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Abstract: The present article describes how to use the computer program BLEND to help assemble
complete datasets for the solution of macromolecular structures, starting from partial or complete
datasets, derived from data collection from multiple crystals. The program is demonstrated on
more than two hundred X-ray diffraction datasets obtained from 50 crystals of a complex formed
between the SRF transcription factor, its cognate DNA, and a peptide from the SRF cofactor MRTF-A.
This structure is currently in the process of being fully solved. While full details of the structure
are not yet available, the repeated application of BLEND on data from this structure, as they have
become available, has made it possible to produce electron density maps clear enough to visualise
the potential location of MRTF sequences.
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1. Introduction

The current data collection and data processing landscape in X-ray crystallography for biomolecules
is very different from the way it used to be even just 10 years ago. Several factors have contributed to this
significant change, including improved technology at third-generation synchrotrons, faster readouts from
silicon pixel detectors, ubiquitous presence of robotic arms and related cryogenics, new types of set-up
for single and multiple crystal mounting, fast data transfer and larger capacity for data storage, new
processing software and continued introduction and update of process pipelines. One of the noteworthy
aspects of such an enhanced methodology is the assemblage of complete datasets from several crystals,
as opposed to the acquisition of a complete dataset from one single crystal. A number of papers and
related software [1–15] have appeared since 2011, the year in which Hendrickson and collaborators
showed how datasets from multiple individual crystals could be merged to increase data multiplicity
with the aim of reinforcing the anomalous signal due to heavy atoms [1]. The advantages of creating
complete datasets out of several partial ones can be summarized as:
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1. Increased likelihood of solving a structure even before having obtained well-diffracting crystals
through the use of optimised crystallization conditions. This amounts to a significant saving in
time, as many attempts are very often needed to find the right conditions that yield large crystals.

2. Increased data multiplicity, with the twofold consequence of obtaining better data scaling
and stronger anomalous signal, if strong anomalous scatterers are present in the structure.
A consequence of this so-called data redundancy is the recent finding that native proteins can be
solved by exploiting the generally faint anomalous signal due to sulphur atoms, because such
a signal is highly enhanced by the high data multiplicity [7,8,10,14,16,17].

3. More accurate structure factors. As scaled data are obtained merging individual observations
from different, independent crystals, the derived structure factors might present larger errors,
but better accuracy. Phasing and the resulting electron density maps, accordingly, have improved
overall quality [3]. This qualitative observation holds if the different crystals have a reasonable
level of isomorphism.

4. Physical limitation of the deteriorating effects due to radiation damage. Only the first portion
of every dataset can be retained when merging data together, because later sweeps generally
include reflections biased by the changing lattice, progressively altered by X-ray radiation.

5. New scenarios opened by the management of multiple datasets in relation to crystals isomorphism
and structure dynamics. One such scenario is the use of multiple crystals for structure-guided
drug design, whereby many crystals are soaked in a cocktail of chemical fragments that act as
precursors for more complex drug molecules. Data is then collected from multiple crystals and
merged to produce electron density maps that allow the identification of bound inhibitors [18,19].

A clear sign that use of multiple crystals has become an accepted methodology in the community of
structural biologists is the setting up, at several synchrotrons around the world of technology, hardware
and software [9,18,20–23] to make the technique routinely accessible to users, like, for example, the
new in situ automated VMXi beamline [24]. Furthermore, the handling of large numbers of crystals
for data collection is the standard mode of operation for free-electrons laser sources [4,5,13,25–27].
In fact, the free electron laser data collection paradigm has been successfully imported into 3rd
generation synchrotrons [28–31].

While recent years have witnessed the effort to create adequate technologies for harvesting and
processing large volumes of data in an automated fashion, a strong case still exists for manual handling
of multi-crystal datasets. Although automated software has improved, with the advent of faster
processors and large computing memories, the relevant routines are normally only successful with
data that do not represent a high processing challenge. Macromolecular diffraction images that are
difficult to interpret are periodically appearing in the community of interest, and the analysis of
these same images is often used to improve automated software. In macromolecular crystallography,
therefore, the need is still felt to manage and process data from multiple crystals, without resorting to
automated programs. In this article, a computer program created for this purpose, BLEND [3], will be
described with special focus on its use for handling data from the challenging structure of a complex
between the Serum Response transcription Factor (SRF), one of its regulatory cofactors, and DNA
containing an SRF binding site. This complex will be referred to as SRF-M-DNA throughout this paper,
as its crystal structure has not yet been solved. The application of BLEND to data from this structure
has enabled the creation of complete datasets of reasonable quality and provided us with procedural
hindsight, useful when working with multiple datasets.

Datasets from Single and Multiple Crystals

As previously mentioned, the final product of the assemblage of data from multiple crystals is
a dataset that includes reflections from several distinct rotation sweeps. Such sweeps can be very wide,
quite often covering the full unique portion of reciprocal space. Such datasets (i.e., those collected
from a single crystal) will henceforth be referred to as Dataset Single-crystal Complete (DSC), and
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a dataset assembled from multiple crystals/smaller datasets, will be called Dataset Multiple-crystals
Complete (DMC).

2. Collecting Data from More Than One Crystal: A Short Review

The main goal of data collection for macromolecular crystallographers is the measurement of reflection
intensities with high completeness (close to 100%) and sufficient multiplicity. Completeness refers to that
fraction of reciprocal space, up to a given resolution, sufficient to create an electron density map with
minimal distortion. In general, completeness should be around 90% and above, but density maps have
been calculated with lower values, and there are no rigorous criteria to suggest a resolution threshold
to avoid map distortion. Multiplicity measures the average number of times all reflections have been
measured, taking into account symmetry equivalence. Multiplicity should be at least 2 or better in
order for scaling to yield accurate structure factors.

Until a few years ago, the preferred way to obtain complete datasets was by irradiating a single
crystal with an attenuated X-ray beam while rotating the crystal through a large angle, quite often 360◦

or more. With the advent of 3rd generation synchrotrons, X-ray beams have become more powerful, so
that data can be collected now from samples that before would not have provided enough scattering
power for the detector to be triggered sensibly. But such intense pulses of photons damage the crystal
irreversibly, and the sample’s lattice is destroyed before data with enough completeness and/or
multiplicity is obtained. The obvious way around this limitation is to collect scattered intensities from
different individual crystals and assemble the diverse and often overlapping portions of reciprocal
space into a single dataset having the required completeness and multiplicity (a DMC). A major
problem with this approach lies in the heterogeneity of the different crystals, called in this context
crystal isomorphism. Scaling the assemblage of individual datasets from different crystals can result in
biased structure factors not representing the target structure, unless crystals have a good degree of
isomorphism. Different ways of measuring crystal isomorphism can be imagined, and one of them will
be explained when describing the BLEND program, but what is important when dealing with multiple
crystals is that the more isomorphous the crystals are, the better and more accurate the quality of the
structure factors will be. Two different approaches to the combination of multi-crystals are currently
available. The first makes use of hierarchical cluster analysis (HCA) to create groups of datasets with
a certain degree of similarity, as measured by various descriptors. To this group belong, among others,
the procedure incorporated in the program BEST [2] and the program BLEND [3], described in the
next section. The second approach starts from the full set of crystals available and proceeds towards
a single, smaller group of crystals through a convergence process in which one or more crystals are
discarded based on the decrease of a target function, typically an indicator of scaling quality, like
Rmerge, Rmeas or, more recently, the CC1/2 correlation coefficient [32,33]. Other procedures can mix
elements from each of the two approaches, depending on the goal to be achieved. Some of these
involve the gradual inclusion of individual reflection within single or multiple datasets in a controlled
way until a specific threshold has been reached or surpassed [34]. A last procedure makes use of local
scaling techniques, anomalous signal optimization and dataset weighting to improve the anomalous
phasing likelihood [15]. The success of these methods involves the exclusion or limitation of that
portion of reflections mostly affected by radiation damage.

The rapid increase of structures solved using data from multiple crystals and the number of new
technical arrangements at various synchrotrons’ beamlines suggest that the construction of complete
datasets using multiple crystals is becoming a viable alternative to single-crystal data collection and
will, probably, very soon become the default choice in macromolecular crystallography.

3. The BLEND Program

The main purpose of BLEND is to provide guidance and tools for the merging of datasets
from multiple crystals. The key ingredient of the program is hierarchical cluster analysis (HCA).
This technique, developed within multivariate statistics, is very often used in initial data exploration to
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try and find connections, patterns and trends in datasets collected from independent sources. An old,
but still effective, review of data clustering can be read in the long article by Jain et al [35]. In HCA,
individual datasets are joined together into increasingly larger clusters based on their proximity.
A distance between any two datasets can be defined once generalized coordinates are chosen that
transform each dataset in a multi-dimensional point. These generalized coordinates are known, within
multivariate statistics, as statistical descriptors. The primary statistical descriptors used in BLEND are
related to the six cell parameters, i.e., the three cell edges, a, b, c, and the three angles, α, β, γ. Due to
crystal symmetry, such descriptors can be as many as 6, in the triclinic system, and as little as 1, in the
cubic system. Datasets are, thus, associated with numbers, and it becomes possible to measure the
distance between each pair of them. In HCA, closer datasets will be grouped together first and joined
later by other datasets or groups of datasets. The whole process gives rise to a tree-like structure, the
dendrogram, in which individual datasets are like the tree’s leaves, while clusters of increasing size are
like the tree’s branches that merge into bigger and bigger structures, eventually becoming the unique
single tree’s trunk (see Figure 1).
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Figure 1. Hierarchical clustering, based on cell parameters for a simulated group of 15 crystals in
a tetragonal space group. (a) Only lengths a and c of the unit cell are variable quantities useful to
describe crystals variation in the tetragonal system (see data in panel on the left). The 15 crystals are
separated in three groups (black, red and green) with similar structural features (crystal isomorphism).
Cell parameters alone can be insufficient to discriminate among isomorphous groups. In this specific
example, crystal 12 is closer to the black group than to the green group because the size of its unit cell
is closer to the unit cell size of crystals 1 and 2; (b) Dendrogram reflecting hierarchical cluster analysis
for the 15 crystals just described. The three isomorphous groups are well separated with the exception
of crystal 12, forming a cluster with the black, rather than the green group.
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The creation of a dendrogram is, most of the time, meant to highlight homogeneous groups. In the
specific process we are describing, the aim could be to single out one or more groups of isomorphous
crystals. In BLEND, though, a different philosophy has been adopted since the very first version of
the program. It is suggested that each cluster (each branching node in the tree) potentially leads to
a useful solution. Subsequent processing of specific clusters, automatically carried out within BLEND
using the programs POINTLESS and AIMLESS [36,37], reveals the sufficiency or inadequacy of the
resulting dataset to be used for further processing leading to structure solution. There are many tools
in BLEND to facilitate the analysis and further processing of each cluster. For this reason, the program
can be considered semi-automated software, as it allows combined datasets to be assembled without
human intervention, but requires synergy with the user for the definition of datasets with improved
quality. There are many ways to create a DMC from different datasets after the initial clustering.
Each way depends on the specific requirements of the final DMC. For example, if high resolution
is required with the hope of observing side chains or even atom-atom bonds in the electron density
map, then most of the constituent datasets with high resolution will need to be included, even if their
merging statistics are not among the best available. Or, if a nearly-complete combined dataset still
has not reached a desired target completeness, datasets with lower isomorphism can be included
in the nearly-complete group, with the assumption that influence on the most important structural
features in the electron density map will be negligible. Statistical quality indicators are produced by the
software for each cluster or modified cluster. This makes it possible to carry out dataset creation and
management according to users’ preferences, guided by the quality indicators. The overall structure of
the BLEND program with its various components is shown in Figure 2. There are, essentially, three
different main running modes: (1) an analysis mode in which datasets are checked, information from
each one of them extracted, and the dendrogram produced; (2) a synthesis mode in which datasets out
of each cluster are combined and scaled; and (3) a combination mode, in which datasets not grouped in
any existing cluster are combined and scaled. Other modes of execution also exist to allow additional
types of operations, not possible within the remit of the three main modes. It is envisaged that more
modes will be added in the future, and that eventually the program will be equipped with a graphical
interface with which execution and interplay of the various modes will become more intuitive for users.
Useful tutorials illustrating how to use BLEND with specific examples are available at the main CCP4
website [38]. A complete description of the many uses of BLEND, with special reference to membrane
proteins is also available in “The Next Generation in Membrane Protein Structure Determination” [39].
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Figure 2. BLEND components and overall flow. The program can be executed in three main modes,
analysis, synthesis and combination. Input are data from an integration program. After a run in analysis
mode, the user has the option to re-run the program in synthesis or combination mode, in order to
generate a given number of DMCs and DSCs. Other less important running modes are available,
like the graphics mode, that are useful for in-depth data analysis. The various modes are controlled
via keywords.
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The Absolute Linear Cell Variation (aLCV)

In order to provide users with a single number describing unit cell isomorphism, a new parameter
has been introduced in BLEND. This is called absolute Linear Cell Variation (aLCV) and the way it is
defined is shown in Figure 3.
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Figure 3. Meaning of aLCV. Two generic unit cells are represented in this figure. The three diagonals
along each one of the three main unit cell’s faces depend both on the cell’s sides and the cell’s angles.
Any of the diagonals in one of the two cells will be, in general, different from the corresponding
diagonals in the other cell. Let’s call ∆a, ∆b, ∆c the difference between corresponding diagonals.
The aLCV (absolute Linear Cell Variation) for the group formed by the two unit cells is the maximum
difference: aLCV = max(∆a, ∆b, ∆c). When more crystals are added, the aLCV is recalculated as before,
considering all pairs of unit cells, and selecting the highest of all maximum values computed as the
new aLCV.

In Figure 3, the simple case of two unit cells is shown. The variation of one cell with respect to
the other can be due to both the three sides and the three angles. This is what BLEND uses when
calculating cluster analysis. The height reported in the corresponding dendrogram, though, is not
related to any absolute difference in linear or angular measurements between the unit cells involved in
the dendrogram. This is where the aLCV plays a role. Consider any of the three diagonals on the three
main faces of each unit cell. The diagonal is measured in angstroms, and its variation is due to both
the cell’s side and angle variations, simultaneously. The difference between corresponding diagonals
for the main unit cell’s three faces are the numeric values in angstroms: ∆a, ∆b, ∆c. The aLCV for the
two crystals under consideration is the maximum among the three numeric values:

aLCV = max(∆a, ∆b, ∆c) (1)

When more than two crystals are used, quantity (1) will be calculated between all couples of unit
cells in the group, and the aLCV will be equal to the highest value obtained. The aLCV parameter is,
accordingly, measured in angstroms.

4. Materials and Methods

To illustrate how BLEND can manage datasets from multiple crystals for the creation of one or
more DMCs, we have chosen to describe work done with 271 datasets from 50 crystals, collected
during 7 sessions at the Diamond Light Source synchrotron [40]. Full details are included in Table A1,
Appendix A.
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4.1. The Target Structure

The crystal structure that prompted the investigations described in this paper is a multicomponent
complex comprising the DNA-binding domain of the SRF transcription factor, bound to its cognate
DNA and a synthetic peptide from the SRF cofactor Myocardin Related Transcription Factor
(MRTF-A—referred to hereafter as SRF-M-DNA). SRF controls growth factor-inducible, cytoskeletal,
and muscle-specific genes by recruiting members of two families of signal-regulated transcriptional
coactivators, the MRTFs and the Ternary Complex Factors (TCFs), which interact with its DNA-binding
domain [41,42]. Structural studies have extensively characterized the interaction between SRF and
DNA, and its interaction between SRF and the SRF Accessory Protein (SAP-1 TCF) [43,44]. However,
while biochemical studies show that the MRTFs and TCFs compete for a common surface on the
SRF DNA-binding domain [45], the structural basis of the MRTF-SRF interaction remains to be
determined. In this project, we thus sought to define the interaction between MRTF and SRF, and
to elucidate the nature of any interaction between MRTF and the DNA. A major challenge has been
to obtain a low-resolution image of the complex, which includes a long and flexible DNA fragment,
and indeed, the best resolution obtained to date has been between 3.5 and 4 Å. We used BLEND
processing to combine different SRF-M-DNA datasets in sensible ways, which has allowed us to
generate a low-resolution image of the SRF-M-DNA interaction.

4.2. Data Collection and Plans to Solve the Structure

Once the first crystals were obtained and X-ray data collected, it became apparent that the
resolution was limited. Complete, single datasets were used to try and phase the structure using
molecular replacement with SRF as a partial model. All attempts were unsatisfactory and it was,
subsequently, decided to use combined datasets in the hope of obtaining interpretable electron density
maps. BLEND was executed numerous times on an increasing number of datasets until a promising
DMC could be assembled. The resulting map showed density corresponding to the SRF part and of
some DNA, but it was very noisy and did not convincingly show MRTF density. We decided to collect
more data from newly grown crystals, both using more crystals of the same type, and trying different
data collection strategies, to test whether BLEND could yield further DMCs, with the aim of producing
more interpretable electron density maps. Unfortunately, the addition of new datasets did not generate
better maps. The reason was related to map isomorphism: datasets corresponding to similar unit cells
can potentially describe structures that are not very isomorphous, which can hinder calculation of
electron density of good quality. Furthermore, when the number of datasets forming a dendrogram
is too high, it becomes more difficult to carry out the filtering and combination of separate clusters
and groups, because the possibilities are, in this case, endless. We therefore decided to approach the
processing and management of all datasets collected in a more systematic way, as described in the
next section.

4.3. Pre-Clustering

As presently structured, BLEND discriminates datasets based only on the chosen statistical
descriptors. If we stick with unit cell parameters for now, it is clear that one dataset will be different
from another according to the similarity of their unit cells. But two datasets with identical unit cells
can still be different for many reasons. They could correspond to distinct structures (unlikely, but
theoretically possible); they could come from crystals grown in different conditions; they could have
been collected during different visits, and so on. The original philosophy in BLEND was to ignore
differences with the exception of those leading to clustering. But recently it has been found that
separation of data in groups, prior to clustering, can help save processing time later, because it reduces
the number of possible clusters.

In this paper, the division of all datasets could have been carried out in many ways. It is
quite sensible, for example, to think that datasets corresponding to crystals prepared with the same
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crystallization and cryogenic conditions, and containing the same heavy atom, would tend to be fairly
isomorphous and should, then, be separated in a single group prior to clustering. Another sensible
choice would be to create a group of datasets corresponding to the same heavy atom, even though the
crystals were prepared with different crystallisation procedures; in this case the heavy atom is thought
to influence isomorphism to a greater extent than other factors. Whichever the criteria employed to
effect an initial separation into groups are, it is important to have an algorithmic structure that makes
the separation easy. Such a structure has not been yet coded within BLEND, but it has been used for
the work in this article and will now be described.

The starting point is the raw data listed in Table A1. This table can be encoded in a dataframe, in
the context of the R programming language [46]. A dataframe is, very simply, a table with columns
and rows. The way it is encoded in the R language means that it can be reshaped into other objects
containing the same information as the original dataframe, but highlighting specific details. The main
outcome of reshaping the original dataframe included in Appendix A is the creation of a new table,
Table 1, in which each row corresponds to a unique combination of base conditions (BC), cryogenic
conditions (CC), dehydration protocol (DH), flag (yes, no) indicating whether the heavy atom was
co-crystallised (CO) and heavy atom type (HA). The construction of this table is connected to the
creation of a new dataframe, the conditions dataframe, explained in Appendix B.

Table 1. Conditions dataframe, the tool used to determine the starting groups on which BLEND was
executed. BC stands for base conditions in which the crystal was grown, CC for cryogenic conditions,
DH for the type of dehydration procedure used, CO is a yes-no flag stating whether the heavy atom
derivative comes from a co-crystallisation, and HA is the type of heavy atom. The dataframe also
includes a column to assign a serial number (SN) to the specific group, and a column (NC) indicating
the number of datasets for that specific group.

BC CC DH CO HA NC SN

bc1 cry2 no no no 13 1
bc1 cry1 no no no 14 2
bc2 cry1 no no no 5 3
bc1 cry1 dh1 no no 7 4
bc1 cry1 dh1 no KlCl6 6 5
bc1 cry1 dh1 no Tantalum 1 6
bc1 cry1 dh1 no Hg(Thi) 3 7
bc1 cry1 dh1 no Pt(PIP) 1 8
bc1 cry1 dh1 yes Pt(PIP) 1 9
bc1 cry1 dh1 no KAu(CN)2 3 10
bc1 cry1 dh1 yes KAu(CN)2 1 11
bc1 cry1 dh1 no Hg(Ace) 1 12
bc1 cry1 dh1 no K2PtCl4 59 13
bc3 cry1 dh1 no K2PtCl4 23 14
bc1 cry1 dh2 no K2PtCl4 4 15
bc1 cry3 dh2 no K2PtCl4 24 16
bc1 cry1 dh1 yes K2PtCl4 4 17
bc1 cry1 dh1 no Hg(PMA) 1 18
bc1 cry1 dh1 no K2PtI6 1 19
bc1 cry1 dh1 yes OsCl3 1 20
bc1 cry1 dh1 yes AgN 1 21

bc1 cry1 dh1 yes I3C(magic
triangle) 1 22

bc1 cry1 dh1 yes GdCl3 9 23
bc1 cry1 dh1 no Os 5 24
bc3 cry1 dh1 no Os 28 25
bc1 cry1 dh2 no Os 11 26
bc3 cry1 dh2 no Os 42 27
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The most useful feature of this dataframe is that it makes it immediately clear how many datasets
are available for the specific combination of crystal features. For example, the largest number of
datasets (59) is found in the group with serial number 13. Crystals in this group were grown with
base condition bc1, dehydrated with protocol dh1, incorporated a platinum atom via soaking with
a solution of K2PtCl4, and were cryo-cooled after being prepared with condition cry1.

4.4. Strategy for Data Combination

As the goal of the approach chosen in our investigations was to find out if electron density
maps clearly displayed the interaction of MRTF with DNA, and possibly with SRF, we decided to
create data starting from the groups with the highest number of datasets, because these were more
likely to yield more DMCs. The research that will eventually lead to the solution of SRF-M-DNA is
still ongoing, as not all datasets collected have been properly explored. Up until now, the groups
that have been explored and used in this paper are serial group 13 (59 datasets), serial group 27
(42 datasets), serial group 25 (28 datasets), serial group 16 (24 datasets), serial 14 (23 datasets) and
serial 2 (14 datasets). From each group, one or more DMCs were assembled and used to try and
solve the structure. Only work done on two of these groups, serial group 25 and serial group 2, will
be described here in detail, because they are the only ones that have so far been used to calculate
interpretable electron density maps. It is clear that many more combinations of the many datasets
available could be considered for further work.

4.5. Detailed Description

4.5.1. Working out DMCs with Serial Group 25

In this group, there are 28 datasets in space group P2221, collected from 10 crystals formed with
a solution containing gadolinium, subsequently soaked in a solution containing osmium, and finally
dehydrated with the addition of salts corresponding to protocol dh1. The best strategy with BLEND
at the very beginning of a data combination process is to execute the program in dendrogram-only
mode (option –aDO) in order to check the validity of all files involved, and to display the dendrogram.
The program does not produce all files needed for subsequent runs, but it runs faster in this mode, and
rapidly identifies outliers among the datasets. The result of the analysis of all 28 datasets in group 25 is
shown in Figure 4a, and it is clear that datasets 23, 24 and 28 are very non-isomorphous with the other
datasets and also among themselves.

For this reason, it makes sense to consider them as outliers and re-run BLEND on the remaining
25 datasets. The results of the second run are shown in Figure 4b. This figure was obtained with
the help of BLEND’s graphics mode (option –g), executed after the dendrogram-only mode. From
the figure, it is easy to appreciate that the dendrogram is not displayed using a cluster’s height but,
rather, using the number of objects included in a cluster. So, for instance, the first level of grey boxes
corresponds to clusters of 2 objects; the second level corresponds to clusters of three objects; the third
level corresponds to clusters of four objects, and so on. This type of dendrogram representation in
BLEND also includes, for each node, information on cell isomorphism (the parameter aLCV) and
cluster number. It is important to observe that the 25 remaining datasets used for the second run
of BLEND were renumbered from 1 to 25 so that the original numbering was lost in the second run.
One of the files produced by BLEND, “FINAL_list_of_files.dat”, includes information on all datasets
used. From this file, it was clear that the first seven datasets were wider and more complete sweeps,
compared to the remaining 18. A very crude resolution estimate was also computed by BLEND and
recorded in “FINAL_list_of_files.dat”. For the 25 files treated, these estimates ranged roughly between
2.7 Å and 4.7 Å. For the following runs it was, therefore, decided to treat the 7 complete datasets
separately from the 18 partial sweeps. Furthermore, for the merging and scaling steps within BLEND
synthesis or combination, the resolution was arbitrarily set to 4 Å, both based on experience applying
BLEND to other structures and because this resolution is situated between the estimated highest and
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lowest resolutions. Scaled data for the 7 complete datasets could be obtained by executing BLEND in
combination mode with the following syntax:

blend-c [dataset serial number]

With “dataset serial number” being the serial number associated with any of the first seven
datasets of the run with 25 datasets. Statistics for the 7 complete datasets are displayed at Table 2.
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Figure 4. Dendrograms corresponding to runs of BLEND on datasets of serial group 25. (a) Initial run
on all 28 datasets. This is the default dendrogram produced by BLEND when executed in analysis
or dendrogram-only mode. In here it is immediately clear that datasets 23, 24 and 28 are outliers;
(b) Execution of BLEND on the remaining 25 datasets. This dendrogram has a different style, compared
to that in part (a), with no cluster height but, rather, cluster level, where nodes at each level have the
same number of objects.

Table 2. Scaling statistics for the 7 complete individual datasets of serial group 25. Maximum resolution
is fixed at 4Å from suggestions based on the BLEND analysis run. The best results in this group of
7 datasets point to dataset n. 7 (last two rows).

Dataset Number Rmeas Rpim Completeness (%) Multi-Plicity Resolution CC1/2 Resolution Mn(I/sd) Resolution Max

1 0.472 0.217 93.5 3.8 4.39 5.82 4.00
2 0.537 0.298 92.3 2.7 4.97 5.70 4.00
3 2.107 1.430 97.9 2.6 4.00 4.00 4.00
4 0.328 0.137 99.9 6.5 5.85 5.93 4.00
5 0.532 0.311 78.7 2.8 6.21 6.57 4.00
6 1.510 0.788 71.5 3.5 5.77 6.18 4.00
7 0.212 0.104 99.9 6.4 4.08 4.37 4.00

7 final dataset 0.277 0.112 98.9 4.4 3.80 4.39 3.80

By far, the best solution is the one associated with dataset 7, which was selected as one of the DSC
to be used for phasing. In the hope of extending resolution to 3.5 Å, BLEND combination was run
again on dataset 7 with the keyword RESO HIGH 3.5. Unfortunately, the overall Rmeas deteriorated
substantially and, in the end, it was decided to extend resolution to just 3.8 Å.
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In order to execute BLEND on the 18 remaining and partial datasets, it was necessary to re-run
the program in analysis mode using only these 18 datasets. The resulting dendrogram is displayed at
Figure 5 (dataset numbers are, once more, changed for this run; now running from 1 to 18).Crystals 2017, 7, 242  11 of 29 
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To see how well the 17 clusters produced performed with scaling, we ran BLEND on each one
of them in synthesis mode (maximum resolution fixed at 4 Å). The resulting statistics for data with
completeness greater than 90% are collected in Table 3.

Table 3. Scaling statistics for clusters in serial group 25 reaching data completeness of 90% and above.
Cluster 7 seems promising, but its completeness has to be increased. This was done (see text) using the
filtering variant of the combination mode.

Cluster Number Rmeas Rpim Completeness (%) Multi-Plicity Resolution (CC1/2 = 0.3) Resolution (Mn(I/sd) = 2) Resolution Max

14 0.979 0.398 99.9 6.2 4.91 5.04 4.00
16 0.958 0.260 99.8 13.7 4.24 4.36 4.00
17 1.758 0.437 99.7 16.1 4.27 4.35 4.00
9 0.778 0.377 99.5 4.2 4.92 5.62 4.00
13 0.618 0.210 99.2 7.6 4.00 4.37 4.00
11 0.632 0.290 97.9 4.3 5.20 4.70 4.00
10 0.707 0.377 97.2 3.2 5.41 5.11 4.00
7 0.337 0.158 92.2 3.7 4.00 4.58 4.00

From the table, it is clear that cluster 7 displayed much better merging statistics, which agrees
with the relatively low value for aLCV (1.78 Å), but the completeness is not close to the ideal value
of 100%; therefore, using the dendrogram in Figure 5, it was decided to consider a large cluster that
included cluster 7 as a starting point for the automated filtering variant within the combination mode
in BLEND. In this variant, one dataset at a time is discarded from a starting group of datasets until
convergence towards a low Rmeas is achieved, provided completeness remains above a specified
threshold level. When BLEND was executed in combination mode with this variant, and starting from
cluster 13, only one dataset was automatically discarded, and the final completeness reached 99.3%,
Rmeas equaled 0.310, Rpim equaled 0.118 and the multiplicity reached 6.6.
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So far, from serial group 25, one DSC and one DMC were selected for further work with
structure solution: dataset 7 (see Table 2) was the selected DSC, while cluster 7 (see Table 3) was
the selected DMC.

4.5.2. Obtaining DMCs from Serial Group 2

Work to obtain complete datasets (also with P2221 symmetry) from this other group followed
a similar pattern to what was described for serial group 25. BLEND (dendrogram-only mode) was
executed on the 14 datasets composing this serial group. Three outliers were found (datasets 12, 13 and
14) based on the comparison of aLCV, and discarded from the analysis. Next, BLEND was executed in
full analysis mode on the remaining 11 datasets, followed by a run in synthesis mode, with resolution
3 Å, on all the 10 clusters obtained. The result is depicted in the annotated dendrogram of Figure 6.
Each cluster corresponds to a numbered grey disc. Around each disc are located three numeric values
corresponding to: (a) completeness (in green); (b) resolution as calculated from CC1/2 (in red); and (c)
Rmeas value (in blue). Clusters 4, 6, 8, 9 and 10 have high completeness, but poor merging statistics.
Therefore, the filtering variant of the combination mode was applied to these clusters, in the hope of
improving the statistics. Results of the five runs of BLEND are reported in Table 4.

Table 4. BLEND run in combination mode with the filtering variant, for the 5 most complete clusters in
the serial group 2 case.

Cluster
Number

Datasets
Filtered Rmeas Rpim Completeness (%) Multi-Plicity Resolution

CC1/2
Resolution
Mn(I/sd)

Resolution
Max

4 6 1.542 0.544 99.3 8.5 4.25 4.86 3.00
6 none 17.651 7.004 98.6 7.0 5.13 6.26 3.00
8 7 9.365 3.128 99.4 9.8 5.68 5.01 3.00
9 4,7 9.365 3.128 99.4 9.8 5.68 5.01 3.00

10 1,4,6,7,10 0.733 0.223 99.4 10.5 3.98 4.59 3.00

Values of Rmeas and Rpim are still a bit high, and the resolution estimates reported are closer to
4 Å than to 3 Å. It was decided to lower the resolution with the hope of obtaining more reasonable
statistics. Also, it is interesting to observe that the obtained values for the third and fourth row are
identical; this is to be expected because cluster 8 without dataset 7 coincides with cluster 9 without
datasets 4 and 7. Results from the run at resolution 3.5 Å are included in Table 5.

The improvement derived from cutting the resolution to 3.5 Å is evident when looking at the new
statistics, and illustrates a common trait when dealing with multiple data sets. That is, multiplicity
and, in part, completeness are sacrificed in order to improve data scaling (measured by Rmeas and
Rpim). The removal of data at unrealistically-high resolutions is also common practice, whose likely
effect is to improve data quality, since data at high resolutions contain often more noise than signal.

Table 5. Run in combination mode with the filtering variant, for the 5 most complete clusters in the
serial group 2 case. Here, compared to Table 4, data have been cut at 3.5 Å resolution. All statistics
have improved, while completeness and multiplicity both remains at reasonable values.

Cluster
Number

Datasets
Filtered Rmeas Rpim Completeness (%) Multi-Plicity Resolution

CC1/2
Resolution
Mn(I/sd)

Resolution
Max

4 6 0.366 0.158 99.0 5.4 4.39 4.98 3.50
8 7 2.875 0.927 99.5% 9.9 5.17 4.98 3.50
6 none 1.876 0.691 99.3 7.4 5.04 5.76 3.50
9 4,7 2.875 0.927 99.5 9.9 5.17 4.98 3.50

10 1,4,6,7,10 0.383 0.115 99.8 11.0 4.01 4.69 3.50
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To improve the quality of scaled data even more, we investigated the effects of a further source of
noise, radiation damage. Reflections included in the last images of the rotation sweep are likely to
reflect a structure substantially changed by the destructive power of energetic X-rays. Accordingly, such
reflections are likely to be systematically different from those in the initial images which correspond to
the non-damaged structure. So, when statistics are poor and the resolution has already been limited
it may be desirable to exclude the final images of each dataset (especially, when it is evident that
substantial radiation damage has occurred) in order to improve data quality. In BLEND, this can be
done manually, using the BATCH EXCLUDE keyword or automatically as a variant of combination
mode, the pruning variant. When BLEND is executed with this variant, there is an automated
assessment of how many images can be eliminated without affecting threshold completeness. Based on
this, images are cyclically eliminated from scaling until the threshold completeness is reached, or until
the best scaling statistics have been achieved. This variant has been attempted on all filtered clusters of
Table 5, resulting in a further improvement in data quality (Table 6).
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Table 6. Run in combination mode with the PRUNING variant, for the 5 datasets of Table 4. Statistics
have improved in general. Values for the last row have not changed because the automated procedure
has excluded no images.

Cluster
Number

Datasets
Filtered Rmeas Rpim Completeness (%) Multi-Plicity Resolution

CC1/2
Resolution
Mn(I/sd)

Resolution
Max

4 6 0.328 0.148 97.5 4.8 4.37 5.01 3.50
8 7 0.704 0.256 98.5 7.5 5.17 4.98 3.50
6 none 1.314 0.504 99.5 7.0 5.31 5.84 3.50
9 4,7 0.704 0.256 98.5 7.5 6.07 4.96 3.50

10 1,4,6,7,10 0.383 0.115 99.8 11.0 4.01 4.69 3.50

All statistics have, in general, improved. Values for cluster 10 in Table 6 are unchanged, because
the automated pruning procedure has not eliminated any images. The filtered dataset described in the
last row of Table 5 and the filtered and pruned dataset described in the first row of Table 6, are the best
DMCs with which to attempt structure solution, for data in serial group 2.

4.6. Structure Solution

4.6.1. Data Used

Two of the four datasets prepared with BLEND have been used to attempt structure solution so
far. These are the DSC mentioned in Section 4.5.1 and the DMC from Table 5. We will call the first
dataset “serial25_01.mtz” and the second “serial02_01.mtz”.

4.6.2. Molecular Replacement

The structure of the SRF part of the macromolecular complex has been previously solved
in a different context. Therefore, one of the molecules of a structural complex published in the
PDB repository [47], code 1HBX, and a shortened part of the DNA segment associated with the
structure, were used as initial models for molecular replacement, in order to calculate initial phase
estimates for our structure. Molecular replacement was performed using PHASER [48]. With dataset
“serial25_01.mtz”, PHASER found a solution with Z-score for the translation function (TFZ) equal to
16.5. For dataset “serial02_01.mtz”, PHASER found a solution with TFZ = 16.2. As TFZ with values
greater than 8 are declared to correspond to correct solutions, it is evident that both datasets have been
assigned promising initial phases, and that SRF is a stable component of the complex.

An important result to verify was the accordance of the solutions found. The model for SRF is
placed with a certain orientation at a specific location in the unit cell, which can be different for each of
the two datasets. If the crystals used to produce the datasets are isomorphous and correspond to the
same structure, then the two solutions found with PHASER should return the model with the same
orientation and located in the same region of the unit cell. In simpler terms, the two models should
overlap after molecular replacement. This was found to be the case: after molecular replacement,
the RMSD between the two models, across all atoms, was 0.773 Å. The procedure is explained in
Appendix C. In fact, for all datasets tried so far (data not included in this paper), the models found
have proved to overlap very well.

4.6.3. Structure Refinement and Electron Density

Initial models were extended using COOT [49]. The electron density showed enough structural
details for the addition of DNA, starting from the short segment included in the initial model.
After a few cycles alternating model building and refinement using the program REFMAC [50],
most DNA could be built. In addition, clear protein electron density was visible in a region around the
SRF component. Poly-alanine models could be built in this region for both datasets. Resolution range,
completeness and overall refinement statistics for both models can be found in Table 7.
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Table 7. Final overall refinement statistics for the two datasets used in this paper.

Dataset Resolution Low (Å) Resolution High (Å) Completeness (%) Rwork Rfree

serial25_01.mtz 98.00 3.80 91.87 0.36 0.42
serial02_01.mtz 104.49 3.50 89.71 0.41 0.51

The observed values reflect that the model is still very incomplete, the resolution limited and
because the DNA confers some flexibility to the overall structure. Nonetheless, two goals have already
been achieved with the two datasets used: (1) much of DNA structure could be built and fitted in clear
density; and (2) additional protein-like density that could not be ascribed to SRF is visible, indicating
the possible location of MRTF-A for the first time. Model and electron density details are shown
in Figure 7.
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Figure 7. Details of the model and the electron density for the two datasets used in this
paper. Figures (a,c,e) correspond to dataset “serial25_01.mtz”; figures (b,d,f) correspond to dataset
“serial02_01.mtz”. The two top figures (a,b) display the quality and extent to which the DNA has been
built. Figures (c,d) in the middle show details of the electron density presumably corresponding to the
MRTF peptide which closely approaches SRF in the complex. The MRTF density had sufficient detail
to allow fitting of an incomplete poly-alanine model (e,f).
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5. Discussion and Concluding Remarks

While the priority in working with multiple datasets is the acquisition of a DMC that can be used
to start the structure solution process, it is clear that the abundance of data involved can be used to
increase the information on the biological problem under investigation. Crystal structures are formed
by molecules that are stuck in unnatural positions and orientations because of lattice constraints.
Each macromolecular crystal packs the molecules in a slight different way so that the electron density
due to the X-ray diffraction from the crystal is an averaged and slightly blurred representation of
the crystallised macromolecule. With multiple crystals assembled to produce a DMC, the blurring is
more accentuated, especially when crystal isomorphism increases. Therefore, the process of grouping
together crystals that are more likely to be isomorphous, as it is the case with BLEND, minimises such
blurring and highlights conformational differences among non-isomorphous groups.

With the SRF-M-DNA complex analysed here, the situation is somewhat different because the
resolution and the molecular dynamics do not make it easy to produce an electron density map of
sufficient quality to appreciate molecular details. The priority in the first stage of the investigations
of the SRF-M-DNA structure was to determine the overall shape of the complex and where MRTF
binds to SRF. The ability to combine so many different datasets in a systematic and rational way, using
a flexible tool like BLEND, offers valuable insights in this approach to structure solution. Several DMCs
were used independently with the same initial model to produce molecular replacement solutions.
All the solutions were consistent with the position and orientation of both SRF and the DNA. This,
obviously, reinforces trust in the overall architecture suggested for the solution. In statistical terms, the
different crystals can be seen as independent sources of information and the overlapping nature of the
corresponding independent models points to an objective structure solution.

The SRF-M-DNA structure will now allow us to undertake a more detailed analysis of potential
MRTF-SRF interactions. It is difficult to formulate a final judgment on the locations of the putative
MRTF-SRF interaction seen in the current crystal model, especially in relation to previous biochemical
analyses [45]. The low resolution of the diffraction data means the structure currently gives limited
insight into the details of MRTF-DNA interactions, as yet. Further refinement of the structure, and
additional biochemical analyses, will be required to resolve these issues. However, the consistency
with the molecular replacement result, and the availability of many more datasets and potential
combinations make us optimistic that additional density can be revealed in the map. Nevertheless, this
study shows that systematic use of multiple crystals can substantially advance structural investigations
in which straightforward and traditional approaches are not feasible.
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Appendix A

Crystals and X-ray data for the case described in this paper were produced and collected over
a period of 2 years. Full details are included in Table A1. In the table, Visit ID refers to the unique
code assigned by the Diamond synchrotron user office to the specific experiment at a given beamline.
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The crystal used for data collection is named in the Crystal column. It is stored in liquid nitrogen inside
a Puck, containing several crystals. The crystal itself can be large enough for the beam to be shone
through it at several Positions. The Serial Number, thus, assigns a unique number to all sweeps collected
for this structure. The remaining 5 columns describe how the crystal was prepared, including details
of the presence of a soaked or co-crystallised heavy atom, and cooled down to cryo-temperatures.
There are three Base Conditions: bc1, bc2 and bc3. They are a mixture of commercial screens, additive
screens (not revealed, as they are sensitive data) and gadolinium (Gd). More specifically:

(1) bc1 = A + B + C1
(2) bc2 = A + B + C2
(3) bc3 = A + B + C1 + Gd

where,

A = commercial screen
B = commercial screen for optimization
C1 = additive screen
C2 = additive screen
Gd = gadolinium

There are also three types of Cryogenic Conditions:

(1) cry1 = 30% glycerol + 5 mM magnesium chloride
(2) cry2 = 30% glycerol + OH
(3) cry3 = 30% glycerol + 5 mM magnesium chloride + 1 M sodium bromide

Also, some crystals have been dehydrated by addition of salts directly in the crystallization
plates [51] with one of two protocols, dh1 or dh2 (column Dehydration).
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Table A1. Information on all datasets used for the work described in this paper. Crystals were prepared with one of three different base conditions, bc1, bc2 and bc3
(see text). They were also prepared for cooling with one of three different cryogenic conditions, cry1, cry2 and cry3 (see text). The majority of crystals included heavy
atoms to attempt SAD phasing. Heavy atoms were soaked in solution for most of the crystals; in a few cases, they were co-crystallised. In order to improve resolution,
one of two dehydration screenings have been attempted for many crystals. The table also lists details concerning dates of the various data collections, position of
the crystals in the pucks and whether crystals were shot once or more times. The serial number, thus, corresponds to a unique and specific sweep obtained from
X-ray diffraction.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

02/05/2013 mx8031-26 777

xtal1

1 1

bc1 cry2 no no no2 2
3 3
4 4

xtal3

1 5

bc1 cry2 no no no
2 6
3 7
4 8
5 9

xtal6
1 10

bc1 cry2 no no no2 11
3 12

xtal8
1 13

bc1 cry2 no no no
b_1 14

22/05/2013 mx8681-3 777

xtal3

real_3_2 15

bc1 cry1 no no noreal_3c_2 16
real_3d_3 17
real_3e_2 18

xtal4 1 19 bc1 cry1 no no no

xtal6

6_1 20

bc1 cry1 no no no
6a_2 21
6b_1 22
6b_2 23
6c_1 24

xtal9

9_1 25

bc2 cry1 no no no9b_1 26
9b_2 27
9b_3 28

xtal14 b_1 29 bc2 cry1 no no no

778 xtal3 3_2 30 ? ? ? ? ?
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

20/10/2013 mx8681-13 542 1_13

3 31

bc1 cry1 dh1 no no

5 32
6 33
7 34
8 35
9 36

10 37

13/02/2014 mx5005-1

136

7
7 38

bc1 cry1 dh1 no KICl67b 39

8
8 40

bc1 cry1 dh1 no KICl68b 41

10
10 42

bc1 cry1 dh1 no KICl610b 43

138 xtal15 15_1 44 bc1 cry1 dh1 no Tantalum

542
xtal2 1 45 bc1 cry1 dh1 no Hg (Thi)
xtal4 1 46 bc1 cry1 dh1 no Hg (Thi)

544 xtal2 _ 47 bc1 cry1 dh1 no Pt (PIP)
546 xtal4 4_1 48 bc1 cry1 dh1 yes KAu(CN)2

758
xtal1 1 49 bc1 cry1 dh1 no Hg (Ace)
xtal9 1 50 bc1 cry1 dh1 no Hg (Thi)

762

xtal1 2 51 bc1 cry1 dh1 no K2PtCl4
xtal2 data 52 bc1 cry1 dh1 no K2PtCl4
xtal4 1 53 bc1 cry1 dh1 no K2PtCl4

xtal13 1 54 bc1 cry1 dh1 no KAu(CN)2
xtal14 1 55 bc1 cry1 dh1 no KAu(CN)2
xtal15 1 56 bc1 cry1 dh1 no KAu(CN)2

764 xtal14
3 57

bc1 cry1 no no no4 58
5 59

765 xtal5 5_1 60 bc1 cry1 dh1 no Hg (PMA)
766 xtal3 3_1 61 bc1 cry1 dh1 no K2PtI6
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

17/02/2014 cm4982-1

CPS-0134

12 2 62 bc1 cry1 dh1 yes OsCl3

13
2 63

bc1 cry1 dh1 yes K2PtCl43 64
4 65

CPS-0140

7 7_1 66 bc1 cry1 dh1 yes K2PtCl4
11 11_4 67 bc1 cry1 dh1 yes Pt (PIP)
12 12_1 68 bc1 cry1 dh1 yes AgN
15 15_1 69 bc1 cry1 dh1 yes I3C (m.triangle)

CPS-0761

1 2 70 bc1 cry1 dh1 yes GdCl3

2
2 71

bc1 cry1 dh1 yes GdCl3line 72

5
1 73

bc1 cry1 dh1 yes GdCl32 74
5 75

7 1 76 bc1 cry1 dh1 yes GdCl3

9
2 77

bc1 cry1 dh1 yes GdCl33 78

02/05/2014 cm4982-2 767

data_0767_2

2 79

bc1 cry1 dh1 no KPtCl4

3 80
4 81
9 82

10 83
13 84
15 85

data_0767_7

1 86

bc1 cry1 dh1 no KPtCl4

2 87
3 88
4 89
5 90
6 91
7 92
8 93
9 94

10 95
11 96
12 97
14 98
15 99
16 100
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

02/05/2014 cm4982-2 767

data_0767_9

1 101

bc1 cry1 dh1 no KPtCl4
3 102
4 103
5 104
6 105

data_0767_10

1 106

bc1 cry1 dh1 no KPtCl4

2 107
3 108
4 109
5 110
6 111
7 112

11 113

data_0767_11

1 114

bc1 cry1 dh1 no KPtCl4

2 115
3 116
4 117
5 118
7 119
8 120
9 121

10 122
11 123

data_0767_13
2 124

bc1 cry1 dh1 no KPtCl43 125
6 126

data_0767_14

1 127

bc1 cry1 dh1 no KPtCl4
2 128
3 129
4 130

data_0767_15

1 131

bc1 cry1 dh1 no KPtCl4
2 132
3 133
4 134

754 1

1_1 135

bc1 cry3 dh2 no KPtCl4

1_2 136
1_3 137
1_4 138
1_5 139
1_6 140
1_7 141
1_8 142
1_9 143
1_10 144
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

02/05/2014 cm4982-2

754

4

4_1 145

bc1 cry3 dh2 no KPtCl4

4_2 146
4_3 147
4_4 148
4_5 149
4_6 150
4_7 151
4_8 152
4_9 153
4_10 154
4_11 155

5
5_1 156

bc1 cry3 dh2 no KPtCl45_2 157
5_3 158

758

02
2_2 159

bc3 cry1 dh1 no Os2_3 160

03 3_1 161 bc3 cry1 dh1 no Os

04
4_2 162

bc3 cry1 dh1 no Os4_4 163
4_5 164

05

5_1 165

bc3 cry1 dh1 no Os
5_2 166
5_3 167
5_4 168
5_5 169

06

6_1 170

bc3 cry1 dh1 no Os
6_2 171
6_3 172
6_4 173
6_5 174

08 8_1 175 bc3 cry1 dh1 no Os

10
10_1 176

bc3 cry1 dh1 no Os10_2 177

11
11_1 178

bc3 cry1 dh1 no Os11_2 179

13
13_1 180

bc3 cry1 dh1 no Os13_2 181

15

15_2 182

bc3 cry1 dh1 no Os
15_3 183
15_4 184
15_5 185
15_6 186
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

02/05/2014 cm4982-2

765

1

1_1 187

bc3 cry1 dh1 no KPtCl4

1_3 188
1_4 189
1_5 190
1_6 191
1_7 192
1_8 193
1_9 194
1_10 195
1_11 196
1_12 197

2

2_3 198

bc3 cry1 dh1 no KPtCl4

2_4 199
2_5 200
2_6 201
2_7 202
2_8 203
2_9 204
2_10 205
2_11 206
2_12 207
2_13 208
2_14 209

5

5_4 210

bc1 cry1 dh1 no Os
5_6 211
5_7 212
5_8 213
5_9 214

30/06/2014 cm4982-3 758
0758_3

3_1 215

bc1 cry1 dh2 no KPtCl4
3_2 216
3_3 217
3_4 218

0758_4 4_1 219 bc3 cry1 dh2 no Os
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

30/06/2014 cm4982-3 758

0758_5

5_1 220

bc3 cry1 dh2 no Os

5_2 221
5_3 222
5_4 223
5_5 224
5_6 225
5_7 226
5_8 227
5_9 228
5_10 229
5_11 230
5_12 231
5_13 232
5_14 233

0758_6

6_1 234

bc3 cry1 dh2 no Os
6_2 235
6_4 236
6_5 237
6_6 238

0758_8
8_1 239

bc3 cry1 dh2 no Os8_2 240
8_3 241

0758_9

9_1 242

bc3 cry1 dh2 no Os

9_2 243
9_3 244
9_4 245
9_5 246
9_6 247
9_7 248

0758_10

10_1 249

bc3 cry1 dh2 no Os

10_2 250
10_3 251
10_4 252
10_5 253
10_6 254

0758_11

11_1 255

bc3 cry1 dh2 no Os

11_2 256
11_3 257
11_4 258
11_5 259
11_6 260
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Table A1. Cont.

Date Visit ID Puck Crystal Position Serial N. Base Condition Cryogenic Condition Dehydration Co-Crystallized Heavy Atom

30/06/2014 cm4982-3 758

0758_12

12_1 261

bc1 cry1 dh2 no Os

12_2 262
12_3 263
12_4 264
12_5 265
12_6 266
12_7 267

0758_13 line 268 bc1 cry1 dh2 no Os

0758_14
14_1 269

bc1 cry1 dh2 no Os14_2 270

0758_15 15_1 271 bc1 cry1 dh2 no Os
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Appendix B

A table different from Table A1, but related to it, is Table 1, included in Section 4.3. Table 1 is
a representation of a reshaped dataframe, an object present in the R programming language [46]. In this
appendix, it will be explained how the reshaped dataframe is obtained. The starting point is the
manual construction of a dataframe associated with Table A1. Several solutions can be envisaged
to avoid this time-consuming task, all of them making use of database algorithms. These will be
implemented shortly in BLEND, but for the work described in this article, preparation of the initial
dataframe and the subsequent formation of the reshaped dataframe were carried out manually. A few
lines of the code for the initial dataframe are shown in Figure A1.
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Figure A1. Initial R dataframe, corresponding to Table A1. Just a few lines of the dataframe are shown
in this figure.

The dataframe is a simple matrix in which each row corresponds to a single dataset. As multiple
datasets can be associated with a same Date, VisitID, Puck, etc., then values for these columns are,
often, repeated. Next, a dataframe including all possible combinations from the unique conditions in
the initial dataframe, is created. Let us call this dataframe theoretical conditions dataframe. It turns out
that the base conditions (BC) comprise 3 unique values (bc1, bc2, bc3), the cryogenic conditions (CC)
also comprise 3 unique values (cry1, cry2, cry3), the dehydration protocol includes 3 unique values
(no = no dehydration, dh1, dh2), the co-crystallisation flag (CO) includes two values (yes, no), and the
heavy atom types (HA) are 15 (no = no heavy atom, KlCl6, Tantalum, Hg(Thi), Pt(PIP), KAu(CN)2,
Hg(Ace), K2PtCl4, Hg(PMA), K2PtI6, OsCl3, AgN, IC3(m_triangle), GdCl3, Os). The possible
combinations from all values listed above are 3 × 3 × 3 × 2 × 15 = 810. This means that the theoretical
conditions dataframe has 810 rows. Not all possible combinations will be present in the data collected
for this work, because the total number of datasets is 271. For this reason, the initial dataframe entries
are matched against the theoretical conditions dataframe; the result of this comparison is the new
dataframe, simply called conditions dataframe, shown in Table 1.

Appendix C

With molecular replacement, models are oriented and placed at specific locations of the unit cell.
Two solutions from molecular replacement runs do not necessarily overlap, even if they correspond to
the same correct structure. The reason for this is that the asymmetric units selected by the molecular
replacement program could be different. Furthermore, the absolute location of the oriented molecule
depends on where the unit cell origin has been placed. The origin can be selected arbitrarily to be
compatible with the specific symmetry. Thus, to verify whether two molecules overlap, all symmetry
equivalents of the molecules and all allowed origin shifts must be tried. Within the CCP4 group
of programs, this task is carried out by the program CSYMMATCH [52]. The input consists of the
two files containing the atomic coordinates of the two models to be compared; one is considered the
moving model, the other the reference model. The output consists of a PDB file corresponding to the
moving model, transformed to the closest possible location to the reference model still compatible
with symmetry and allowed unit cell origin. To compute the RMSD between all atoms of the reference
structure and all atoms of the moved structure, we have used the CCP4 program COMPAR. This is
an old program with no related documentation on the official CCP4 website. Details on how to run
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this program have been learned via the CCP4 Bulletin Board [53]. The value for the two structures
discussed in this paper is RMSD = 0.773 Å.
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