shows several merits: (i) Because the band gap of MoS2 is larger than that of
silicon, the minimum current can be very small when ignoring the leakage current. The on/off ratio
can reach more than 1010; (ii) Because of wave function reflection at contacts, a reduced density of states
in the channel can result in a high intrinsic device transconductance (4.4 mS/µm); (iii) Subthreshold
swing can be as low as 60 mV/decade (the theoretical limit) with the optimal dielectrics. For a 15-nm
gate, the drain-induced barrier lowering is 10 mV/V, showing good short-channel behavior. What is
more, most of the III–V semiconductors have larger mobility than MoS2 and provide better choices for
high-performance transistors.

Several methods have been adopted to enhance device mobility. High-κ materials are often
used as gate dielectrics [73,74]. Radisavljevic et al. used 30 nm HfO2 as a top gate and single layer
MoS2 as a channel (Figure 6) [9]. At a 500 mV source drain voltage, more than 108 on–off current
ratio and 1 µS/µm transconductance are achieved. The mobility is around 200 cm2V−1s−1 and the
subthreshold slope is 74 mV/decade [75]. Al2O3 is also employed as a back gate to regulate multilayer
MoS2. From the transfer curve shown in Figure 6d, high mobility (>100 cm2V−1s−1), a ~70 mV per
decade subthreshold swing is also observed. Li et al. systematically studied the effect of the channel
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thickness on the overall mobility [13]. For either Ti or Au contact, 14–15 layers of MoS2 shows the
best performance. The ultrathin FET channels may be strongly affected by short-range Coulombic
interactions [11], and impurity density should also be considered in the devices. Oxygen molecules,
water molecules, or other chemical contaminants in the ambient environment may be absorbed onto
the surface and become scattering impurities. Hydrophobic substrates and dry environments are
usually required for obtaining good performance of devices [76].Crystals 2017, 7, 265  11 of 22 
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field effect transistors (MESFET), where a Schottky barrier should be apparently formed to decrease 
the leakage current [78]. Experiments show that higher barriers induce larger on–off current ratios 
and better subthreshold slopes. Meanwhile, the drain current should not be leaked to the gate. An 
NiOx electrode is fabricated and demonstrates a good performance, including high mobility (500–
1200 cm2V−1s−1), low threshold voltage (~−1V), low subthreshold swing (83 mV) and quick 
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Compared with TMD materials, black phosphorus has a lot advantages as a volatile FET 
channel material. Much effort has been made to improve the performance of BP devices. BP has a 
moderately large band gap and much higher mobility of ~1000 cm2V−1s−1, as reported [79]. The type 
of contact metal and alternation of thicknesses can modulate p-type BP into n-type, with hole 
mobility still as high as ~950 cm2V−1s−1 [80]. BP transistors with a 20 nm channel length show a small 
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Figure 6. Schematics and performance of monolayer and multilayer MoS2 transistors. (a) Schematic of
MoS2 monolayer transistors; (b) Room-temperature transfer characteristic for an FET with a 10 mV
applied bias voltage Vds. Inset: Ids–Vds curve acquired for Vbg values of 0, 1 and 5 V (Branimir
Radisavljevic et al. [9]); (c) Schematic of a MoS2 thin film transistors with a multilayer MoS2 crystal;
(d) Drain current versus back gate voltage, showing a ~106 on/off ratio and ~80 mV per decade
subthreshold slope (Sunkook Kim et al. [75]).

Interfacial contact is one of the key issues for achieving ideal transistor performance.
Tunneling contacts have low Schottky barriers, but the Fermi level is likely to pin at the energy
level of defects, which causes a large tunneling resistance. An ideal circumstance for MOSFETs
is Ohmic contact with low resistance and matched energy levels between channels and electrodes.
However, it is difficult to find metals with a suitable work function to form Ohmic contacts with channel
semiconductors [72]. Some metals, such as Au, Ti [13], and Sc [77], have been employed as electrodes in
the 2D semiconducting transistors, but contact problems usually exist. Many types of other non-metal
electrode materials have thus been explored to solve the contact problem. For example, the high
work function of MoOx pins its Fermi level at the valence band of MoS2, and holes can transport
through a thin Schottky junction [49]. The situation is different in metal-semiconductor field effect
transistors (MESFET), where a Schottky barrier should be apparently formed to decrease the leakage
current [78]. Experiments show that higher barriers induce larger on–off current ratios and better
subthreshold slopes. Meanwhile, the drain current should not be leaked to the gate. An NiOx electrode
is fabricated and demonstrates a good performance, including high mobility (500–1200 cm2V−1s−1),
low threshold voltage (~−1 V), low subthreshold swing (83 mV) and quick photoswitching speed (2 ms).



Crystals 2017, 7, 265 12 of 22

Compared with TMD materials, black phosphorus has a lot advantages as a volatile FET channel
material. Much effort has been made to improve the performance of BP devices. BP has a moderately
large band gap and much higher mobility of ~1000 cm2V−1s−1, as reported [79]. The type of contact
metal and alternation of thicknesses can modulate p-type BP into n-type, with hole mobility still as
high as ~950 cm2V−1s−1 [80]. BP transistors with a 20 nm channel length show a small short channel
effect and still preserve an on/off ratio of 100 [81]. However, BP is unstable in air compared with other
typical 2D semiconductors, which has limited its further application. The current solution is mainly to
deposit an Al2O3 top gate to encapsulate the device [81–83]. By this method, BP can be isolated from
air and current fluctuation of its devices has been effectively suppressed.

Traditionally planar thin film transistors (TFTs) are susceptible to the cracking of the used materials
during bending because of the insufficient mechanical flexibility. In flexible electronics, both channel
and electrode materials should have good flexibility. Liu et al. fabricated vertically aligned TFTs
with indium gallium zinc oxide (IGZO) as channel materials and graphene as flexible contacts [84].
The on–off current ratio is larger than 105 and there is no evident degradation over 1000 cycles of
bending. The techniques can easily be extended to 2D semiconductors. A heterojunction between BP
and ZnO is used as junction FET [85]. The mechanical flexibility of BP is crucial for good interfacial
contact and also has great potential in flexible devices. BP FETs on flexible polymer substrates can
sustain 5000 bending cycles with unchanged properties [86]. Bessonov et al. show the potential for
printed flexible electronics of MoOx/MoS2 and WOx/WS2 heterostructures [87]. Strong electrical
nonlinearity and low operating voltage (0.1–0.2 V) are demonstrated with 3 nm thick ultrathin oxide
dielectric layers. Compared with traditional electrostatic doping, ionic liquid gating can simultaneously
provide p-doping and n-doping with a surface charge density as high as 1013 cm−2 [88]. A p–n
junction is likely to form inside the semiconducting channel in the cation/anion transition region. In
practical applications, transistors have to be assembled together to form complementary integrated
logic circuits, which have been also demonstrated with 2D materials [89]. Wang et al. fabricated
2–12 transistors in one circuit to offer a group of functions, such as inverter, static random access
memory, etc. CMOS circuits are demonstrated by Yu et al. in WSe2 with a voltage gain of about 38
and a small static dissipation [90]. Although the performance of the present devices seems good,
further work still needs to be done to increase operating speeds and decrease the power dissipation for
practical applications.

3.2. Nonvolatile Memory and Data Storage

Nonvolatile memory is a type of information storage mostly used in computers. Compared with
volatile memory, nonvolatile memory can retain data even when power is turned off. Hard disk drives,
magnetic tapes, optical discs, and flash memory are types of nonvolatile memory.

Ferroelectric random access memory (FeRAM) is a typical class of nonvolatile memory.
Spontaneous polarization exists in ferroelectrics. When a coercive voltage is applied, the polarization
can be triggered so as to change the on/off state of the channel. FeRAMs have many advantages such
as low radiation resistance, low power consumption, and fast writing speed. Evidence supports the
idea that the length of ferroelectrics can still scale down to nanometers and new device capabilities can
be studied and put into use [91]. In industry, however, the difficulties lie in how to integrate FeRAM
compatibly with present CMOS processes and how to produce them more effectively. Much research
has been done to improve the switching speed and extend the degradation time. Ferroelectric polymer
[P(VDF-TrFE)] has been integrated with MoS2 and BP to make nonvolatile memory devices and
fabricate inverter circuits [92,93]. Graphene has been utilized as transparent electrodes to improve the
electrical contact. The device with monolayer MoS2 possesses a mobility as high as 220 cm2V−1s−1,
a subthreshold swing of 300 mV/decade, and a ~5× 103 write and erase current ratio [94]. The memory
inverters also show a good performance and high output voltage efficiency [95].

These organic FeFETs are still limited by low operation speed, high work voltage, and short
degradation time. In contrast, inorganic metal oxide ferroelectrics can produce faster memory switching
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and increase mechanical and thermal durability. Ko et al. utilized inorganic PZT (Pb[Zr0.2Ti0.8]O3)
as gate electrodes [96]. Due to the high dielectric constant (~200) of PZT, low coercive voltage and
VG (2~3 V) is observed. The low threshold voltage has the advantage of low power consumption
in electronic applications. The switching curve (Figure 7c) shows a quick response and a stable
performance, even under a voltage wave of 1ms duration and 10 µs ramping time. Relaxation dynamics
reveals that the RC charging effect may be the reason for the switch relay, calling for a better device
contact to further improve the response properties.Crystals 2017, 7, 265  13 of 22 
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and te (Changhyun Ko et al. [96]).

The duration time is a very important parameter in nonvolatile memory. As shown in Figure 7b,
in the opposite direction of PZT polarization, ED, a depolarization field will be set up to suppress
the polarization and lead to the instability of the memory device. High-temperature annealing
and microscopic particle collision will also accelerate the process. If the dielectrics are in direct
contact with metal, the internal electrical field will be fully eliminated. When the semiconductor
channel is contacted with ferroelectrics, charges are mainly accumulated near the interface of metal
contacts and the total depolarization field can be described as ED0/((CS/Cf) + 1), where EDO, CS,
and Cf are, respectively, the original depolarization field, the capacitances of the semiconductor,
and the ferroelectrics. Thus, when interfacing with ferroelectrics, 2D semiconductors have more
charges accumulated at the interface compared to traditional silicon channels. As a result, the 2D
semiconductor-ferroelectrics structure has a longer retention time. Its duration surpasses 2 × 104 s,
much better than traditional FET devices.

Spintronics opens a new dimension to explore internal properties of electrons and has a wide
range of prospects in nonvolatile memory devices [97]. Rather than direct spin injection due to the
tunneling effect at junctions, two-dimensional materials have the advantage of long-distance spin
transport to produce nonlocal spin injection. With the help of the long diffusion length in MoS2,
the spin flow can travel for a long distance without being scattered. Calculations have been done to
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prove that the spin transport in such structures can be electrically regulated by a gate voltage, which
widens its range of applications [98]. However, a 2D semiconductor/ferromagnetic interface may still
hinder the device performance because of the large Schottky barrier resistance. Chen et al. added a thin
layer of MgO between Co and MoS2 [99]. The Schottky barrier height is reduced by 84%. Meanwhile,
carrier depletion at the interface is alleviated and the MgO tunnel junction actually decreases the
junction resistance. TiO2 is also used as the interlayer between Co and MoS2 and is found to have
similar effects [100]. TiO2 of 1 nm thickness significantly lowers the Schottky barrier from 121 meV
to 27 meV. The on-state current increases by ~2 orders and the device mobility increases by ~6-fold.
TiO2 is also fabricated with BPs to verify the universality of this method [101]. In all three devices, the
contact resistance can be regulated by gate voltage to optimize for spin injection and detection.

Theoretically, all materials with a hysteresis loop could find potential applications in nonvolatile
memory devices. For instance, VO2 also possesses a hysteresis during its MIT. When interfacing MoS2

with VO2, the PL intensity of MoS2 will be enhanced or weakened during the MIT of VO2 due to
an interference effect [64]. Lasers can be used to introduce additional heat at controlled positions,
and the phase change can be maintained at the ambient temperature even if the laser is turned off.
An optical contrast between insulating and metallic VO2 can be distinguished by the naked eye
(Figure 8). Through this method, designed patterns can be written on the VO2 canvas by a laser,
and the patterns would also be erased by a simple cooling-down process. The transition temperature of
VO2 can be further lowered down to reduce power consumption by W-doping or other methods [102].
In this way, a nonvolatile, rewritable, contactless method of pattern writing is achieved, which opens
a new way for convenient and graphic nonvolatile information storage and transfer.
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Figure 8. Writing and erasing desired patterns on VO2 to modulate the PL intensity of MoS2.
(a) Temperature dependence of electrical conductance of a typical VO2 film; (b) Laser-writing induced
metallic regions with a shape of “2” on an insulating VO2 film covered by a MoS2 monolayer;
(c) Laser writing a metallic VO2 circle, which enhances the PL intensity of the overlayer MoS2

(Jiwei Hou et al. [64]).

3.3. Sensing and Detection

Different kinds of devices are integrated into micro-electromechanical systems. The processor is
the central unit that processes data, and the transducer can transform one type of energy into another.
A sensor is often used to detect a signal in the environment and turn it into an available signal,
usually an electrical signal. Two-dimensional semiconductors and oxides are two good platforms for
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the purpose of sensing and detection. Here, based on the mechanisms of electron–hole separation in
p–n junctions and photocurrent generation in phototransistors [56,103], we mainly discuss the research
progress on photodetection and -conductivity in such heterojunctions. The following parameters are
crucial in describing the performance of photo sensors. A sensor’s sensitivity refers to the ratio of
output changes to input changes. High responsivity requires a relatively high current output and a low
leakage current, guaranteeing a high on–off ratio for phototransistors. Fast electron hole separation
and carrier conduction are essential to increase the switching speed. Wide sensing band and high
photoelectric efficiency indicate a larger photo sensing range and a high energy conversion efficiency.

It is found that strong light–matter interaction occurs in the graphene/TMDs/graphene
heterostructures [104,105]. Significantly strengthened photon absorption and electron-hole generation
are also observed. Previous graphene-based photodetectors have several advantages such as wide
absorption band and high speed, but weak absorption and small built-in potential limit their
efficiency [106,107]. In contrast, the graphene/ZnO heterostructure can detect an ultraviolet band
with a fast response in milliseconds [108]. A wide band range from ultraviolet to far-infrared and
a high responsivity are also produced based on hot carrier tunneling of two graphene layers [109].
In TMD devices, vertically stacked structures provide a large response area and the intrinsic Schottky
barriers guarantee an effective carrier separation. According to band diagram analysis, gate voltage
can regulate the intensities and direction of photocurrents. The maximum external and internal
quantum efficiency are measured to be 55% and 85%, respectively [105]. The performance can be
further enhanced by improving the light absorption—for example, by adding optical resonators or
plasmonic nanostructures to enhance the ambient electric fields of light [104]. Compared with 2D
materials, oxides can be easily deposited with few processes and at a low cost. In SnO and at the
MoS2 p–n junction, the electron–hole separation depends on the depletion area [110]. The diode can
be utilized to perform a rectification (high forward to reverse current ratio as 9.3 × 103) with a good
laser response. Under different gate voltages, the junction type changes from n/p+ to n/p, and even
n+/p−, thus influencing both the dark current and the photon-induced carrier separation (Figure 9d).
It is worth noting that the same electron–hole separation mechanism applies to both photosensing and
photovoltaic applications, so the generated photocurrent also counts in energy harvesting.
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of gate-tunable I–V characterization; (b) Anti-ambipolar transfer curves for all three junctions;
(c) Rectification ratio of the 1 L, 3 L, and 7 L heterojunctions as a function of gate voltage; (d) Illustration
of the band alignments according to the change in rectification ratio (Zhenwei Wang et al. [110]).
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Other methods are used to further improve photodetector performance. Owing to the strong
polarization and local electrostatic field (~109 V/m) of ferroelectrics, the dark current of a channel is
suppressed and the power dissipation is therefore reduced [111]. At the MoS2/ferroelectrics junction,
a high responsivity of 2570 A/W is obtained. The detectivity, defined as D∗ = RA1/2/(2eIdark)1/2,
is 2.2 × 1012 Jones. Another device based on MoS2/ferroelectrics heterostructures works at
low temperatures. A responsivity of over 300 A/W is reached. The photoresponse range is visible to
1550 nm [112]. When the channel material is replaced by In2Se3, the photoresponse time is as fast as
200 µs [113]. To minimize environmental influence on the device performance, the MoS2 photodetector
is encapsulated with atomic layer deposited HfO2 [114]. Free from ambient doping and contaminants,
a lower noise and a better sensitivity are achieved. The maximum responsivity and sensitivity are
104 A/W and 7.7 × 1011 Jones respectively.

Another novel application based on a photoelectric process is photoconductive switches [110].
Under a 2-mW light, the photoresponsivity (the ratio of generated photocurrent to the light power
absorbed by the device channel) of BP/SrTiO3 is 2.5 A/W. The photocurrent is not volatile and the
decay time is as long as several days. Red light can turn on the switch and increase the current by
increasing its intensity, while UV light can turn off the switch immediately. The responsivity reaches
as high as 1.1 × 105 A/W, several tens of times larger than previous devices. Such a huge responsivity
is attributed to the intrinsic defects in SrTiO3. Lights of different wavelengths have different optical
penetration depths and could excite different donor and acceptor states in defects. UV light can
generate carrier separations of different energy levels but only at the surface, which leads to the
recombination of electrons and holes during the conduction. In contrast, red light can excite electrons
from acceptor states through the entire sample. Instead of accumulating charges at the surface, holes
can recombine at the top layer in the case of red light; as a result, the intrinsic electrical field declines
and the entire conductivity increases. Therefore, lights with different wavelengths can be utilized to
control the on/off states of the switch.

Similar photodetector devices have been fabricated with other 2D semiconductors. MoSe2 can
be changed to p type by Nb doping to form a p–n homojunction [115]. WS2 light emitting transistors
have also been demonstrated [116]. Black phosphorus could generate a greater photocurrent owing to
its narrow band gap. An intrinsic 657 mA/W responsivity in the near-infrared band is reported for
a 100 nm thick device [117]. In the mid-infrared light range, external responsivity is measured to be
82 A/W [118].

4. Perspectives and Challenges

So far, we have discussed lots of fundamental properties of 2D semiconductors/functional oxides
heterojunctions, as well as some recent research progress on their applications. The various types of
interface interactions benefit the heterojunctions in forming novel structures and providing multiple
functionalities. In the future, with the miniaturization and integration of nanodevices, their applications
in electronics and optoelectronics will be further enriched.

Although some novel 2D semiconductors and functional oxides have been studied for many
years or even decades, there are still several challenges in the routes of their heterojunctions to
practical applications. As to device fabrication, for example, the most commonly used and reliable
methods are still based on the transfer technique to form vdWs heterogeneous structures. The process is
facile but time-consuming, cost-ineffective, and not scalable. Further development of in situ, large-scale,
and direct growth of 2D semiconductors on novel functional oxides (e.g., strongly correlated oxides)
is much desired to lower the production cost and improve the performance. This is very challenging
because the ambient condition in the growth of 2D semiconductors may damage the surface of these
novel oxide substrates, thereby affecting the interfaces in the formed heterojunctions. Some delicately
designed protecting processes should be adopted here. In the future, when more reliable and
high-volume preparation of the heterojunctions is realized, their potential applications will be
fully exploited.
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The other challenge is to answer the following question: Are 2D semiconductors/functional
oxides heterojunctions really unique or indispensable for electronic applications evaluated in the
conventional figure of merits? So far most related studies have been focused on 2D electronic devices
such as FET devices and p–n junctions. Lots of effort has been made to improve the mobility and speed
of the devices as well as reduce their energy consumption. Promising performance has indeed been
shown in several lab-made heterojunction systems. However, it will also introduce several problems
in these systems, such as the instability of many 2D semiconductors (e.g., BP) and functional oxides
(through losing oxygen) and susceptibility to ambient conditions (e.g., absorption of molecules in air).
Overcoming these cons usually requires additional processes, which may make the 2D systems
not so competitive as compared with conventional devices. In this regard, the development of 2D
semiconductors/oxide systems with novel properties is a more hopeful research direction because
it could provide multiple new functions that conventional devices cannot offer. For example,
more dimensions of freedom in 2D semiconductors such as valley electronics have been found to be
capable of regulating and carrying the information. The coupling of multiple degrees of freedom of 2D
semiconductors with novel functional oxides would be a hot topic in future research.
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